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PREFACE 

This textbook has evolved from part of the first-year graduate curriculum in the 
Department of Materials Science and Engineering at the Massachusetts Institute of 
Technology (MIT) . This curriculum includes four required semester-long subjects- 
“Materials at Equilibrium,” “Mechanical Properties of Materials,” “Electrical, Op- 
tical, and Magnetic Properties of Materials,” and “Kinetic Processes in Materials.” 
Together, these subjects introduce the essential building blocks of materials science 
and engineering at the beginning of graduate work and establish a foundation for 
more specialized topics. 

Because the entire scope of kinetics of materials is far too great for a semester- 
length class or a textbook of reasonable length, we cover a range of selected topics 
representing the basic processes which bring about changes in the size, shape, com- 
position, and atomistic structures of materials. The subject matter was selected 
with the criterion that structure is all-important in determining the properties (and 
applications) of materials. Topics concerned with fluid flow and kinetics, which are 
often important in the processing of materials, have not been included and may 
be found in standard texts such as those by Bird, Stewart, and Lightfoot [l] and 
Poirier and Geiger [2]. The major topics included in this book are: 

I. Motion of atoms and molecules by diffusion 

11. Motion of dislocations and interfaces 

111. Morphological evolution due to capillary and applied mechanical forces 

IV. Phase transformations 

xvii 



xviii PREFACE 

The various topics are generally introduced in order of increasing complexity. The 
text starts with diffusion, a description of the elementary manner in which atoms 
and molecules move around in solids and liquids. Next, the progressively more com- 
plex problems of describing the motion of dislocations and interfaces are addressed. 
Finally, treatments of still more complex kinetic phenomena-such as morpholog- 
ical evolution and phase transformations-are given, based to a large extent on 
topics treated in the earlier parts of the text. 

The diffusional transport essential to many of these phenomena is driven by a 
wide variety of forces. The concept of a basic diffusion potential, which encompasses 
all of these forces, is therefore introduced early on and then used systematically in 
the analysis of the many kinetic processes that are considered. 

We have striven to develop the subject in a systematic manner designed to 
provide readers with an appreciation of its analytic foundations and, in many cases, 
the approximations commonly employed in the field. We provide many extensive 
derivations of important results to help remove any mystery about their origins. 
Most attention is paid throughout to kinetic phenomena in crystalline materials; 
this reflects the interests and biases of the authors. However, selected phenomena 
in noncrystalline materials are also discussed and, in many cases, the principles 
involved apply across the board. We hope that with the knowledge gained from 
this book, students will be equipped to tackle topics that we have not addressed. 
The book therefore fills a significant gap, as no other currently available text covers 
a similarly wide range of topics. 

The prerequisites for effective use of this book are a typical undergraduate knowl- 
edge of the structure of materials (including crystal imperfections), vector calculus 
and differential equations, elementary elasticity theory, and a somewhat deeper 
knowledge of classical thermodynamics and statistical mechanics. At MIT the lat- 
ter prerequisite is met by requiring students to take “Materials at Equilibrium” 
before tackling “Kinetic Processes in Materials.” To facilitate acquisition of pre- 
requisites, we have included important background material in abbreviated form in 
Appendices. We have provided a list of our most frequently used symbols, which we 
have tried to keep in correspondence with general usage in the field. Also included 
are many exercises (with solutions) that amplify and extend the text. 

Bibliography 
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N OTAT I0 N 

Not at ion Definition 
~ 

a' 
~~~ ~ ~ 

Vector a, the column vector a' 

d Unit vector a 

- A, [Aajl Matrix A, matrix A in component form 

A 

a'. b' 
Tensor A of rank two or greater 

Scalar, inner or dot product of a' and b' 
Z X b '  Vector, outer or cross product of a' and b' 
a'T, AT Transpose of a' or A 
A, A, a Total amount of A, amount of A per mole or per 

atom as deduced from context, density of A 

(a) Average value of a 

Va Gradient of scalar field a 

V . A '  Divergence of vector field A' 
V . Va 3 V2a Laplacian of scalar field a 

6ij 

L{a} or d 

Kronecker delta, S i j  = 1 for i = j ;  dij = 0 if i # j 

Laplace transform of a 

Car, Kroger-Vink notation for Ca on K-site with 
positive effective charge 

vx, 

s: 

Kroger-Vink notation for vacancy on Ag-site with 
negative effective charge 

Kroger-Vink notation for S on O-site with zero 
effective charge 
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Symbol Definition Units 

A Area m2 

a ,  b,  c Lattice constants m 

g, b Burgers vector, magnitude of m 

b’ Specific magnetic moment A m-l 

Burgers vector 

C ,  C i  Concentration of molecules or m-3, d = 3 

m-2, d = 2 
m-l, d = 1 

atoms, concentration of species i 

D ,  D Mass diffusivity, diffusivity tensor m2 s-l 

D x L  Bulk diffusivity in crystalline m2 s-l 
material free of line or planar 
imperfections 

DB Boundary diffusivity m2 s-l 

DD Dislocation diffusivity m2 s-l 

DL Liquid diffusivity m2 s-l 

DS Surface diffusivity m2 s-l 
- 
D Chemical interdiffusivity m2 s-l 

~ ~ 

*D Self-diffusivity in pure material m2 s-l 

*Di Self-diffusivity of component i in m2 s-l 

Di Intrinsic diffusivity of component m2 s-l 

mult icomponent system 

i in multicomponent system 

d Spatial dimensionality - 

E Activation energy J atom-’ 

E Young’s elastic modulus Pa  = J m-3 

I3 Electric field vector V m-l 
~~~ ~ 

f Correlation factor for atomic - 

jumps in diffusion 
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SYMBOLS-ROMAN 

Symbol Definition Units 

F, F ,  f Helmholtz energy, Helmholtz 
energy per mole (or particle), 
Helmholtz energy density 

J ,  J mol-l, J m-3 

$7 s Force, force per unit length N, Nm-l 

6, G, g Gibbs energy, Gibbs energy per 
mole (or particle), Gibbs energy 
density 

J, J mol-l, J m-3 

7f, H ,  h Enthalpy, enthalpy per mole (or 
particle), enthalpy density 

J ,  Jmol-l ,  Jm-3 

h Planck constant 6.626 x 10-34 J s 

14, Ii Current of electrical charge, c s-1, s-1 

i, j ,  I Unit vectors parallel to - 

current of species i 

Cartesian coordinates 2, y, z 
m-2 -1 f, $ Flux, flux of species i S 

J Nucleation rate ,-3 s-l 

K Thermal conductivity J s-l K-1 

K Rate constant various 

k Boltzmann constant 1.38 x ~ o - ~ ~ J K - ~  

Lap Onsager coupling coefficient (or m-2 S -' N-' 
tensor) 

M ,  M Mobility, mobility tensor various 

M, O Atomic or molecular weight of kg N;' 
species i 

m Mass kg 
N Number - 

N Total number of atoms or - 

molecules in subsystem 

tion 
Nc Number of components in a solu- - 

NO Avogadro's number 6.023 x 
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SYMBOLS-ROMAN 

Symbol Definition Units 

n Number per unit volume m-3 

a Unit normal vector at interface - 

(concentration) 

n d  Instantaneous diffusion-source m-2, d = 3 

m-l, d = 2 
number, d = 1 

strength 

P Pressure Pa  = Jm-3  

P Probability - 

p' Momentum kg m s-l 

Q Heat J 

4 Electrical charge C 

R Radius m 

r' Position vector relative to origin m 

T ,  8, z Cylindrical coordinates - 

r ,  8, q5 Spherical coordinates - 

Entropy, entropy per mole (or 
particle), entropy density 

S, S, s J K-l, J K-lmol-', J K-1m-3 

T Absolute temperature K 

Tm Absolute melting temperature K 

t Time S 

U, U ,  u Internal energy, internal energy J ,  Jmol-l, Jm-3 
per mole (or particle), internal 
energy density 

u' Displacement field m 
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SYMBOLS-ROMAN 

Symbol Definition 
~~ 

Units 

V Volume m3 

5, v Velocity, speed m s-l 

21 Specific volume - 

w, w Work, work per unit volume J 

XZ Composition variable: mole, - 

atomic, or number fraction of 
component i 

2, Y, z Cartesian orthogonal coordinates m 

X I ,  22,23 General coordinates - 

2, Z C  Coordination number, effective - 

coordination number for critical 
nucleus 

z Partition function - 

z Zeldovich factor - 
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SYMBOLS-GREEK 

Symbol Definition Units 
~ ~ 

r', r Atomic or molecular jump S-1  

frequency for a particular jump, 
total jump frequency 

work to  produce unit interfacial 
area at  constant stress and 
temperature at orientation 

y,  ?(a) Surface or interfacial tension, J m-' 

?fa Activity coefficient of component various 

6 Effective thickness of grain m 
boundary or surface layer; 
diameter of dislocation core 

77 Diffusion scaling factor, z / m  - 

t Unit vector tangent to  dislocation - 

E ,  E ,  E , ~  Component of strain, strain mm-l 

i 

tensor, strain tensor in 
component form 

K ,  ~ 1 ,  K' Mean curvature; principal m-l 

K-I Weighted mean curvature J m-3 

K Thermal diffusivity m2 s-l 

curvatures 

x Wavelength m 

A Elastic-energy shape factor - 
~ ~ 

P Elastic shear modulus Pa  = Jm-3 

P ,  Pi Chemical potential, chemical J 
potential of species i 

p r ,  ,LLP Chemical potential of species i J 
in phase a,  chemical potential of 
species i in reference state 

~~ 

U Frequency S-1  
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SYMBOLS-GREEK 
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Symbol Definition Units 

U Poisson's ratio - 

z Capillarity vector J mP2 

P Density 
~ 

kg mP3 

Electrical conductivity c v-lm-l s-l P 

0, m, c ~ i j  Stress, stress tensor, component Pa = Jm-3  

Ir Rate of entropy production per J m-3 s-l K-' 

7- Characteristic time S 

of stress tensor 

unit volume 

@i Diffusion potential for species i J 

@ Electrical potential J C-l 

X Site fraction - 

0, Ri,  (R) Atomic volume, atomic volume m3 
of component i, average atomic 
volume 

W Angular frequency S-1 



CHAPTER 1 

I NTRO D U CTI 0 N 

Kinetics of Materials is the study of the rates at which various processes occur in 
materials-knowledge of which is fundamental to materials science and engineer- 
ing. Many processes are of interest, including changes of size, shape, composition, 
and structure. In all cases, the system must be out of equilibrium during these 
processes if they are to occur at a finite rate. Because the departure from equilib- 
rium may be large or small and because the range of phenomena is so broad, the 
study of kinetics is necessarily complex. This complexity is reduced by introducing 
approximations such as the assumption of local equilibrium in certain regions of a 
system, linear kinetics, or mean-field behavior. In much of this book we employ 
these approximations. 

Ultimately, a knowledge of kinetics is valuable because it leads to prediction of 
the rates of materials processes of practical importance. Analyses of the kinetics of 
such processes are included here as an alternative to a purely theoretical approach. 
Some examples of these processes with well-developed kinetic models are the rates 
of diffusion of a chemical species through a material, conduction of heat during 
casting, grain growth, vapor deposition, sintering of powders, solidification, and 
diffusional creep. 

The mechanisms by which materials change are of prime importance in determin- 
ing the kinetics. Materials science and engineering emphasizes the role of a mate- 
rial’s microstructure. Structure and mechanisms are the yarn from which materials 
science is woven [l]. Understanding kinetic processes in, for example, crystalline 
materials relies as much on a thorough familiarity with vacancies, interstitials, grain 

Kinetics of Materials. By Robert W .  Balluffi, Samuel M. Allen, and W. Craig Carter. 1 
Copyright @ 2005 John Wiley & Sons, Inc. 
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boundaries, and other crystal imperfections as it does on basic mathematics and 
physics. Extensive discussion of mechanisms is therefore a feature of this book. 

We stress rigorous analysis, where possible, and try to build a foundation for un- 
derstanding kinetics in preparation for concepts and phenomena that fall beyond 
the scope of this book. Also, in laying a foundation, we have selected basic topics 
that we feel will be part of the materials science and engineering curriculum for 
many years, no matter how technical applications of materials change. A compre- 
hensive reading of this book and an effort a t  solving the exercises should provide 
the requisite tools for understanding most of the major aspects of kinetic processes 
in materials. 

1.1 THERMODYNAMICS AND KINETICS 

In the study of materials science, two broad topics are traditionally distinguished: 
thermodynamics and kinetics. Thermodynamics is the study of equilibrium states in 
which state variables of a system do not change with time, and kinetics is the study 
of the rates at  which systems that are out of equilibrium change under the influence 
of various forces. The presence of the word dynamics in the term thermodynamics 
is therefore misleading but is retained for historical reasons. 

In many cases, the study of kinetics concerns itself with the paths and rates 
adopted by systems approaching equilibrium. Thermodynamics provides invaluable 
information about the final state of a system, thus providing a basic reference state 
for any kinetic theory. Kinetic processes in a large system are typically rapid 
over short length scales, so that equilibrium is nearly satisfied locally; at  the same 
time, longer-length-scale kinetic processes result in a slower approach to global 
equilibrium. Therefore, much of the machinery of thermodynamics can be applied 
locally under an assumption of local equilibrium. It is clear, therefore, that the 
subject of thermodynamics is closely intertwined with kinetics. 

1.1.1 Classical Thermodynamics and Constructions of Kinetic Theories 

Thermodynamics grew out of studies of systems that exchange energy. Joule and 
Kelvin established the relationship between work and the flow of heat which re- 
sulted in a statement of the first law of thermodynamics. In Clausius’s treatise, 
The Mechanical Theory of Heat, the law of energy conservation was supplemented 
with a second law that defined entropy, a function that can only increase as an 
isolated system approaches equilibrium [2]. PoincarB coined the term thermody- 
namiques to refer to the new insights that developed from the first and second 
laws. Development of thermodynamics in the nineteenth century was devoted to 
practical considerations of work, energy supply, and efficiency of engines. At the 
end of the nineteenth century, J .  Willard Gibbs transformed thermodynamics into 
the subject of phase stability, chemical equilibrium, and graphical constructions for 
analyzing equilibrium that is familiar to students of materials science. Gibbs used 
the first and second laws rigorously, but focused on the medium that stores energy 
during a work cycle. From Gibbs’s careful and rigorous derivations of equilibrium 
conditions of matter, the modern subjects of chemical and material thermodynam- 
ics were born [3]. Modern theories of statistical and continuum thermodynamics- 
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which comprise the fundamental tools for the science of materials processes-derive 
from Gibbs’s definitive works. 

Thermodynamics is precise, but is strictly applicable to phenomena that are un- 
achievable in finite systems in finite amounts of time. It provides concise descrip- 
tions of systems at  equilibrium by specifying constant values for a small number of 
intensive parameters. 

Two fundamental results from classical thermodynamics that form the basis for 
kinetic theories in materials are: 

1. If an extensive quantity can be exchanged between two bodies, a condition 
necessary for equilibrium is that the conjugate potential, which is an intensive 
quantity, must have the same value throughout both bodies. 
This can be generalized to adjoining regions in materials. The equilibrium 
condition, which disallows spatial variations in a potential (e.g., the gradient 
in chemical potential or pressure), cannot exist in the presence of active phys- 
ical processes that allow the potential’s conjugate extensive density (composi- 
tion or volume/mole) to  change. This implies that a small set of homogeneous 
potentials can be specified for a heterogeneous system at equilibrium-and 
therefore the number of parameters required to characterize an equilibrium 
system is relatively small. For a system that is not at equilibrium, any vari- 
ation of potential is permitted. There are an infinite number of ways that 
a potential [e.g., ,ui(z, y ,  z ) ]  can differ from its equilibrium value. Thus, the 
task of describing and analyzing nonequilibrium systems-the subject of the 
kinetics of materials-is more complex than describing equilibrium systems. 

With this complexity, construction of applicable kinetic theories and tech- 
niques requires approximations that must strike a balance between over- 
simplification and physical reality. Students will benefit from a solid un- 
derstanding of which approximations are being made, why they are being 
made, and the fundamental physical principles on which they are founded. 

2.  I f  a closed system is in equilibrium with reservoirs maintaining constant po- 
tentials (e .g . ,  P and T ) ,  that system has a free-energy function [e.g. ,  G(P,T)]  
that is minimized at equilibrium. Therefore, a necessary condition for equi- 
librium is that any variation in G must be nonnegative: ( 6 G ) p , ~  2 0.  
This leads to classical geometrical constructions of thermodynamics, includ- 
ing the common-tangent construction illustrated in Figs. 1.1 and 1.2. For 
closed systems that are not at equilibrium, a function G(P, T )  exists for the 
entire system-but only as a limiting value for the asymptotic approach to 
equilibrium. Away from equilibrium, the various parts of a system generally 
have gradients in potentials and there is no guarantee of the existence of an 
integrable local free-energy density. The total free energy must decrease to 
a minimum value at equilibrium. However, there is no recipe for calculat- 
ing such a total free energy from the constituent parts of a nonequilibrium 
system. A quandary arises: general statements regarding the approach to 
equilibrium that are based on thermodynamic functions necessarily involve 
extrapolation away from equilibrium conditions. However, useful models and 
theories can be developed from approximate expressions for functions hav- 
ing minima that coincide with the equilibrium thermodynamic quantities and 
from assumptions of local equilibrium states. This approach is consistent 
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moles of B/(total moles A+B) 
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moles of B/(total moles A+B) 

Figure 1.1: (a) Curves of the mininium free energy of homogeneous cy and /3 phases as 
a furictioii of average (overall) composition, ( X ) ,  at constant P and T .  G is the free energy 
of 1 mole of solution. Under nonequililxium conditions, free energies may be larger than 
those given by the curves, as the vertical arrow indicates. (b) Cornnion-tangent construction 
showing a minimum free-energy curve for a system that may contain cy phase, /3 phase, or 
both coexisting. The curve consists of a segnient on the left which extends to the first point 
of common tangency, CT1, a straight line segment between two points of common tangency, 
CTl and CT2, and a further segment to the right of CT2. The system a t  equilibrium 
consists of a homogeneous ac phase up to composition CT1. a mixture of coexisting a and 
B phases between CTl and CT2, and a homogeneous /3 phase beyond CT2. As in ( a ) ,  an 
infinite number of higher free-energy states is possible for the system under nonequilibriuni 
conditions. A subset of these correspond to linear mixtures of homogeneous a and p phases 
whose free energies are given by the lower dashed line in ( b ) ,  where X, and X, are the cy and 
@’ phase compositions, respectively. These free energies are plotted, and the energies that 
can be obtained from such mixtures are bound from ahove by the dashed line representing a 
mixture of pure A and pure B. However, in general, energies of the nonequilibrium system 
are not bound, as indicated in Fig. 1.2. 

with the laws of thermodynamics and provides an insightful and organized 
theoretical foundation for kinetic theories. 

Another approach is to build kinetic theories empirically and thus guarantee 
agreement between theory and experiment. Such theories often can successfully be 
extended to  predict observations of new phenomena. Confidence in such predictions 
is increased by a thorough understanding of the atomic mechanisms of the system 
on which the primary observation is made and of the system to which predictions 
will be applied. 

1.1.2 Averaging 

Although it may be possible to use computation to  simulate atomic motions and 
atomistic evolution, successful implementation of such a scheme would eliminate 
the need for much of this book if the computation could be performed in a reason- 
able amount of time. It is possible to construct interatomic potentials and forces 
between atoms that approximate real systems in a limited number of atomic config- 
urations. Applying Newton’s laws (or quantum mechanics, if required) to calculate 
the particle motions, the approximate behavior of large numbers of interacting par- 
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(X) - 
moles of B/(total moles A +B) 

Figure 1.2: 
( X )  is the average mole fraction of component B. 

Representation of all possible values of system molar free energy in Fig. 1.1. 

ticles can be simulated. At the time of this writing, believable approximations that 
simulate tens of millions of particles for microseconds can be performed by patient 
researchers with access to state-of-the-art computational facilities. Such calcula- 
tions have been used to construct thermodynamic data as a foundation on which to 
build kinetic approximations. However, simulations for systems with sizes and time 
scales of technological interest do not appear feasible in any current and credible 
long-range forecast. 

Just as statistical mechanics overcomes difficulties arising from large numbers 
of interacting particles by constructing rigorous methods of averaging, kinetic the- 
ory also uses averaging. However, the application of these methods to kinetically 
evolving systems is precluded because many of the fundamental assumptions of 
statistical mechanics (e.g., the ergodic hypothesis) do not apply. 

Many theories developed in this book are expressed by equations or results in- 
volving continuous functions: for example, the spatially variable concentration .(?). 
Materials systems are fundamentally discrete and do not have an inherent con- 
tinuous structure from which continuous functions can be constructed. Whereas 
the composition at a particular point can be understood both intuitively and as 
an abstract quantity, a rigorous mathematical definition of a suitable composition 
function is not straightforward. Moreover, using a continuous position vector r' in 
conjunction with a crystalline system having discrete atomic positions may lead to 
confusion. 

The abstract conception of a continuum and the mathematics required to de- 
scribe it and its variations are discussed below. 

1.2 IRREVERSIBLE T H E R M O D Y N A M I C S  A N D  KINETICS 

Irreversible thermodynamics originated in 1931 when Onsager presented a uni- 
fied approach to irreversible processes [4]. In this book we explore some of On- 
sager's ideas, but it is worth remarking that his theory applies to systems that 
are near equi1ibrium.l Perhaps zeroth- and first-order thermodynamics would be 

'Nea r  is unfortunately a rather vague word when applied to  the state of a system. Systems that 
are close to  detailed balance where forward processes are almost balanced by backward processes, 
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more descriptive-but it really doesn’t matter as long as the proper application of 
fundamental principles is retained. 

Consider a material or system that is not) at equilibrium. Its extensive state 
variables (total entropy: number of moles of chemical component, i: total magneti- 
zation; volume; etc.) will change consistent with the second law of thermodynamics 
(i.e.? with an increase of entropy of all affected systems). At equilibrium. the val- 
ues of the intensive variables are specified; for instance, if a chemical component 
is free to  move from one part of the material to another and there are no barriers 
to diffusion, the chemical potential, p r ,  for each chemical component, i, must be 
uniform throughout the entire materiaL2 So one way that a material can be out of 
equilibrium is if there are spatial variations in the chemical potential: pi(x% y ?  z ) .  
However, a chemical potential of a component is the amount of reversible work 
needed to add an infinitesimal amount of that component to a system at equilib- 
rium. Can a chemical potential be defined when the system is not a t  equilibrium? 
This cannot’ be done rigorously, but’ based on decades of development of kinetic 
models for processes, it is useful to extend the concept of the chemical potential to 
systems close to, but not a t ,  equilibrium. 

Temperature is another quantity defined under equilibrium conditions and for 
which some doubt may arise regarding its applicability to nonequilibrium systems. 
Consider a bar of material with ends at different temperatures, as in Fig. 1.3. 
Suppose that the system has reached a steady state-the amount of heat absorbed 
by the bar a t  the hot end is equal to the amount of heat given off a t  the cold end. 
The temperature can be thought of as a continuous function, T ( x ) ,  which is sketched 
above the bar in Fig. 1.3. An imaginary therniometer placed along the bar would 
be expected to indicate the plotted temperatures as it moves from point to point. 
The thermometer in this case is in local equilibrium with an infinitesimal region 
of the bar. What kind of thermometer could perform such a measurement? In 
order not to affect the measurement, it must have a negligible heat capacity and be 
unable to conduct any significant amount of heat from the bar. Physically. no such 

I L I 

Figure 1.3: Represeiitat ion of a one-tiiniensional t herrrial gradient 

such as during diffusion, may be regarded as near equilibrium. Quantification of “nearness” has 
theoretical utility and is a topic of current research [ 5 ] .  
2Uniform chemical potential a t  equilibrium assumes that the component conveys no other work 
terms. such as charge in an electric field. If other other energy-storage mechanisms are associated 
with a component, a generalized potential (the diffusion potential, developed in Section 2.2.3) will 
be uniform a t  equilibrium. 
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thermometer can exist-nor can a real material be divided infinitesimally. However, 
this does not mean that one's intuition about the existence of such a function T ( x )  
is wrong; it is reasonable to  take a continuum limit (see Section 1.3.3) of such an 
idealized measurement and refer to the temperature at a point. 

1.3 MATHEMATICAL BACKGROUND 

A few basic physical and mathematical concepts are essential to the study of ki- 
netics, and several of these concepts are introduced below using a mathematical 
language suited to a discussion of kinetics. 

1.3.1 Fields 

A field, f(6, associates a physical quantity with a position, r'= (z, y , ~ ) . ~  A field 
may be time-dependent: for example, f ( r ' , t ) .  The simplest case is a scalar field 
where the physical quantity can be described with one value at each point. For 
example, T(F, t )  can represent the spatial and time-dependent temperature and 
p(F, t )  the d e n ~ i t y . ~  

A vector field, such as force, @(r',t) or flux, f ( r ' , t ) ,  requires specification of a 
magnitude and a direction in reference to a fixed frame. A rank-two tensor field 
such as stress, u ( F ,  t ) ,  relates a vector field to another vector often attached to the 
material in question: for example, u = F( r ,  t ) / A ,  where F(;, t )  is the force exerted 
by the stress, u, on a virtual area embedded in the material and represented by 
the vector A' = AA, where A is the unit normal to  the area and A is the magnitude 
of the area. 

Every sufficiently smooth scalar field has an associated natural vector field, which 
is the gradient field giving the direction and the magnitude of the steepest rate of 
ascent of the physical quantity associated with the field.5 

- + +  

1.3.2 Variations 

Consider a stationary scalar field such as concentration, c(F) (see Fig. 1.4), and 
the rate at which the values of c change as the position is moved with velocity v' 
[suppose that an insect is walking on the surface of Fig. 1.4 with velocity v'(x,  y ) ] .  
The value of c will change with time, t ,  according to c(r '+ v't): 

c(r'+ v't) = c ( 6  + V c .  v'lt=o t + .  . . (1.1) 

where Vc, the gradient of c, is the three-dimensional vector field defined by 

dc dc  dc dc dc d c -  
- - i + - - j + - k  O4.3 = a,) - d x  d y  d z  

Vc points in the direction of maximum rate of increase of the scalar field c ( q ;  the 
magnitude of the gradient vector is equal to this rate of increase. The instantaneous 

3Here, Cartesian coordinates represent points. Other coordinate systems are employed when 
appropriate. 
4However, the definition of each of these quantities depends on the choice of averaging of a physical 
quantity (e.g., kinetic energy or mass) a t  a point F. 
5The associated natural vector field exists as long as there is a definition of distance (a norm). 
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Figure 1.4: Reprcsent,at,ioiis of a two-dimerisiorial scalar field are at t,lie left arid middle. 
A familiar cxample o f  a scalar field is the altit,ude of a point, as a fimtiori of its loiigitucle and 
latitude- a topographical map, its in the middle figure. It is iiiitlrrstootl iii topogritpliical 
rnaps t,liat local averaging is performed. Det,ails in the figure oil t,he riglit may exist at 
"iriicroscopic" scales t,liat can be ignored for 'macroscopic" model applicat,ioiis. 

rate of change of c with respect to  t is therefore 

(1.3) 

Equation 1.3 can be generalized further by considering a t i m e - d e p e n d e n t  field c(F,  t ) :  
the instantaneous rate of change of c with velocity v'(3 is then 

dc dc  
- = v c 4 +  - 
d t  at 

Another type of derivative, the divergence of a vector field, is defined in Sec- 
tion 1.3.5. 

1.3.3 

Within the small volume of material shown at  r' in Fig. 1.5, a certain quantity 
of species i is expected. This specifies a concentration for that particular small 
box: this concentration will be in local equilibrium with some diffusion potential. 
However, materials are comprised of discrete atoms (molecules), which complicates 
the definition of local concentration when the volume sampled becomes comparable 
to the mean distance between atoms being counted. In Fig. 1.5. for the physzcnl 

Continuum Limits and Coarse Graining 

'* 0 

Figure 1.5: 
?with respect to  the origiIi at 0. 

Infinitesirrial volurrie. AV,  with diirierisioris dx. dy .  aid dz located at  position 
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limit of small volume AV = d x  d y  d z ,  the expectation of finding N atoms of species 
i in that volume vanishes as AV goes to  zero. 

Suppose that the atoms are distributed in space as in Fig. 1.5.6 Consider the be- 
havior of the concentration of i-defined by (number of atoms of type i)/(volume)- 
as the volume shrinks toward the point where c ( q  is evaluated as in Fig. 1.6. 
Apparently, the limiting value used intuitively to  define the concentration c ( 3  is 

I 

AV 

Figure 1.6: Behavior of the concentration a t  t~ point c ( 3  as the volume AV -+ 0. 

not a well-defined limit of the function c(F, AV -+ 0). This conceptual difficulty can 
be removed by defining a local convolution function such as in Fig. 1.7. A contin- 
uum limit for the concentration of particles, c ( 3 ,  can be defined with a convolution 
function <(F- ; ) ,  which specifies, at a position F, the weight to assign to a particle 
located at  ?: 

This definition has the correct global behavior for large volumes V because 

where it is assumed that the interference of convolution with the boundary of the 
domain V is negligible. Furthermore, the definition, Eq. 1.5, has the correct local 
behavior: suppose that a volume AV (with spatial dimensions large compared to  

* *  -+ 
r' = r r 

Figure 1.7: 
located at F =  ?. 

'Nicolas Mounet contributed significantly to the development of coarse graining in this section. 

The convolution function [ ( F -  7 )  accomplishes coarse graining of a n  object 
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the width of the convolution function) contains a single isolated particle (i.e., the 
particle in AV is "far" from all others). Also, let the particle's i index be 1, with 
its position ri at the center of AV; then 

Defined by Eq. 1.5, c ( q  becomes a coarse-grained representation of the discrete 
particle positions. 

In one dimension, an exemplary choice for a convolution function is <(x - xi) = 
exp[(z - z ~ ) ~ / B ~ ] ,  where B is the characteristic coarse-grained length. With this 
choice, the coarse-grained one-dimensional concentration is 

N e (z -z i ) z /Bz  

J;iB 
(1.8) 

xi=1 C ( X )  = 

Examples with different characteristic coarse-grain lengths are shown in Fig. 1.8. 

functions can be obtained that do not depend significantly on the choice of 5. 
In this book, it is assumed that the continuum limits exist and coarse-grained 

1 

C 
0 .- c 
!.! c 
C a 
0 
C s 

0 

A B = l  

I , I I I I , I I I l I I I , I , , , , I  

0 25 50 75 100 
Position 

Figure 1.8: Example of one-dimensional coarse-grained concentrations of discrete data. 
Twenty-two atoms were placed randomly on a discrete lattice at positions xi, 0 < xi < 100. 
The concentration curves are continuous and have areas that are approximately equal to the 
number of atoms in the random sample. Each atom contributes a unit area to the coarse- 
grained ~ ( x ) .  Broader convolution functions (higher values of B )  produce greater degrees of 
coarse graining. 

1.3.4 Fluxes 

A flux of i, x(3, describes the rate at which i flows through a unit area fixed 
with respect to a specified coordinate system. Let AA' be an oriented area, equal 
to  liAA = ( A z ,  A , ,  A , )  in a Cartesian systems7 If ldi is a smooth function that 

7AA IAA'I and A = AA'/lAA'l 
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defines the rate at which i flows through area AA’: 

The proportionality factor must be a vector field x: 
kf%(AX) = x . AA 

This defines the local flux x(F) as the continuum limit of 

= $(F) . f i  
if? ( AA) 

AA 

(1.10) 

(1.11) 

1.3.5 Accumulation 

The amount of i that  accumulates in a volume AV = d x d y d z  (with outward- 
oriented normals) in a Cartesian system during the time interval 6t is 

AM, = ( z  that  flowed in during bt) - (i that  flowed out during bt)  (1.12) + (i produced inside during bt) 

An expression for the accumulation can be written wiih the aid of Fig. 1.9, gener- 
alized to include the y and z components of the flux J :  

6Af ,  =-d(n:+d~/2,0,0).idydz6t+x(x-d~/2,0,0).idydz6t 

- d ( 0 ,  y + dyl2.0) . j  dz dx 6t + x ( 0 ,  y - dy/2,0) . j  dz dx 6t 
- x ( O , O ,  z + d ~ / 2 )  . k dx dy 6t  + $ ( O , O ,  z - d ~ / 2 )  . k dx dy bt 

(1.13) 

+ p,(F) AV6t 

where &(?) is the rate of production of the density of i in AV. Expanding to first 
order in dx, dy, d z ,  subtracting. and using the continuum limit yields 

aci -+ 
- = -V . J ,  + pi at (1.14) 

Figure 1.9: Accuniulation of an extensive quantity arising from a divergence of its flux 
J’= ( J z ,  J v ,  J z ) .  
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where the quantity V . 4 is the divergence of &, which for a general flux f i s  

(1.15) 
d J ,  d J ,  d J ,  -+ -+-  - - 
ax dy 8.2 

This is the rate at  which the flux causes the density of the quantity comprising 
the flux to decrease. The rate of accumulation of the extensive quantity’s density is 
therefore minus the divergence of the flux of that quantity plus the rate ofproduction. 

Alternatively, Eq. 1.14 could be derived directly from 

where B ( A V )  is the oriented surface around AV and the divergence theorem 
(Gauss’s theorem), 

+ 
J ,  f idA = Lv V .  f d V  (1.17) 

has been applied. Note that the divergence theorem has a geometrical interpreta- 
tion. If the volume is comprised of many neighboring cells, the total accumulation 
in the volume is the sum of accumulations in all the cells; see the right-hand side 
of Eq. 1.17. Each cell’s accumulation arises from the flux at  its surfaces. However, 
when cells share an interface, they have opposite normal vectors, and the flux terms, 
f. d, cancel. In a group of abutting cells, the fluxes across the interior interfaces 
cancel so that the only contribution is due to the exterior surfaces. 

S,(A,, 

1.3.6 Conserved and Nonconserved Quantities 

A conserved quantity cannot be created or destroyed and therefore has no sources 
or sinks; for conserved quantities such as atomic species i or internal energy U ,  

d U  - 
- -V * J ,  at 

_ -  

where u is the internal energy density.8 
For nonconserved quantities such as entropy, S ,  

(1.18) 

(1.19) 

(1.20) 

where u is the rate of entropy production per unit volume. Entropy flux and entropy 
production are examined in Chapter 2. 

sBarring processes such as nuclear decay, transmutation, or implantation by ion irradiation. 
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1.3.7 

In this section we provide a brief review of topics in linear algebra and tensor 
pr0pert.y relations that are used frequently throughout the book. Nye’s book on 
tensor properties contains a complete overview and is also a valuable resource [6 ] .  

A general set of linear equations for the quantities yi (i = 1 ,2 ,3 , .  . . , n) in terms 
of variables xj ( j  = 1,2 ,3 , .  . . , rn) can be written as 

Matrices, Tensors, and the Eigensystem 

91 = Mllxl + M12~2 + ’ ‘  + Mlmxm 

9 2  = M21~1 + M2222 +.  . . + 
y3 = . . .  (1.21) 

or m 

yi = C ~~~x~ for i = 1 ,2 , .  . . ,n  (1.22) 
j=1 

The Mij are the elements of a matrix, hf, that multiplies a vector 2 and produces 
the result, y’ = MZ, or in component form, 

(1.23) 

In this book, vector quantities such as 2 and y’ above are normally column vectors. 
When necessary, row vectors are indicated by use of the transpose (e.g., p). If the 
components of 2 and refer to  coordinate axes [e.g., orthogonal coordinate axes 
(51, 5 2 ,  53) aligned with a particular choice of “right,” “forward,” and “up” in a 
laboratory], the square matrix hf is a rank-two t e n ~ o r . ~  In this book we denote 
tensors of rank two and higher using boldface symbols (i.e.? M ) .  If 2 is an applied 
force and y’ is the material response to the force (such as a flux), M is a rank-two 
material-property tensor. For example, the full anisotropic form of Ohm’s law gives 
a charge flux & in terms of an applied electric field I? as 

(1.24) 

x is the rank-two conductivity tensor for a particular material. In Eq. 1.24, x is 
the material property that relates both the magnitude of “effect” & to the “cause” 
3 and their directions-& is not necessarily parallel to l?. 

9M is rank two because it relates two different sets of vector components in a prescribed way: 
that  is, the components of Z are mapped into components of y’by the tensor M .  The vectors Z 
and y’ refer t o  a single coordinate system and are called rank-one tensors. 
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The physical law in Eq. 1.24 can be expressed as an inverse relationship: 

(1.25) 

where the resistivity tensor, p,  is the inverse of the conductivity tensor (Le., p = 

Many materials properties are anisotropic: they vary with direction in the ma- 
terial. When anisotropic materials properties are characterized, the values used 
to  represent the properties must be specified with respect to  particular coordinate 
axes. If the material remains fixed and the properties are specified with respect to 
some new set of coordinate axes, the properties themselves must remain invariant. 
The way in which the properties are described will change, but the properties them- 
selves (i.e,, the material behavior) will not. The components of tensor quantities 
transform in specified ways with changes in coordinate axes; such transformation 
laws distinguish tensors from matrices [6 ] .  

For a particular material response or applied field, particular choices of coordi- 
nate axis orientations may be especially convenient (e.g., axes aligned with crystal 
lattice vectors). Linear transformations-such as rotations, reflections, and affine 
distortions- can be performed on vector forces and responses by matrix multi- 
plication to describe force-response relations in different coordinate systems. For 
instance, a vector E’ can be transformed between “old” and “new” coordinate sys- 
tems by a matrix 4: 

x-l)? 

A simple proof will show that 

(1.26) 

(1.27) 

i.e., g l d - + n e w  is the inverse of 
It is often convenient to select the coordinate system for which the only nonzero 

elements of the property tensor lie on its diagonal. This is the eigensystem. To find 
the eigensystem, the general rules for transformation of a tensor must be identified. 
The transformation of Ohm’s law (Eq. 1.24) illustrates the way in which the material 
properties tensor xold transforms to  xneW and serves to  demonstrate the general 
rule for transforming rank-two tensors: 

, and vice versa. 

in old coordinate system: eld = xoldE‘old 

in new coordinate system: 
(1.28) 

= xnewknew 

“Indices appear as 1, 2, 3 in Eq. 1.24 and as z, y, z in Eq. 1.25. The numerical indices represent 
any three-dimensional coordinate system (including Cartesian), and the indices in Eq. 1.25 are 
strictly Cartesian. 
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The relationship between xold and xneW can be found by applying the transfor- 
mations in Eqs. 1.26 to the expressions for Ohm’s law in both coordinate systems. 
For the first equation in Eq. 1.28, using the transformations in Eqs. 1.26, 

- Anew-rold J4 ‘new - - Xold#ew-old@w (1.29) 

and for the second equation in Eq. 1.28, 

- Aold-new J’old 4 = XnewAold-new*ld (1.30) 

Left-multiplying by the inverse transformations, 

Aold-+newAnew-old +new - J;ew + = Aold-+new old new-old*ew 
- - J4 - - X A  

- - A 

and (1.31) 
Anew-Old old-newJ’old - - J’old - - Anew-oldXnewAold-new*ld 

4 4 -  

Therefore, 

Aold-new old new-rold xnew = - X A  

x -  - X A  

and (1.32) 
old - Anew-rOld new old-rnew 

This pattern-a rank-one tensor is transformed by a single matrix multiplication 
and a rank-two tensor is transformed by two matrix multiplications-holds for 
tensors of any rank. If A is an orthogonal transformation, such as a rigid rotation 
or a rigid rotation combined with a reflection, its inverse is its transpose. For 
example, if B is a rotation, R,jRji = 6ij, where 6ij is the Kronecker delta, defined 
as 

1 if i = j  
0 if i # j  6ij = { (1.33) 

i.e., 6i j  is the index form of the identity matrix. 
Square matrices and tensors can be characterized by their eigenvalues and eigen- 

vectors. If M is an n x n  square matrix (or tensor), there is a set of n special vectors, 
Z, each with its own special scalar multiplier X for which matrix multiplication of 
a vector is equivalent to scalar multiplication of a vector: 

- MZ=XZ 
or 

+ 
(M-xz_)Z= 0 

(1.34) 

where 0’ is a vector of zeros that has the same number of entries, n, as Zand 2 
is the n x n identity matrix (i.e., 2 has ones along its major diagonal and zeros 
elsewhere). The solutions X i  and Zi are the eigenvalues and eigenvectors of M. In 
general, there are n unique X i : &  pairs for any M. The eigenvectors of M can be 
interpreted geometrically as the set of vectors that do not change direction when 
multiplied by nil-instead, they are scaled by a constant A. The eigenvalues can be 
determined from the polynomial equation for A: 

det (M - X) = 0 (1.35) 
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which is a requirement that the homogeneous equation, Eq. 1.34, has a nontrivial 
solution. After the eigenvalues have been determined, the directions of the eigen- 
vectors Z can be determined by solving Eq. 1.34. 

A rank-two property tensor is diagonal in the coordinate system defined by its 
eigenvectors. Rank-two tensors transform like 3 x 3 square matrices. The general 
rule for transformation of a square matrix into its diagonal form is 

-1 
eigenvector eigenvect or 

matrix matrix 

] = [ column ] [ 'quare ] [ column ] (1.36) 
matrix matrix 

where the ith member of the diagonal matrix is the eigenvalue corresponding to the 
eigenvector used for the ith column vector of the transformation matrix. Nearly 
all rank-two property tensors can be represented by 3 x 3 symmetric matrices and 
necessarily have real eigenvalues. 
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EXERCISES 

1.1 The concentration at any point in space is given by 

c = A (zy + yz + ZX) (1.37) 

where A = constant. 

(a) Find the cosines of the direction in which c changes most rapidly with 

(b) Determine the maximum rate of change of concentration at  that point. 

Solution. 

distance from the point (1,1,1). 

(a) The direction o f  maximum rate o f  change is along the gradient vector Vc given 

(1.38) 

(1.39) 

by 
V c  = A [(y + ~ ) i  + (Z + ~ ) j  + (Z + y)2] 

V c (  1,1,1) = 2A (i + j + i )  
Therefore, 

and the direction cosines are [l/&, l/& l/G. 



(b) The maximum rate of change o f  c is then 

IVc(l,1, 1)1 = 2 A h  

1.2 Consider the radially symmetric flux field 

- r '  
r3 

J = -  
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(1.40) 

(1.41) 

where r' = xi + y j  + z k .  

(a) Show that the total flux through any closed surface that does not enclose 

(b) Show that the flux through any sphere centered at the origin is indepen- 

the origin vanishes. 

dent of the sphere radius. 

Solution. 

The problem is most easily solved using the divergence theorem: 

L J . i L d A  = L V .  f d V  (1.42) 

Consider first the divergence o f  radially symmetric vector fields of a general form, 
including the present field as a special case, i.e., 

For such fields 

(1.43) 

(1.44) 

In this case, n = 3 and the divergence o f  T i n  Eq. 1.42 is zero if the singularity at 
r = 0 is avoided. Therefore, if the closed surface does not include the origin, 

V .  J d V  = 0 (1.45) 

and the total flux through the surface, s, f. AdA, is also zero. 

When the closed surface does enclose the origin, the total flux through the surface 
does not vanish. For a sphere o f  radius R, 

(1.46) 

Therefore the total flux is independent o f  R and equal t o  47r. 

1.3 Suppose that the flux of some substance i is given by the vector field 

= A (xi + vj) (1.47) 

where A = constant. Find the rate, Mi, at which i flows through the hemi- 
spherical surface of the unit sphere 

x2 + y2 + z2 = 1 (1.48) 



18 CHAPTER 1: INTRODUCTION 

which lies above the (x,y)  plane where z 2 0. 

Solution. 
Mi = J;.dA=/ J: .AdA (1.49) 

For the hemisphere, 
A = xi + y j  + z i  (1.50) 

Also, the integral may be converted t o  an integral over the projection of the hemisphere 
on the (x,  y) plane (denoted by P )  by noting that 

J hemi hemi 

k . A d A = d x d y  (1.51) 

so that 

JJ x 2 + y 2  dxdy (1.52) 
- dxdy 

J, .A-=A 
z J C - F j p  M,= JJ 

P P 

Converting t o  polar coordinates and integrating over P ,  

1.4 The matrix A is given by 

(1.53) 

(1.54) 

(a) Find the eigenvalues and corresponding eigenvectors of A. 
(b) Find matrices p and p-' such that p- 'AP is a diagonal matrix. 

Note: The tedium of completing such exercises, as well as following many 
derivations in this book, is reduced by the use of symbolic mathematical 
software. We recommend that students gain a working familiarity with at 
least one package such as MathematicaB, M A T L A B @ ,  Mathcadco, or the 
public-domain package M A X I M A .  
Solution. 

(a) The characteristic equation of ,cl is given by Eq. 1.35 as 

X3 - 16X2 + 72X - 68 = 0 (1.55) 

The eigenvalues are solutions t o  the characteristic equation, giving 

X i  = 8.36258 Xz = 6.35861 XB = 1.27881 (1.56) 

The eigenvectors corresponding t o  the eigenvalues are 

-1.27252 -0.871722 0.144238 
01 = [ -0.5:8613 ] 212 = [ -2.413084 ] w3 = [ -0.03105511 ] 

(1.57) 
Note that these eigenvectors are of arbitrary length. 
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(b) From Eq. 1.36 it is seen that the desired matrix is 3 x 3 and has the three 
eigenvectors as its columns: 

(1.58) 1 
1 

1 

-1.27252 -0.871722 0.144238 

1 1 1 
- P =  [ -0.538613 -2.43084 -0.0305511 

The inverse of may be calculated as 

(1.59) 
-0.832149 0.352221 0.130788 

P-' = 0.176139 -0.491171 -0.0404117 - [  0.65601 0.13895 0.909624 

By substitution it is readily verified that Eq. 1.36 is obeyed: 

X i  = 8.36258 0 0 
Xz = 6.35861 0 (1.60) 

0 As = 1.27881 
- P - l M  = 



PART I 

MOTION OF ATOMS AND 
MOLECULES BY DIFFUSION 

There are two arenas for describing diffusion in materials, macroscopic and mi- 
croscopic. Theories of macroscopic diffusion provide a framework to understand 
particle fluxes and concentration profiles in terms of phenomenological coefficients 
and driving forces. Microscopic diffusion theories provide a framework to under- 
stand the physical basis of the phenomenological coefficients in terms of atomic 
mechanisms and particle jump frequencies. 

We start with the macroscopic aspects of diffusion. The components in a system 
out of equilibrium will generally experience net forces that can generate correspond- 
ing fluxes of the components (diffusion fluxes) as the system tries to reach equilib- 
rium. The first step (Chapter 2) is the derivation of the general coupling between 
these forces and fluxes using the methods of irreversible thermodynamics. From 
general results derived from irreversible thermodynamics, specific driving forces and 
fluxes in various systems of importance in materials science are obtained in Chap- 
ter 3. These forces and fluxes are used to derive the differential equations that 
govern the evolution of the concentration fields produced by these fluxes (Chap- 
ter 4). Mathematical methods to solve these equations in various systems under 
specified boundary and initial conditions are explored in greater depth in Chapter 
5 .  Finally, diffusion in multicomponent systems is treated in Chapter 6. 
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Microscopic and mechanistic aspects of diffusion are treated in Chapters 7-10. 
An expression for the basic jump rate of an atom (or molecule) in a condensed 
system is obtained and various aspects of the displacements of migrating particles 
are described (Chapter 7). Discussions are then given of atomistic models for 
diffusivities and diffusion in bulk crystalline materials (Chapter 8), along line and 
planar imperfections in crystalline materials (Chapter 9), and in bulk noncrystalline 
materials (Chapter 10). 



CHAPTER 2 

IRREVERSIBLE THERMODYNAMICS AND 
COUPLING BETWEEN FORCES AND 
FLUXES 

The foundation of irreversible thermodynamics is the concept of entropy produc- 
tion. The consequences of entropy production in a dynamic system lead to a natural 
and general coupling of the driving forces and corresponding fluxes that are present 
in a nonequilibrium system. 

2.1 ENTROPY AND ENTROPY PRODUCTION 

The existence of a conserved internal energy is a consequence of the first law of 
thermodynamics. Numerical values of a system’s energy are always specified with 
respect to a reference energy. The existence of the entropy state function is a 
consequence of the second law of thermodynamics. In classical thermodynamics, 
the value of a system’s entropy is not directly measurable but can be calculated by 
devising a reversible path from a reference state to  the system’s state and integrating 
dS = 6q,,,/T along that path. For a nonequilibrium system, a reversible path is 
generally unavailable. In statistical mechanics, entropy is related to the number 
of microscopic states available a t  a fixed energy. Thus, a state-counting device 
would be required to compute entropy for a particular system, but no such device 
is generally available for the irreversible case. 

To obtain a local quantification of entropy in a nonequilibrium material, con- 
sider a continuous system that has gradients in temperature, chemical potential, 
and other intensive thermodynamic quantities. Fluxes of heat, mass, and other ex- 
tensive quantities will develop as the system approaches equilibrium. Assume that 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 23 
Copyright @ 2005 John Wiley & Sons, Inc. 
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the system can be divided into small contiguous cells at which the temperature, 
chemical potential, and other thermodynamic potentials can be approximated by 
their average values. The local equilibrium assumption is that the thermodynamic 
state of each cell is specified and in equilibrium with the local values of thermo- 
dynamic potentials. If local equilibrium is assumed for each microscopic cell even 
though the entire system is out of equilibrium, then Gibbs’s fundamental relation, 
obtained by combining the first and second laws of thermodynamics, 

can be used to calculate changes in the local equilibrium states as a result of evo- 
lution of the spatial distribution of thermodynamic potentials. U and S are the 
internal energy and entropy of a cell, dW is the work (other than chemical work) 
done by a cell, Ni is the number of particles of the ith component of the possible 
N, components, and pi is the chemical potential of the ith component. pi depends 
upon the energetics of the chemical interactions that occur when a particle of i 
is added to the system and can be expressed as a general function of the atomic 
fraction Xi :  

pi  = pp + kT ln(yiXi) (2.2) 

The activity coefficient yi generally depends on X ,  but, according to Raoult’s law, 
is approximately unity for Xi x 1. 

Dividing dLI through by a constant reference cell volume, V,, 

where all extensive quantities are now on a per unit volume basis (i.e., densities).’ 
For example, v = V / V ,  is the cell volume relative to the reference volume, V,, and 
ci = Ni/Vo is the concentration of component i. The work density, dw, includes all 
types of (nonchemical) work possible for the system. For instance, the elastic work 
density introduced by small-strain deformation is dw = --+ xi x, aij d E i j  (where 
aij and ~ i j  are the stress and strain tensors), which can be further separated into 
hydrostatic and deviatoric terms as dw = P d v  - xi x j  6ij d z i j  (where 5 and t 
are the deviatoric stress and strain tensors, respectively). The elastic work density 
therefore includes a work of expansion Pdv. Other work terms can be included in 
Eq. 2.3, such as electrostatic potential work, dw = - 4 d q  (where 4 is the electric 
potential and q is the charge density); interfacial work, dw = -ydA,  in systems 
containing extensible interfaces (where y is the interfacial energy density and A is 
the interfacial area; magnetization work, dw = -d . d6 (where d is the magnetic 
field and b‘ is the total magnetic moment density, including the permeability of 
vacuum); and electric polarization work, dw = -E ’ dp’ (where l? is the electric field 
given by E’ = -V$ and p’ is the total polarization density, including the contribu- 
tion from the vacuum). If the system can perform other types of work, there must 

‘Use of the reference cell volume, V,, is necessary because it establishes a thermodynamic reference 
state. 
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be terms in Eq. 2.3 to account for them. To generalize: 

where $ j  represents a j t h  generalized intensive quantity and <j represents its con- 
jugate extensive quantity densitye2 Therefore, 

C$j d<j = - P d u  + 4 d q  + 6 k i  dgkl + y d A  + d6+ E .  dp’ 
j (2.5) 

+ pi dci  + * . . + p ~ ,  dCN, + . . . 
The $ j  may be scalar, vector, or, generally, tensor quantities; however, each product 
in Eq. 2.5 must be a scalar. 

Equation 2.4 can be used to define the continuum limit for the change in entropy 
in terms of measurable quantities. The differential terms are the first-order approx- 
imations to the increase of the quantities at  a point. Such changes may reflect how 
a quantity changes in time, t ,  at a fixed point, r‘; or at  a fixed time for a variable 
location in a point’s neighborhood. The change in the total entropy in the system, 
S, can be calculated by summing the entropies in each of the cells by integrating 
over the entire ~ y s t e r n . ~  Equation 2.4, which is derived by combining the first and 
second laws, applies to  reversible changes. However, because s ,  u, and the & are 
all state variables, the relation holds if all quantities refer to  a cell under the local 
equilibrium assumption. Taking s as the dependent variable, Eq. 2.4 shows how s 
varies with changes in the independent variables, u and 0. 

In equilibrium thermodynamics, entropy maximization for a system with fixed 
internal energy determines equilibrium. Entropy increase plays a large role in ir- 
reversible thermodynamics. If each of the reference cells were an isolated system, 
the right-hand side of Eq. 2.4 could only increase in a kinetic process. However, 
because energy, heat, and mass may flow between cells during kinetic processes, 
they cannot be treated as isolated systems, and application of the second law must 
be generalized to the system of interacting cells. 

In a hypothetical system for modeling kinetics, the microscopic cells must be 
open systems. It is useful to consider entropy as a fluxlike quantity capable of 
flowing from one part of a system to another, just like energy, mass, and charge. 
Entropy flux, denoted by i, is related to the heat flux. An expression that relates 

to measurable fluxes is derived below. Mass, charge, and energy are conserved 
quantities and additional restrictions on the flux of conserved quantities apply. 
However, entropy is not conserved-it can be created or destroyed locally. The 
consequences of entropy production are developed below. 

2.1.1 Entropy Production 

The local rate of entropy-density creation is denoted by Cr. The total rate of en- 
tropy creation in a volume V is Jv d. d V .  For an isolated system, dS/dt  = Jv Cr d V .  

2The generalized intensive and extensive quantities may be regarded as generalized potentials and 
displacements, respectively. 
3Note that S is the entropy of a cell, S is the entropy of the entire system, and s is the entropy 
per unit volume of the cell in its reference state. 
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However, for a more general system, the total entropy increase will depend upon 
how much entropy is produced within it and upon how much entropy flows through 
its boundaries. 

From Eq. 2.4, the time derivative of entropy density in a cell is 

C$j% d s  1 du 1 
d t  T d t  T 

Using conservation principles such as Eqs. 1.18 and 1.19 in Eq. 2.6,4 

_ - - _ - -  - 

From the chain rule for a scalar field A and a vector g, 

Equation 2.7 can be written 

Comparison with terms in Eq. 1.20 identifies the entropy flux and entropy produc- 
tion: 

(2.10) 

(2.11) 

The terms in Eq. 2.10 for the entropy flux can be interpreted using Eq. 2.4. 
The entropy flux is related to the sum of all potentials multiplying their conjugate 
fluxes. Each extensive quantity in Eq. 2.4 is replaced by its flux in Eq. 2.10. 

Equation 2.11 can be developed further by introducing the flux of heat, JQ.  
Applying the first law of thermodynamics to the cell yields 

(2.12) 

where Q is the amount of heat transferred to the cell. By comparison with Eq. 2.4 
and with the assumption of local equilibrium, dQ/Vo = Tds and therefore 

Tu = YQ -k c$j& 

i 

Substituting Eq. 2.13 into Eq. 2.11 then yields 

(2.13) 

(2.14) 

4Here, all the extensive densities are treated as conserved quantities. This is not the general case. 
For example, polarization and magnetization density are not conserved. It can be shown that for 
nonconserved quantities, additional terms will appear on the right-hand side of Eq. 2.11. 
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2.1.2 Conjugate Forces and Fluxes 

Multiplying Eq. 2.14 by T gives 

(2.15) 

Every term on the right-hand side of Eq. 2.15 is the scalar product of a flux 
and a gradient. Furthermore, each term has the same units as energy dissipation 
density, J m-3 s-’, and is a flux multiplied by a thermodynamic potential gradient. 
Each term that multiplies a flux in Eq. 2.15 is therefore a force for that flux. The 
paired forces and fluxes in the entropy production rate can be identified in Eq. 2.15 
and are termed conjugate forces and fluxes. These are listed in Table 2.1 for heat, 
component i, and electric charge. These forces and fluxes have been identified 
for unconstrained extensive quantities (i.e., the differential extensive quantities in 
Eq. 2.5 can vary independently). However, many systems have constraints relating 
changes in their extensive quantities, and these constrained cases are treated in 
Section 2.2.2. Throughout Chapters 1-3 we assume, for simplicity, that the material 
is isotropic and that forces and fluxes are parallel. This assumption is removed for 
anisotropic materials in Chapter 4. 

Table 2.1 presents corresponding well-known empirical force-flux laws that apply 
under certain conditions. These are Fourier’s law of heat flow, a modified version 
of Fick’s law for mass diffusion at constant temperature, and Ohm’s law for the 
electric current density at constant t e m p e r a t ~ r e . ~  The mobility, Mi, is defined as 
the velocity of component i induced by a unit force. 

Table 2.1: 
Force-Flux Laws for Systems with Unconstrained Components, i. 

Selected Conjugate Forces, Fluxes, and Empirical 

Extensive Quantity Flux Conjugate Force Empirical Force-Flux Law* 

Heat J; -+VT Fourier’s J; = - K V T  

Component i x -Vp, = -Vat Modified Fick’s x = -Mzc, Vpz 

Charge J:, -v4 Ohm’s J’ 9 -  - -pv4 

*K = thermal conductivity; Mi = mobility of i; p = electrical conductivity 

2.1.3 

The basic postulate of irreversible thermodynamics is that, near equilibrium, the 
local entropy production is nonnegative: 

Basic Postulate of Irreversible Thermodynamics 

(2.16) 

5Under special circumstances, this form of Fick’s law reduces to the classical form & = -D, Vc,, 
where D,  is the mass diffusivity (see Section 3.1 for further discussion). 



28 CHAPTER 2 :  IRREVERSIBLE THERMODYNAMICS. COUPLED FORCES AND FLUXES 

Using the empirical laws displayed in Table 2.1, the entropy production can be 
identified for a few special cases. For instance, if only heat flow is occurring, then, 
using Eq. 2.15 and Fourier’s heat-flux law, 

& = -K VT (2.17) 

results in 

(2.18) 

which predicts (because of Eq. 2.16) that the thermal conductivity will always be 
positive. 

If diffusion is the only operating process, 

(2.19) 
i=l 

implying that each mobility is always positive. 

2.2 LINEAR IRREVERSIBLE THERMODYNAMICS 

In many materials, a gradient in temperature will produce not only a flux of heat 
but also a gradient in electric potential. This coupled phenomenon is called the 
thermoelectric effect. Coupling from the thermoelectric effect works both ways: if 
heat can flow, the gradient in electrical potential will result in a heat flux. That a 
coupling between different kinds of forces and fluxes exists is not surprising; flows 
of mass (atoms), electricity (electrons) , and heat (phonons) all involve particles 
possessing momentum, and interactions may therefore be expected as momentum 
is transferred between them. A formulation of these coupling effects can be obtained 
by generalization of the previous empirical force-flux equations. 

2.2.1 

In general, the fluxes may be expected to be a function of all the driving forces 
acting in the system, Fi; for instance, the heat flux JQ could be a function of other 
forces in addition to its conjugate force FQ; that is, 

General Coupling between Forces and Fluxes 

Assuming that the system is near equilibrium and the driving forces are small, 
each of the fluxes can be expanded in a Taylor series near the equilibrium point 
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FQ = Fq = F1 = . . .  = FN, = 0. To first order: 

or in abbreviated form, 

where 

(2.21) 

(2.22) 

is evaluated at equilibrium (Fp = 0, for all P).6 In this approximation, the fluxes 
vary linearly with the forces. 

In Eqs. 2.20 and 2.22, the diagonal terms; L,,, are called direct coeficients; they 
couple each flux to its conjugate driving force. The off-diagonal terms are called 
coupling coeficients and are responsible for the coupling effects (also called cross 
efSects) identified above. 

Combining Eqs. 2.15 and 2.21 results in a relation for the entropy production 
that applies near equilibrium: 

T C ~  = C L , ~ F , F ~  (2.23) 
P a  

The connection between the direct coefficients in Eq. 2.21 and the empirical 
force-flux laws discussed in Section 2.1.2 can be illustrated for heat flow. If a bar of 
pure material that is an electrical insulator has a constant thermal gradient imposed 
along it, and no other fields are present and no fluxes but heat exist, then according 
to  Eq. 2.21 and Table 2.1, 

JG = LQQ ( - T V T )  1 
(2.24) 

Comparison with Eq. 2.17 shows that the thermal conductivity K is related to the 
direct coefficient LQQ by 

K = -  LQQ (2.25) T 

6Note that the fluxes and forces are written a: scalars,+cons@te@ with the assumption that the 
material is isotropic. Otherwise, terms like JQ = ( ~ J Q / ~ F Q ) F Q  must be written as rank-two 
tensors multiplying vectors, and the equations that result can be written as linear relations (see 
Section 4.5 for further discussion). 
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If the material is also electronically conducting, the general force-flux relation- 

JQ = LQQFQ + LQqFq (2.26) 

J q  = LqQFQ + L w F q  (2.27) 

If a constant thermal gradient is imposed and no electrically conductive contacts 
are made at the ends of the specimen, the heat flow is in a steady state and the 
charge-density current must vanish. Hence Jq = 0 and a force 

ships are 

F LqQ FQ 
LW 4 -  (2.28) 

will arise. The existence of the force Fq indicates the presence of a gradient in the 
electrical potential, V4, along the bar. Therefore, using Eqs. 2.28 and 2.26, 

LQQ - -1 L Q q L q Q  pQ = - [% - -1 V T  = - K V T  (2.29) 
4, TL4, 

In such a material under these conditions, Fourier's law again pertains, but the 
thermal conductivity K depends on the direct coefficient LQQ, as in Eq. 2.25, as 
well as on the direct and coupling coefficients associated with electrical charge flow. 
In general, the empirical conductivity associated with a particular flux depends on 
the constraints applied to other possible fluxes. 

2.2.2 Force-Flux Relations when Extensive Quantities are Constrained 

In many cases, changes in one extensive quantity are coupled to changes in others. 
This occurs in the important case of substitutional components in a crystal devoid 
of sources or sinks for atoms, such as dislocations, as explained in Section 11.1. 
Here the components are constrained to lie on a fixed network of sites (i.e., the 
crystal structure), where each site is always occupied by one of the components of 
the system. Whenever one component leaves a site, it must be replaced. This is 
called a network constraint [l]. For example, in the case of substitutional diffusion 
by a vacancy-atom exchange mechanism (discussed in Section 8.1.2), the vacancies 
are one of the components of the system; every time a vacancy leaves a site, it 
is replaced by an atom. As a result of this replacement constraint, the fluxes of 
components are not independent of one another. 

This type of constraint will be absent in amorphous materials because any of 
the N ,  components can be added (or removed) anywhere in the material without 
exchanging with any other components. The dNi will also be independent for 
interstitial solutes in crystalline materials that lie in the interstices between larger 
substitutional atoms, as, for example, carbon atoms in body-centered cubic (b.c.c.) 
Fe, as illustrated in Fig. 8.8. In such a system, carbon atoms can be added or 
removed independently in a dilute solution. 

When a network constraint is present, 

NC 

Y d N ,  = 0 
u 
i=l  

(2.30) 
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Solving Eq. 2.30 for d N N C  and putting the result into Eq. 2.3 yields 

N,-l 

Tds = du + dw - C (pi - P N , )  d c i  

i=l 

(2.31) 

Starting with Eq. 2.31 instead of Eq. 2.3 and repeating the procedure that led 
to Eq. 2.15, the conjugate force for the diffusion of component i in a network- 
constrained crystal takes the new form 

4 

Fi = -v (Pi - P N , )  (2.32) 

The conjugate force for the diffusion of a network-constrained component i there- 
fore depends upon the gradient of the difference between the chemical potential 
of component i and N, rather than on the chemical potential gradient of compo- 
nent i alone. If in the case of substitutional diffusion by the vacancy exchange 
mechanism, the vacancies are taken as the component N,, the driving force for 
component i depends upon the gradient of the difference between the chemical po- 
tential of component i and that of the vacancies. The difference arises because, 
during migration, a site’s state changes from occupancy by an atom of type i to 
occupancy by a vacancy. This result has been derived and extended by Larch6 and 
Cahn, who investigated coherent thermomechanical equilibrium in multicomponent 
systems with elastic stress fields [l-41. 

In the development above, the choice of the N,th component in a system un- 
der network constraint system is arbitrary. However, the flux of each component 
in Eq. 2.21 must be independent of this choice [3, 41. This independence imposes 
conditions on the Lap coefficients. To demonstrate, consider a three-component 
system at constant temperature in the absence of an electric field, where compo- 
nents A ,  B ,  and C correspond to i = 1, 2, and 3, respectively. If component C is 
the N,th component, Eqs. 2.21 and 2.32 yield 

f A  = -LAAv(PA - PC)  - L A B V ( P B  - PC)  

JB = -LBAv(PA - ~ c )  - LBBv(PB - ~ c )  
fc = -LCAV(PA - ~ c )  - L C B V ( P B  - ~ c )  

(2.33) 

On the other hand, if B is the N,th component, 
+ J L  + = - L A A ~ ( P A  - P B )  - L A C ~ ( P C  - P B )  

J A  = - L B A ~ ( P A  - P B )  - L B C ~ ( P C  - P B )  

& = -LCAV(PA - P B )  - ~ c c v ( p c  - P B )  

Because $ must be the same as < and the gradient terms are not necessarily zero, 
Eqs. 2.33 and 2.34 imply that 

(2.34) 

LAA + LAB + LAC = 0 
LBA + LBB + LBC = 0 
LCA + LCB + L c C  = 0 

(2.35) 

or generally, 
NC c L i j  = 0 (2.36) 
j=1 
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If the lattice network defines the coordinate system in which the fluxes are mea- 
sured, the network constraint requires that 

i=l 

and this imposes the further condition on the Lij that 

C Lij = 0 

(2.37) 

(2.38) 
2=1 

In other words, the sum of the entries in any row or column of the matrix L,, is 
zero. 

The conjugate forces and fluxes that are obtained when the only constraint is a 
network constraint are listed in Table 2.2. However, there are many cases where 
further constraints between the extensive quantities exist. For example, suppose 
that component 1 is a nonuniformly distributed ionic species that has no network 
constraint. Each ion will experience an electrostatic force due to the local electric 
field, as well as a force due to the gradient in its chemical potential. This may be 
demonstrated in a formal manner with Eq. 2.5, noting that dq in this case is not 
independent of dcl but, instead, dq = q l d q ,  where q1 is the electrical charge per 
ion assuming that all electric current is carried by ions. Thus dq and dcl can be 
combined in Eq. 2.5 into a single term (p1  +q l@)dc l ,  and when this term is carried 
through the process leading to Eq. 2.15, the ion flux, A ,  is found to be conjugate 
to  an ionic force 

Fl = -V(p1+ q14) (2.39) 

The potential that appears in the total force expression is the sum of the chem- 
ical potential and the electropotential of the charged ion. This total potential is 
generally called the electrochemical potential. 

Additional forces would be added to the chemical potential force if, for example, 
the particle possessed a magnetic moment and a magnetic field were present. As 
will be seen, many possibilities for total forces exist depending upon the types of 
components and fields present. 

Table 2.2: 
Network-Constrained Components, i 

Conjugate Forces and Fluxes for Systems with 

Quantity Flux Conjugate Force 

Heat J;k -$VT 
Component i -V ( p z  - p N , )  = -vQ., 
Charge J:, -V# 

2.2.3 Introduction of the Diffusion Potential 

Any potential that accounts for the storage of energy due to the addition of a 
component determines the driving force for the diffusion of that component. The 
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sum of all such supplemental potentials, including the chemical potential, appears 
as the total conjugate force for a diffusing component and is called the diffusion 
potential for that component and is represented by the symbol @.’ The conjugate 
force for the flux of component 1 will always have the form 

-. 
FI = -Val (2.40) 

and thus for the special case leading to Eq. 2.39, 

a1 = p1 + 414 (2.41) 

2.2.4 Onsager’s Symmetry Principle 

Three postulates were utilized to derive the relations between forces and fluxes: 

0 The rate of entropy change and the local rate of entropy production can be in- 
ferred by invoking equilibrium thermodynamic variations and the assumption 
of local equilibrium. 

0 The entropy production is nonnegative. 

0 Each flux depends linearly on all the driving forces. 

These postulates do not follow from statements of the first and second laws of 
thermodynamics. 

Onsager’s principle supplements these postulates and follows from the statisti- 
cal theory of reversible fluctuations [5]. Onsager’s principle states that when the 
forces and fluxes are chosen so that they are conjugate, the coupling coefficients are 
symmetric: 

L a p  = Lp,  (2.42) 

which simplifies the coupled force-flux equations and has led to experimentally 
verifiable predictions [6] .  

Furthermore, Eq. 2.42 guarantees that all the eigenvalues of Eq. 2.21 will be 
real numbers. Also, the quadratic form in Eq. 2.23 together with Eq. 2.16 im- 
plies that the kinetic matrix ( L a p )  will be positive definite; all the eigenvalues are 
nonnegative .a 

Equation 2.42 can be rewritten 

(2.43) 

This equation shows that the change in flux of some quantity caused b y  changing the 
direct driving force for another is equal to the change an flux of the second quantity 
caused b y  changing the driving force for the first. These equations resemble the 
Maxwell relations from thermodynamics. 

7The potential is an aggregate of all reversible work terms that can be transported with the 
species i. Using Lagrange multipliers, Cahn and Larch6 derive a potential that is a sum of the 
diffusant’s elastic energy and its chemical potential [4]. Cahn and Larch4 coined the term diffusion 
potential to describe this sum. Our use of the term is consistent with theirs. 
sPositive definite means that the matrix when left- and right-multiplied by an arbitrary vector will 
yield a nonnegative scalar. If the matrix multiplied by a vector composed of forces is proportional 
to a flux, it implies that the flux always has a positive projection on the force vector. Technically, 
one should say that Lap is nonnegative definite but the meaning is clear. 
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The statistical-mechanics derivation of Onsager's symmetry principle is based 
on microscopic reversibility for systems near equilibrium. That is, the time average 
of a correlation between a driving force of type Q and the fluctuations of quantity 
/3 is identical with respect to  switching ct and /3 [6]. 

A demonstration of the role of microscopic reversibility in the symmetry of the 
coupling coefficients can be obtained for a system consisting of three isomers, A, 
B ,  and C [7 ,8] .  Each isomer can be converted into either of the other two, without 
any change in composition. Assuming a closed system containing these molecules at 
constant temperature and pressure, the rate of conversion of one type into another 
is proportional to its number, with the constant of proportionality being a rate 
constant, K (Fig. 2.1). The rates at which the numbers of A, B ,  and C change are 
then 

-- - - (KAC + KAB)NA + KBANB + KCANC dNA 
dt 
- dNB = KAB NA - ( KBC + KBA)NB + KCB Nc  dt 
dNc - =KACNA + KBCNB - (KCA + KCB)NC dt 

(2.44) 

At equilibrium, the time derivatives in Eq. 2.44 vanish. Solving for equilibrium 
in a closed system ( N A  + NB + NC = Ntot) yields 

K7 Ntot Neq = K ,  Ntot Neq - Kp Ntot Neq - 
A K , + K ~ + K ,  - K , + K ~ + K ,  - K , + K ~ + K ~  

(2.45) 
where 

K ,  E KBAKCA + KBAKCB + KCAKBC 
Kp KCBKAB + KCBKAC + KABKCA (2.46) 

K7 E KACKBC + KACKBA + KBCKAB 
For the system near equilibrium, let YA be the difference between the number of 
A and its equilibrium value, YA = NA - N:q. Introducing this relationship and 
similar ones for B and C into Eq. 2.44, 

d Y A  
dt -(KAc + KABIYA + KBAYB + KCAYC (2.47) - =  

B 

C 

Figure 2.1: Schematic conversion diagram for type A,  B ,  and C molecules. 
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with similar expressions for B and C.  

chemical potential (Eq. 2.2) near equilibrium (small Y A / N ~ ~ )  yields 
If Henry's law is obeyed, the activity coefficient is constant and expanding the 

(2.48) 

Substituting Eq. 2.48 into Eq. 2.47 and carrying out similar procedures for B and 
C ,  

These constitute a set of linear relationships between the potential differences pz - 
p:q, which drive the Y, toward equilibrium and their corresponding rates, d Y , / d t .  
In terms of the Onsager coefficients, they have the form 

= LAAFA + LABFB + LACFC 

% = LBAFA + LBBFB + LBCFC (2.50) 

3- di - LCAFA + LCBFB + LCCFC 

When microscopic reversibility is present in a complex system composed of many 
particles, every elementary process in a forward direction is balanced by one in the 
reverse direction. The balance of forward and backward rates is characteristic of the 
equilibrium state, and detailed balance exists throughout the system. Microscopic 
reversibility therefore requires that the forward and backward reaction fluxes in 
Fig. 2.1 be equal, so that 

K B A  - N i p  = Ka - - KBAKCA + KBAKCB + KCAKBC 
KAB NEq Kp KCBKAB + KCBKAC + KABKCA 
- -  KCB - NB = Kp = KCBKAB + KCBKAC + KABKCA 
KBC Nzq K-, KACKBC + KACKBA + KBCKAB 
- - -  KAC - N~ = K-r = KACKBC + KACKBA + KBCKAB 
KCA N i p  Ka  KBAKCA + KBAKCB + KCAKBC 

Comparison of Eq. 2.50 with Eqs. 2.49 and 2.51 shows that L,, = L,, and therefore 
demonstrates the role of microscopic reversibility in the symmetry of the Onsager 
coefficients. More demonstrations of the Onsager principle are described in Lifshitz 
and Pitaerskii [6] and in Yourgrau et al. [8]. 

Solving Exercise 2.5 shows that the products of the forces and reaction rates in 
Eq. 2.49 appear in the expression for the entropy production rate for the chemical 
reactions. The forces and reaction rates are therefore conjugate, as expected. 

- - -  - 

eq 
(2.51) - 

- 
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EXERCISES 

2.1 Using an argument based on entropy production, what can be concluded 
about the algebraic sign of the electrical conductivity? 
Solution. If electronic conduction is the only operative process in a material at constant 
T, then Eq. 2.15 reduces t o  

TU=-&.Vc$ (2.52) 

Using Ohm's law, & = -pV4, 
TU = p 10c$l2 (2.53) 

Because U 2 0 and lVc$12 is positive, p must be positive. 

2.2 An isolated bar of a good electrical insulator contains a rapidly diffusing 
unconstrained solute (i.e., component 1). Impose a constant thermal gradient 
along the bar, and find an expression for its thermal conductivity when the 
system reaches a steady state. Assume that no solute enters or leaves the 
ends of the bar. Express your result in terms of any of the Lap coefficients in 
Eq. 2.21 that are required. 

Solution. Using a similar method as the development that led t o  Eq. 2.29, the relevant 
linear force-flux relations are 

JQ = LQQFQ + L Q ~ F I  
Ji = L Q F Q  + L i F i  

(2.54) 

The cross effect between the thermal and diffusion currents causes a redistribution of 
the unconstrained solute until a steady-state distribution is reached. In this condition 
51 = 0 and, therefore, F1 = - F Q ( L ~ Q / L ~ ~ ) .  Putt ing this result into Eq. 2.54 then 
vields 

The expression for K is similar t o  Eq. 2.29, where electrical charge rather than compo- 
nent 1 was forced into a steady-state distribution by the thermal flux. 

2.3 A common device used to measure temperature differences is the thermocou- 
ple in Fig. 2.2 .  Wires of metals A and B are connected with their common 
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I 

junction at the temperature T + A T  and the opposite ends connected to  the 
terminals of a potentiometer maintained at temperature T .  The potentiome- 
ter measures a voltage, + A B ,  across terminals 1 and 2 under conditions where 
no electric current is flowing. This voltage is then a measure of AT.  Explain 
this effect, known as the Seebeck effect, in terms of relevant forces and fluxes. 

Potentiometer 

1 
I 
I 

+Temperature T 
I 
I 
I 
1 

I I 
L - - - - - ,-Temperature T+AT 

Figure 2.2: Thermocouple composed of metals A and B with a junction at one end. 

Solution. The appropriate force-flux equation for this case is 

1 dT d 4  Jq  = L¶QFQ + Lq,Fq = - L , Q ? ; ~  - L - 
" dx 

(2.56) 

where, t o  a good approximation, 2 measures the distance along the wire. Setting Jq = 0, 

d 4  LYQ 
dT L,, T (2.57) 

The potentials a t  1 and 2 relative t o  the potential at the junction are determined by 
integrating Eq. 2.57 along each wire. They will difFer because the A and B wires possess 
different values o f  the coefficients L,Q and L y q ,  ~ A B  is then the difference between 
these two potentials. 

2.4 Figure 2.3 depicts an apparatus at constant uniform temperature. The bat- 
tery drives an electrical current around the circuit. Heat is absorbed at  one 
AIB junction and emitted at the other. Explain this phenomenon, known as 
the Pelt ier  effect, in terms of relevant forces and fluxes. 

A 

Figure 2.3: Peltier effect apparatus coiriposed of metnl wires A and H 
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Solution. Both heat and electrical charge currents will be present in the wire, and the 
generalized linear relationships are therefore 

1 d T  d 4  
JQ = LQQFQ + LQ,F, = -LQQ-- - L Q , ~  T d x  X 

1 d T  d 4  5, = L,QFQ + LqqFq = - L q 4 - -  - L q q -  T d x  d x  

(2.58) 

(2.59) 

where, t o  a good approximation, z measures distance along the wires. Because d T / d z  = 
0, 

JQ = - J q  LQ4 (2.60) 
Lqq 

Equation 2.60 shows that the electrical current will drive a heat current along each wire 
by an amount dependent upon the coupling coefFicient LQ, and the direct coefficient 
L,,. These coefFicients will have different values in the A and B wires, and therefore 
heat will accumulate (and be emitted) a t  one junction and be absorbed at the other. 

2.5 Show that products of the "forces" [i.e., the quantities (p:" - p i ) ] ,  and the 
rates of reaction (i.e., the d Y , / d t )  which are present in Eq. 2.49 appear in the 
expression for the rate at  which entropy is produced by the corresponding 
reactions. These quantities are therefore conjugate to one another just as are 
the conjugate forces and fluxes in Table 2.1. 

Obtain a general expression for the rate at which entropy is produced: 
the reactions are taking place in a container maintained at constant 
temperature and pressure. 

0 The surroundings may be regarded as a reservoir at  constant tempera- 
ture and pressure. 

0 It  may be necessary to transfer a quantity of heat, dQ, from the reservoir 
into the system in order to maintain constant temperature in the system; 
the total entropy change of the system plus reservoir, dS', will then be 

dQ dS' = dS - - T (2.61) 

where dS and -dQ/T are the entropy changes of the system and sur- 
roundings, respectively. For the system, du = dQ - PdV, and therefore 

(2.62) 
TdS - 02.4 - PdV 

T dS' = 

0 Note that 6 = U + PV - T S ,  and applying the constant temperature 
and pressure condition, 

(2.63) 

0 Equation 2.63, Q = U + PV - T S ,  and Eq. 2.1 can be combined in the 
expression for the rate of entropy production: 

T , P  i 

(2.64) 
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Solution. From Eq. 2.64, 

But  dNi/dt = d Y i / d t ,  and therefore 

Suppose that the system is a t  equilibrium with all three species at their equilibrium 
chemical potentials. We then make small changes in their numbers subject to the 
conservation condition 

N A  + N B  + Nc = N~'' 
Since in general for a system at  constant T and P ,  

dG = P A  dNA + /.LB dNB + pc dNc 

the change in free energy of the system at  equilibrium will be 

dG = p: dNA +/.LzdNB +pL',4dNc = 0 

Since Y ,  = Ni - Nteq, 

py d Y A  -t p z  d Y B  f p z  dYc = 0 

and 

adding Eqs. 2.66 and 2.71 then produces 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 



CHAPTER 3 

DRIVING FORCES AND FLUXES FOR 
DIFFUSION 

Fluxes of chemical components may arise from several different types of driving 
forces. For example, a charged species tends to flow in response to an applied 
electrostatic field; a solute atom induces a local volume dilation and tends to flow 
toward regions of lower hydrostatic compression. Chemical components tend to 
flow toward regions with lower chemical potential. The last case-flux in response 
to a chemical potential gradient-leads to Fick’s first law, which is an empirical 
relation between the flux of a chemical species, $, and its concentration gradient, 
V c i  in the form $ = -DVci ,  where the quantity D is termed the mass diffusivity. 

Because different driving forces can arise for a chemical species and because the 
mechanisms of diffusion comprising the microscopic basis for D are essentially inde- 
pendent of the driving force, all the driving forces can be collected and attributed 
to the generalized diffusion potential, CJ, introduced in Chapter 2. 

The flux of a component in a solution can be complicated because components 
cannot always diffuse independently. This complication necessitates the introduc- 
tion of different types of diffusion coefficients defined in specified reference frames 
to distinguish different diffusion systems. 

3.1 DIFFUSION I N  PRESENCE OF A CONCENTRATION GRADIENT 

If a concentration gradient exists in a single phase at uniform temperature that 
is free of all other fields and any interfaces, that component’s diffusion potential 
is identical to its chemical potential. The gradient in this potential is the driving 
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force for diffusion. A diffusional flux proportional to the diffusion potential gradient 
will then arise, as discussed in Chapter 2. However, it is much easier to determine 
a concentration gradient by experiment than a diffusion potential gradient. It is 
therefore convenient to  use a thermodynamic model of the solution to express the 
chemical-potential gradient in terms of a concentration gradient. The result is a 
diffusional flux proportional to  the concentration gradient. The factor coupling the 
flux and concentration gradient is termed a diffusivity (or diffusion coefficient), D ,  
so that Fick’s first law in the form 

J’= -DVc (3.1) 

applies. The flux and corresponding diffusivity in this relationship must always be 
specified relative to a particular reference frame (coordinate system) [I, 21. 

3.1.1 Self-Diffusion: Diffusion in the Absence of Chemical Effects 

During self-diffusion in a pure material, whether a gas, liquid, or solid, the compo- 
nents diffuse in a chemically homogeneous medium. The diffusion can be measured 
using radioactive tracer isotopes or marker atoms that have chemistry identical to 
that of their stable isotope. The tracer concentration is measured and the tracer 
diffusivity (self-diffusivity) is inferred from the evolution of the concentration pro- 
file. 

Figure 3.1 shows a diffusion couple containing a concentration gradient of the 
tracer atoms that could be used for this purpose. For a crystal where self-diffusion 
takes place by the vacancy-exchange mechanism, the Fick’s law flux equation can 
be derived.l Such a crystal is network-constrained and has three components- 
inert atoms, radioactive atoms, and vacancies [3]. Planes of atoms provide a local 
reference frame to  quantify the fluxes of these components by allowing the count 
of the number of atoms that cross a unit area of crystal plane per unit time. The 
crystal remains rigidly fixed during self-diffusion, and therefore these planes con- 
stitute a convenient single reference frame, called the crystal frame, or C-frame, 
for measuring flux. At constant temperature, with vacancies chosen as the N,th 

-W 0 W 

Distance - 
Figure 3.1: Diffusion couple for measuring self-diffusion in pure material. A small 
coriceritratioii of a radioactive isotope of component 1. c4,, is present initially on the left 
side of the couple. During diffusion, the radioactive particles will diffuse in the chemically 
homogeneous couple and become inteririixed with the inert particles. 

’The vacancy exchange mechanism is described in Section 8.1.2. 
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component, Eq. 2.21 combined with Eq. 2.32 takes the form (for one-dimensional 
isotropic diffusion) 

where the star indicates the radioactive species, and the superscript C indicates 
that  the flux of i is measured in a C-frameS2 These equations are derived from 
the vacancy-exchange mechanism; every forward jump of an atom occurs via a 
backward jump of a vacancy. The vacancies are assumed to be in thermodynamic 
equilibrium throughout, and therefore p v  = 0.3 c1 + c.1 + cv = A ,  where A is a 
constant and typical vacancy atomic fractions are less than 
potentials of species 1 and 1 are given by Eq. 2.2 with Raoultian 
y1 = y*1 = 1). Therefore, d p i / d x  = kTdlnci/dx. Because of the 
uniform vacancy equilibrium, c1 + c.1 = A - cv is also uniform. 
become 

The chemical 
behavior (i.e., 
assumption of 
Equations 3.2 

Lq*1 L*11 dcq - 
ax J$ = - IcT [-, - 

Finally, because J$ = 0 and JY + J Z  = 0, 

(3.3) 

Equation 3.4 shows that the self-diffusion of the radioactive tracers obeys Fick's 
law with a self-diffusivity designated by *D. 

'The vector notation is dropped when there is only one spatial dimension. Unless indicated 
otherwise, the diffusion is assumed to be isotropic in this chapter. Anisotropic diffusion is treated 
in Section 4.5. 
3The vacancy chemical potential is defined by pv = ( a G / a N v ) ~ , p ,  that is, by the free-energy 
increase of a large system when a vacancy is created at  a source such as a dislocation or a 
grain boundary. Dislocations act as vacancy sources as they climb in one direction and as sinks 
(i.e., negative sources), as they climb in the other. Throughout this book we generally refer to 
vacancy sources with the understanding that source and sink behavior are complementary (see 
Section 11.4). When this free-energy change is zero (i.e., pv = 0), the system will be in a minimum 
free-energy state with respect to  vacancy formation. The vacancy concentration at  the source is 
then in local equilibrium. Assuming that pv is uniformly zero in a system requires an adequate 
density of vacancy sources. 
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3.1.2 Self-Diffusion of Component i in a Chemically Homogeneous Binary 

Solution 

In Section 3.1.1, the self-diffusivity was obtained for a diffusion couple composed 
of a chemically pure material but with gradients of an isotope of that material. In 
this section we discuss self-diffusion of an isotopic species in a chemically homo- 
geneous binary solution consisting of atoms of types 1 and 2 in the presence of a 
concentration gradient of the isotope. 

The self-diffusion of component 1 in such a system is measured by studying the 
diffusion of a radioactive isotope tracer of component 1 (i.e., q) under the condition 
that while there is a gradient in the tracer's concentration, c*1, the sum (c1 + cq) 

and c2 are both uniform. A possible diffusion couple is shown in Fig. 3.2. 
Considering Eq. 2.21 in a case in which diffusion occurs in a crystal by the 

vacancy exchange mechanism, there are four components, c1, c*1, c2, and cv. Be- 
cause the crystal remains fixed during the diffusion, the C-frame is again used for 
measuring the flux. The system is chemically homogeneous, so 

Again, a Fick's-law expression is obtained for the self-diffusion of the radioactive 
component. The self-diffusivity of component 1 in a binary system of uniform 
chemical composition is designated by *D1 to distinguish it from the self-diffusivity 
of a pure material, *D. 

t 

-m 0 W 

Distance --+ 

Figure 3.2: 
During diffusion, a cq  gradient develops in the chemically homogeneous material. 

Diffusion couple for nietlsuring solute self-diffusion in a binary systein. 

3.1.3 Diffusion of Substitutional Particles in a Chemical Concentration 

Gradient 

When a solute of type i diffuses on substitutional sites in an inhomogeneous binary 
solution, both the solute particles and host particles interdiffuse on the substitu- 
tional sites. If one species diffuses more quickly than the other, the region initially 
richer in that species loses net mass and contracts. On the other hand, the region 
initially richer in the more slowly diffusing species gains net mass and expands. 
This process, which establishes a mass flow in the system, is known as the Kirk- 
endall efSect after E. Kirkendall, who along with A. Smigelskas first observed it in 
crystalline metals [4]. 
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Description of the Diffusion in a Local C-Frame. Figure 3.3 illustrates a crystalline 
binary system in which interdiffusion occurs along x by a vacancy mechanism. The 
crystal is no longer fixed in structure as during self-diffusion but is flowing due to  
the Kirkendall effect, and its local planes are moving with a velocity, ~ ( x ) .  with 
respect to  the ends of the sample. Although no unique C-frame exists throughout 
the diffusing crystal, a local C-frame with a small inert marker particle to  indicate 
its origin can be fixed to any plane as illustrated. The distribution of the faster- 
diffusing solute (i = 1) is also shown in Fig. 3.3a. If the diffusion fluxes are measured 
at  any point in the diffusion zone with respect to its local C-frame, the constraint 
condition associated with the vacancy mechanism requires that the fluxes satisfy 

In the Kirkendall effect, the difference in the fluxes of the two substitutional 
species requires a net flux of vacancies. The net vacancy flux requires continuous 
net vacancy generation on one side of the markers and vacancy destruction on 
the other side (mechanisms of vacancy generation are discussed in Section 11.4). 
Vacancy creation and destruction can occur by means of dislocation climb and is 
illustrated in Fig. 3.3b for edge dislocations. Vacancy destruction occurs when 
atoms from the extra planes associated with these dislocations fill the incoming 
vacancies and the extra planes shrink (i.e.. the dislocations climb as on the left side 
in Fig. 3.3b toward which the marker is moving). Creation occurs by the reverse 
process, where the extra planes expand as atoms are added to  them in order to 
form vacancies, as on the right side of Fig. 3.3b.  This contraction and expansion 
causes a mass flow that is revealed by the motion of embedded inert markers. as 
indicated in Fig. 3.3 [4]. 

jii + Tc + j i i  = 0 
2 v  

Figure 3.3: Schematic illustration of the Kirkeridall effect in a binary crystalline material 
diffusing by the vacancy mechanism. The sketch illustrates dislocation motion at, some t,ime 
aft>er the diffusion couple’s initial condition. (a) Concentration vs. distance profile in t,he 
diffusion zone. An embedded inert marker is present moving with the velocity. v. and fluxes 
in the local C-frame associated with t,he marker are iridica.ted. (b) Local arrarigemerit of 
at,om plaries across the diffusion zone near the marker. Arrows indicate clirrih movements of 
niiinerous edge dislocations that  occur when there is a net diffusion of vacancies from right 
to  left,. 
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In this process, the net flux of substitutional atoms across the interface plane 
results in local volume changes (i.e., as a crystal plane is removed by climb, the 
crystal contracts in a direction normal to  the plane). However, free expansion 
in directions parallel to the interface plane is constrained by the specimen ends, 
where significant diffusion has not occurred, and by the coherence of the interface 
between the expanding and contracting regions. Therefore, dimensional changes 
parallel to  the interface (i.e., normal to  the diffusion direction) are restricted, and 
in-plane compatibility stresses are generated. No out-of-plane compatibility stresses 
develop because the diffusion couple can expand freely in the diffusion direction. 

In diffusion specimens that have a relatively narrow diffusion zone compared 
to the extent of the specimen in the diffusion direction, compatibility stresses are 
pure shear stresses, and if the stresses exceed the crystal's yield stress, the onset of 
plastic flow enables the cross section of the diffusion specimen to remain ~ o n s t a n t . ~  

The substitutional binary alloy diffusion illustrated in Fig. 3.3 is discussed in a 
treatment pioneered by Darken [6] (see also Crank's book "71). The system has three 
components, species 1, species 2, and vacancies, and is assumed to be at constant 
pressure and temperature with sites that can only be created or destroyed at sources 
(i.e., the system is network constrained except at dislocations or interfaces). The 
fluxes are obtained from Eqs. 2.21 and 2.32: 

JF = LiiFi  + LizF2 

8% d@2 d(P1 - Pv) - L12 d(P2  - PV) = -L11- -LIZ-- = -L11 

(3.7) 
dX d X  dX dX 

J g  = ~ 5 2 1 ~ 1  + L22F2 

d(P2 - Pv) 
dX 

- L22 
8% 3 3 2  d ( P 1  - P V )  = -L21- - L22- = -L21 
dX dX dX 

and J$ = - ( J f  + J,C) by Eq. 3.6. 
Assumption of local equilibrium permits the Gibbs-Duhem relation to be written 

(3.8) 

A net vacancy flux develops in a direction opposite that of the fastest-diffusing 
species (species 1 in Fig. 3.3). Nonequilibrium vacancy concentrations would de- 
velop in the diffusion zone if they were not eliminated by dislocation climb. How- 
ever, under usual conditions it is expected that a sufficient density of dislocations 
will be present to maintain the vacancy concentration near equilibrium IS]. It 
can therefore be assumed, to a good approximation, that pv = 0, and therefore 
Vpv = 0 everywhere in the diffusion zone. Using Eqs. 3.7 and 3.8 with Vpv = 0 
yields 

(3.9) 

4When the faster-diffusing component is diffused from the vapor phase into a thin sheet, and the 
diffusion zone is relatively wide compared to the sheet thickness, the constraints on the expansion 
parallel to  the diffusion interface are greatly reduced. Large specimen expansions normal to the 
diffusion direction have then been observed [5]. 
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The chemical potential gradients can be related to concentration gradients using 

pi = p: + kTln(yi(R)ci) (3.10) 

which is obtained by combining Eq. 2.2 with Eq. A.12, giving the result 

d X  
(3.11) 

The local volume expansion arising from the local change of composition contributes 
to  diffusion via the derivative of the average site volume (R).5 The derivative of 71 
is the contribution associated with the nonideality of the solution. Putting Eq. 3.11 
into Eq. 3.9 yields a flux that is proportional to the concentration gradient: 

This is a form of Fick’s law for a chemically inhomogeneous material where the 
intrinsic diffusivity, designated by D1, measures the flux in the local C-frame. 
A similar procedure for component 2 yields an analogous Fick’s-law expression, 

The self-diffusivity of species 1 in a chemically homogeneous solution of concen- 
tration c1, corresponding to *D1 in Eq. 3.5, can be compared with the intrinsic 
diffusivity of the same species in a chemically inhomogeneous solution at the same 
concentration, corresponding to D1 in Eq. 3.12. Typically, in addition to the ap- 
proximation of a concentration-independent average site volume (O), it is reasonable 
to assume that the coupling (off-diagonal) terms, Ll2/c2 and Ll*l/c*l in Eqs. 3.5 
and 3.12, are small compared with the direct term Lll/cl. In this approximation, 

J,C = -Dzdca/d~.  

(3.13) 

The primary difference between D1 and *D1 is a thermodynamic factor involving 
the concentration dependence of the activity coefficient of component 1. The ther- 
modynamic factor arises because mass diffusion has a chemical potential gradient 
as a driving force, but the diffusivity is measured proportional to a concentration 
gradient and is thus influenced by the nonideality of the solution. This effect is 
absent in self-diffusion. 

At this point it has been shown that the fluxes of species 1 and 2 can be described 
by Fick’s-law expressions involving two different intrinsic diffusivities, D1 and 0 2 ,  

in a local coordinate system (local C-frame) fixed to the lattice plane through which 
flux is measured. However, because of the Kirkendall effect, these planes (reference 
frames) move normal to  one another at different rates in a nonuniform fashion, 
and this description is therefore not useful for describing the diffusion throughout 
the specimen. When there is no change in the total specimen volume, the overall 
diffusion that occurs during the Kirkendall effect can be described in terms of 
a single diffusivity (the interdiffusivity) measured in a single reference frame (a 
volume-fixed) frame. 

5This expansion can usually be described by Vegard’s law in the form e z j  - e:j = Tz3 (c - C O ) ;  et3 
is the strain due to a concentration change, and the six Tz3 are the Vegard coefficients. 
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Diffusion in a Volume-Fixed Frame (V-Frame). To find the volume-fixed V-frame, as- 
sume that a frame, designated an R-frame, exists that relates all local C-frames [9]. 
If wf is component i's velocity in this R-frame, wp its velocity in a local C-frame, 
and w," the local C-frame's velocity measured in the R-frame, then 

ci w,p = ci (WF + w,") (3.14) 

Because the flux in a local C-frame is the concentration multiplied by its local 
velocity, J," = ci wf, and using Eq. 3.14, 

(3.15) 

Two equations representing the contributions of components 1 and 2 to the volume 
flux are obtained by multiplying Eq. 3.15 through by R1 and R2. The sum of these 
two equations, using Eqs. A.8 and A.lO, is6 

dCi 

dX 
JC = ci (us - w,") = -Di- 

(3.16) dCl w," - [R1ClW,R + R2C&] = ( D l  - D2) R1- 
dX 

Using Eqs. 3.15 (for i = l), 3.16, and A.8 yields 

(3.17) dCl 
c1 w1" - c1 [RlCl?J,R + R2c2.,"] = - [c2R2D1 + ClRlDZ] - 

dX 

The accumulation equation in the R-frame is 

(3.18) 

Assuming that R1 and R2 possess constant but generally different values, and thus 
that there are no changes in overall specimen volume during diffusion, two equations 
for the component contributions to volume accumulation are obtained by multiply- 
ing Eq. 3.18 through by Ri and setting i = 1,2 .?  The sum of these two equations 
is the local volume expansion rate in the R-frame. Using Eq. A.8, 

(3.19) 

The quantity [Rlc1w,R + R ~ C ~ W ; ]  can therefore be, at  most, a function o f t ,  that is, 

R ~ c ~ v , R  + R~CZV,"  = R1J,R + RzJ,R = f ( t )  (3.20) 

and is the flux of volume passing through a plane in the R-frame. 

frame, according to Eq. 3.20, 
There is a particular R-frame, called the V-frame, for which f ( t )  = 0. In this 

R i J ,V+R2J ,V=O (3.21) 

6For the derivation of Eq. 3.16, cv has been assumed to  be negligible; the exact expression on the 

right-hand side is (Dl  - D2)R1% - D ~ f l v %  . Since the distance over which the species 

and the vacancy concentrations vary are similar, the gradient of cv is negligible compared with 
the gradient of c1 as well. 
7The assumption of constant but different R values is generally acceptable. When any small 
volume changes are taken into account, the analysis of the diffusion becomes more complicated, 
as discussed elsewhere [2, 7, lo]. 

[ I [  1 
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and the flux of volume through any plane is zero: hence, the term volume-fixed 
frame. Then. using JY = CJI," and Eqs. 3.16, 3.17, and 3.21, 

(3.22) 

and 

(3.23) 

Equation 3.23 for the velocity of a local C-frame with respect to  the V-frame 
is therefore the velocity of any inert marker with respect to  the V-frame. The 
assumptions that R1 and Q2 are each constant throughout the material. and thus 
that there are no changes in overall specimen volume during diffusion. permit the 
use of Eq. 3.19 to  derive the unique choice of the V-frame. 

In Eq. 3.22, the flux of 1 in the V-frame obeys Fick's law and can be written 

dCl 
21:. = (Dl - D2) R1- ax 

(3.24) 

where the binary solution znterdiffusivity, designated by 5. is related to the intrinsic 
diffusivities of components 1 and 2 (measured in a local C-frame) by the relation 

D = ~ l R l D 2  + c ~ R J D ~  
- 

(3.25) 

which is often approximated through R1 = Q2 = (0) as 

5 = X1D.2 + X2Dl (3.26) 

Using a similar procedure to  find the flux of component 2 in the V-frame yields 

- d C 2  

ax J" -D- 
2 (3.27) 

The only remaining task is now to relate the V-frame to a laboratory frame 
suitable for experimental purposes. This is provided by the laboratory frame (L- 
frame) illustrated in  Fig. 3.4. Here, the ends of the specimen are unaffected by the 
diffusion and are stationary with respect to  each other since there is no change in 
the overall specimen volume. The specimen ends therefore provide the anchoring 
points for the rigid laboratory frame fixed to the ends as illustrated. 

Specimen Laboratory-frame 
', / 

f 

0 x +  
Distance 

Figure 3.4: Diffiisiori ( oiiplr. specimen with superimposed laboratory-frame (L-frame). 
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We now show that the L-frame in Fig. 3.4 is identical to the V-frame. The fluxes 
in the two frames are related by 

J,” = JY + C ~ U ;  (3.28) 

Using Eq. 3.28 with i = 1 and i = 2 to obtain two equations, multiplying them by 
R1 and Rz, respectively, then adding them, using Eq. A.8, and differentiating the 
result with respect to x yields 

dJf dJ,L dJ,v d J l  dub 
dx dx 01- dX + R2- dX = 0 1-+R2-+- dX 

However, with the use of Eq. A.lO, 

and therefore 

which, integrated, gives 

- = - ( R 1 - + R 2 a J r )  d V t  dJ,v 
ax dX dX 

dub = - ( R1 / x  d J , Y i R 2 / x  d ~ ; )  
x = - L  x=-L 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Because J t ,  J:, and u; are zero at the specimen ends x = ikL, where L is large 
compared to the diffusion zone width, 

(3.33) 

Therefore, with Eq. 3.21, 

u; = - (R,J,v + R2J,V) = 0 (3.34) 

The L-frame and V-frame are thus identical. 
Equation 3.23 gives the velocity of the local C-frame with respect to the V-frame 

(i.e., the velocity of local mass flow measured by the velocity of an embedded inert 
marker relative to the ends of a diffusion couple such as in Figs. 3.3 and 3.4). The 
measurement of v,“ and 5 at the same concentration in a diffusion experiment thus 
produces two relationships involving D1 and D2 and allows their determination. 
In the V-frame, the diffusional flux of each component is given by a simple Fick’s- 
law expression where the factor that multiplies the concentration gradient is the 
interdiffusivity 5. In this frame, the interdiffusion is specified completely by one 
diffusivity. 

Chemical interdiffusion on a substitutional lattice can therefore be considered 
from two viewpoints. In the V-frame, it is described by a single diffusivity (Lee, the 
interdiffusivity). In a local C-frame fixed with respect to the local bulk material, 
the material flows locally with the velocity u,“ relative to the V-frame and the 
description of the fluxes of the two components requires two diffusivities (i.e., the 
intrinsic diffusivities). These three diffusivities are related by Eq. 3.25, and each is 
generally a function of the local composition. 



3.1 CONCENTRATION GRADIENTS AND DIFFUSION 51 

The Kirkendall effect alters the structure of the diffusion zone in crystalline 
materials. In many cases, the small supersaturation of vacancies on the side losing 
mass by fast diffusion causes the excess vacancies to precipitate out in the form of 
small voids, and the region becomes porous [ l l ] .  Also, the plastic flow maintains a 
constant cross section in the diffusion zone because of compatibility stresses. These 
stresses induce dislocation multiplication and the formation of cellular dislocation 
structures in the diffusion zone. Similar dislocation structures are associated with 
high-temperature plastic deformation in the absence of diffusion [12-141. 

In 1946, the Kirkendall effect was observed with inert markers in polymer-solvent 
systems where the large polymer molecules diffused more slowly than the small 
solvent molecules [15]. Figure 3.5 shows an analogous phenomenon involving in- 
terdiffusion of fluids to  help explain marker motion and plastic deformation in 
solids during the Kirkendall effect. Two fluids comprised of components A and 
B are encapsulated in a fixed volume and separated in two chambers by a fixed 
rigid membrane. Initially, there is no pressure difference across the membrane (Le., 
pAleft  + pBleft = p A right + Pgight), but there is a difference in partial pressures, 
Ppft > Piight. If the osmotic membrane allows rapid diffusion of A but not of B ,  
the pressures Ppft and Piight will then relax to equilibrium values until there is no 
difference in chemical potential across the membrane. This results in a difference 
in total pressure across the membrane. 

PA 
pl¶ 

Diffusive 
membrane 

(a) 

Figure 3.5: Interface motion arid cavitatioii during iiiterdifl'usion in Huids. (a) Initial 
Sitllstio,l: p;cft > p A r k h + ' ,  p i c f t  < p;igiit,, - + p riglit. . (b) Later 
situatioii: Coinpoiient '4 diffuses through rnenilxaiie so that PA]Cft = Plig I t .  But Picft < 
p;inht pA]eft. + p i c f t  < p;ight + p;i& 

pAlrft + ,pHlcft - p riglit, 

Y A 

Consider now the consequences of the pressure difference. If the membrane 
became free to  move, it would move to the left, compressing the left chamber and 
expanding the right to  equilibrate the pressure difference (Fig. 3.6a). However, if 
the membrane is constrained, the fluid may cavitate in the left chamber to relieve 
the low pressure, as in Fig. 3.6b. This is analogous to the formation of voids in the 
Kirkendall effect. 

Membrane 'Cavitation ' Membrane 
moves fixed 

(0) (b)  

Figure 3.6: Possible consequences of t,tie s i t u s t h i  in Fig. 3.5b .  (a) If ttie nienilrane is 
allowed to rriove to tlie left,. the total pressures oil the left and right will become equal. (b) 
If tlie membrane is held fixed) Cavitation niay occur on tlie left to relieve tlie low pressure. 
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3.1.4 Diffusion of Interstitial Particles in a Chemical Concentration Gradient 

Another system obeying Fick’s law is one involving the diffusion of small interstitial 
solute atoms (component 1) among the interstices of a host crystal in the presence of 
an interstitial-atom concentration gradient. The large solvent atoms (component 2) 
essentially remain in their substitutional sites and diffuse much more slowly than do 
the highly mobile solute atoms, which diffuse by the interstitial diffusion mechanism 
(described in Section 8.1.4). The solvent atoms may therefore be considered to be 
immobile. The system is isothermal, the diffusion is not network constrained, and a 
local C-frame coordinate system can be employed as in Section 3.1.3. Equation 2.21 
then reduces to 

+ + 
5; = L11F1 = -L11V@1 = -L11Vp1 (3.35) 

Assuming a dilute solution, Henry’s law [16] applies, and because c1 << c2 and 
X1 N c1/c2, an acceptable approximation, using Eq. 2.2, is 

p1 = py + k T  In ( K l c l )  (3.36) 

where K1 is a constant. Therefore, 

and 

kT 
c1 Vp1 = -VC1 (3.37) 

(3.38) 

L11 can be evaluated by introducing the interstitial mobility M I ,  which is the 
average drift velocity, i71, gained by diffusing interstitials when a unit driving force 
is applied, that is, 

(3.39) 
Mi kT 

c1 .i” = -M1Vp1= -- VCl 

An interstitial drift velocity causes an interstitial flux, 

so that 
JI” = -MlkTVcl  

Comparison of Eqs. 3.38 and 3.41 indicates that 

(3.40) 

(3.41) 

L11 = MlCl (3.42) 

In a dilute solution, M I  is expected to be independent of the interstitial concen- 
tration. Therefore, Eq. 3.41 predicts a diffusive flux which depends linearly on the 
gradient in concentration. Diffusion is motivated solely by a concentration gradient, 
consistent with Fick’s law (i.e., Eq. 3.1) involving an intrinsic diffusivity given by 

(3.43) 
kT D1 = M1kT = L11- 
C 1  

Equation 3.43, which expresses the link between the mobility and the diffusivity in 
this case, is known as the Nernst-Einstein equation. 
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The same diffusion can be described within a V-frame. The analysis is identical 
to that used to obtain Eqs. 3.23, 3.24, and 3.25 except that in this case, 0 2  = 0. 
The marker velocity is therefore 

and 

- dc1 
dX 

J v  = -D- 1 

(3.44) 

(3.45) 

with the interdiffusivity, 5, given by 

- 
D = czR2Dl (3.46) 

1 and 6 D1. In general, for dilute concentrations clR1 << 1, and therefore c2R2 

3.1.5 

If the rate of entropy production, 6 ,  is nonnegative, M1 is also nonnegative (see Sec- 
tion 2.1.3) and L11 must be nonnegative. For a Henrian solution, it can be inferred 
that the diffusivity D1 is also nonnegative. However, there are more complicated 
cases, such as the concentrated solutions discussed in Section 3.1.3. In cases where 
the derivative of the chemical potential with respect to the concentration is neg- 
ative, the postulate of positive entropy production implies a negative diffusivity 
in Fick's law (an experimental observation of a negative diffusivity is presented in 
Exercise 3.3). A negative diffusivity leads to an ill-posed diffusion equation; so, 
formulations based on fluxes and their conjugate driving forces (e.g., gradients in 
chemical potentials) are then preferred to  Fick's law and indeed are more physical.* 

On the Algebraic Signs of Diffusivities 

3.1.6 Summary of Diffusivities 

Four different types of diffusivities are summarized in Table 3.1. These include 
the self-diffusivity in a pure material, *D; the self-diffusivity of solute i in a binary 
system, *Di; the intrinsic diffusivity of component - i in a chemically inhomogeneous 
system, Di; and the interdiffusivity, D ,  in a chemically inhomogeneous system. 
These diffusivities are applicable only in certain reference frames which are also 
listed in Table 3.1. In the remainder of this book, the type of diffusivity under 
discussion will be identified by these symbols when this information is relevant. 
When a diffusivity is identified in this manner, it may be assumed that the diffusion 
under consideration is being described in the proper corresponding frame. 

8Zll-posed means that the solution is unbounded and not robust with respect to initial conditions. 
In other words, two initial conditions that are very close to  each other will give solutions that are 
very far apart a short time later. 
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Table 3.1: 
Described in Chapter 3 

Summary of Definitions and Relationships for Diffusivities 

Symbol Name Relationships Reference Frame 
~~~ ~~ ~ 

*D Self-diffusivity in a 
pure material 

~ 

- C-frame or V-frame 

*D is the self-diffusivity in a chemically homogeneous material comprised of 
only one species. It is usually determined by measuring the diffusion of a 
radioactive isotope that is chemically indistinguishable from the inert species. 
Because there is no mass flow, the C-frame is also a V-frame, and either may 
be used. 

*D, Self-diffusivity of D, E (1 + %) *D, C-frame or V-frame 
component i in a 
binary system 

*D, is the self-diffusivity of component i in a chemically homogeneous binary 
system. *D, is related to D, as indicated. *D, is usually determined using an 
isotope. Because there is no net mam flow, the C-frame is also a V-frame, and 
either may be used. 

D, Intrinsic diffusivity 57" = -D,Vc, Local C-frame xv = -D,VC, + G ~ C ,  V-frame 

D, is the composition-dependent intrinsic diffusivity of component i in a chem- 
ically inhomogeneous system. In a binary system, it relates the flux of com- 
ponent i to its corresponding concentration gradient via Fick's law in a local 
C-frame (which is fixed with respect to the local bulk material of the diffus- 
ing system) and is moving with a velocity w with respect to the corresponding 
V-frame. The D, are related to 5 as indicated. 

- - 
Interdiffusivity $' = -DVci V-frame 

V-frame 
- D 
D = clRlD2 + c2R2D1 

6 is the composition-dependent interdiffusivity in a chemically inhomogeneous 

system. In a binary system, it relates the flux of either component 1 or 2 to its 
corresponding concentration gradient via Fick's law in a V-frame. 

3.2 MASS DIFFUSION IN A N  ELECTRICAL P O T E N T I A L  GRADIENT 

A gradient in electrostatic potential can produce a driving force for the mass dif- 
fusion of a species, as discussed in Section 2 . 2 . 2 .  Two examples of this are the 
potential-gradient-induced diffusional transport of charged ions in ionic conductors 
such as those used in solid-electrolyte batteries and the electron-current-induced 
diffusion of interstitial atoms in metals. 
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3.2.1 

Consider an ionic material that contains a dilute concentration of positively charged 
ions that diffuse interstitially (interstitial diffusion is described in Section 8.1.4). 
5 is the interdiffusivity of these ions in the absence of any field. As shown in 
Sections 2.2.2 and 2.2.3, if an electric field, E' = -V@, is applied, the diffusion 
potential will be the electrochemical potential given by Eq. 2.41. According to 
Eq. 2.21, the flux of charged interstitials is 

Charged Ions in tonic Conductors 

Using Eqs. 3.36 and 3.43, Eq. 3.47 takes the form 

(3.47) 

(3.48) 

In the absence of a significant concentration gradient, the corresponding flux of 
charge is then 

(3.49) 

By comparison with Ohm's law, 6 = -pV$, the electrical conductivity, p, is 

(3.50) 

The conductivity is therefore directly proportional to the diffusivity. 

3.2.2 Electromigration in Metals 

An applied electrical potential gradient can induce diffusion (electromigration) in 
metals due to a cross effect between the diffusing species and the flux of conduction 
electrons that will be present. When an electric field is applied to a dilute solution of 
interstitial atoms in a metal, there are two fluxes in the system: a flux of conduction 
electrons, J q ,  and a flux of the interstitials, 51. For a system maintained at constant 
temperature with Fq = -04  = E ,  Eq. 2.21 gives 

+ 

J; = -L11Vp1+ L1,Z (3.51) 

where the interstitial chemical potential is again given by Eq. 3.36. 
Evaluating the quantity L1, requires understanding the physical mechanism that 

couples the mass flux of the interstitials to the electron current. The electron 
current in a metal produces a force F e  on a diffusing particle, such as an interstitial 
atom, which is proportional to the local current density [17]. The force arises 
from the change in the self-consistent electronic charge distribution surrounding the 
interstitial defect. The defect scatters the current-carrying electrons and creates a 
dipole, which in turn creates a resistance and a voltage drop across the defect. 
This dipole, known as a Landaue r  resist ivity dipole, exerts an electrostatic force 
on the nucleus of the interstitial. This current-induced force is usually described 
phenomenologically by ascribing an effective charge to the defect, which couples to 
the applied electric field to create an effective force. When this force is averaged 
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over all jumps of a diffusing interstitial, an average force (ge) is obtained which is 
proportional to g, so that 

(+) = pE (3.52) 

where p is a constant. This force, in turn, induces a diffusional drift flux of inter- 
stitials given by 

DlClPZ (3.53) 
+ + 

Jf = ( G I ) c ~  = 1M1(Fe)cl = - kT 
Therefore, upon comparison with Eq. 3.51, 

DlClP L1, = - kT (3.54) 

Consider now the interstitial flux in a material subjected to both an electrostatic 
driving force and a concentration gradient. Using Eqs. 3.36, 3.43, 3.51, and 3.54, 
for a dilute species obeying Henry's law, 

(3.55) 

Data describing this type of electromigration of interstitial atoms in a number 
of systems are described by Shewmon [18]. p can be measured by passing a fixed 
current through an isothermal system until a quasi-steady state is achieved where 
& in Eq. 3.55 approaches zero. In this case, uphill difusion (flux in the direction 
of the concentration gradient) takes place until the concentration gradient term 
(proportional to V c l )  cancels the electromigration term. All the quantities can be 
measured experimentally and p can be inferred from the measurements. Electro- 
migration can also be used to purify a variety of metals by sweeping interstitials to 
one end of a specimen [18]. 

Electromigration is also important in the narrow metal conductors that form the 
current-carrying vias in integrated-circuit devices. Here, the electric field induces a 
directed migration of substitutional atoms by a vacancy mechanism (Exercise 3.10 
develops a relation analogous to Eq. 3.55 for this case). With increasing minia- 
turization, the current densities are pushed higher and higher. In certain cases, 
electromigration is so severe that mass can be transported away from thin regions 
of metallic conductors, causing open circuits and the destruction of the electronic 
device. Additional Joule heating, resulting from increased current density in the 
thin regions, can exacerbate the damage. 

3.3 MASS DIFFUSION I N  A THERMAL GRADIENT 

Both thermal gradients and electrical-potential gradients can induce mass diffusion. 
In a system containing a thermal gradient where both heat flow and mass diffusion 
of a dilute interstitial component 1 can occur, Eq. 2.21 predicts the interstitial flux 

L I Q  (3.56) 
+ 

J1 = -L11V/-L1- -VT T 
The interstitial chemical potential is a function of both concentration and temper- 
ature, and therefore 

(3.57) 
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The partial atomic entropy, 31, is 

s1=-(CkL) 
c1 

and therefore 

Finally, combining Eqs. 3.36, 3.43, 3.56, and 3.59 gives 

(3.58) 

(3.59) 

(3.60) 

where the parameter QYans, which is seen to have dimensions of energy, is termed 
the heat of transport and is given by 

(3.61) 

Equation 3.60 indicates that mass diffusion can be induced by gradients in either 
the composition, or the temperature, or both. The degree of coupling of mass 
diffusion to  the thermal gradient is determined by the heat of transport, QFans. 
The origin of QYans is in the asymmetry between the energy states before, during, 
and after a diffusing species jumps to a neighboring site. 

Methods of measuring QP,,, are similar to those for measuring /3 in an electromi- 
gration experiment. A temperature gradient is established, causing a quasi-steady 
state to exist where 3 = 0. The concentration gradient in this state can be de- 
termined experimentally and the heat of transport can then be calculated using 
,Fans = -kT2Vcl/(clVT). In the case of interstitial carbon in b.c.c. a-Fe, the 
carbon atoms diffuse toward the hot end of a specimen, which indicates that the 
heat of transport in this system is negative. Various data for Q Y s  are presented 
and discussed by Shewmon [18]. 

3.4 MASS DIFFUSION MOTIVATED BY CAPILLARITY 

Capillarity is another important motivation for diffusion in many materials sys- 
tems containing interfaces. The diffusion potentials of the components in the direct 
vicinity of an interface depend upon the local interface curvature; when interfaces 
possessing regions of different curvatures are present, differences in diffusion poten- 
tial will drive diffusional transport between these regions in a direction that reduces 
the amount of energy in the system. 

Figure 3.7 provides a simple example of a pure crystalline material with an un- 
dulating surface in which self-diffusion takes place by the vacancy exchange mech- 
anism. In this case, the diffusion potential of the atoms just below the convex 
surface is higher than in the region where the surface is concave. This tends to 
establish a diffusion current through the bulk from the convex region to the con- 
cave region, as indicated, smoothing the surface and reducing the total interfacial 
energy. Any creation or destruction of vacancies at dislocations within the bulk 
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Figure 3.7: An uiidulrtt,ing surface possessing rcgioiis of positive and riegat,ive curvature. 
The ci.irvature differences lead to diffiisiori-I)oterit,ia.l gradients t.hat ~.esiilt in surface 
smoothing by diffusional transport,. 

can be ignored, an approximation that is usually j~s t i f i ab le .~  The rate of surface 
smoothing can then be determined by finding expressions for the atom flux and the 
diffusion equation in the crystal, and then solving the diffusion equation subject to 
the boundary conditions at the surface. In the following section, the diffusion equa- 
tion and boundary conditions are established. Exercise 14.1 provides the complete 
solution to the problem. 

3.4.1 

The system contains two network-constrained components-host atoms and vacan- 
cies; the crystal is used as the frame for measuring the diffusional flux, and the 
vacancies are taken as the N,th component. Note that there is no mass flow within 
the crystal, so the crystal C-frame is also a V-frame. With constant temperature 
and no electric field, Eq. 2.21 then reduces to 

The Flux Equation and Diffusion Equation 

4 - 
Jv  = - J A  

(3.62) 

An expression for the coefficient LAA may be obtained by considering diffusion in 
a very large crystal with flat surfaces. The free energy of the system, containing 
NA atoms and NV vacancies (in dilute solution), can be expressed 

Here, p i  is the free energy per atom in a vacancy-free crystal composed of only A- 
atoms with a flat (zero curvature) surface, GG = H; - TS;(vib) is the free energy 
[exclusive of that  due to the mixing entropy, Sb(vib) is the vibrational entropy] to 
form a vacancy, and the last term is the free energy of mixing due to the entropy 

'Vacancy crcation and destruction is discussed in Sections 11.1 anti 1 1 . 4  
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associated with the random distribution of the vacancies. Therefore, 

NA 

( N A + N v )  EP: (3.64) 
- + kTln 

89 
~ N A  
a9 

P A  =- - 

PV =- a N v  = G; + kT In ( N A T N v )  = G; + k T l n X v  

where XV is the atom fraction of vacancies.1° 

may be written 
If p v  = 0 when the vacancies are at their equilibrium fraction, XFq, Eq. 3.64 

x;q = e - G : / ( k T )  (3.65) 

and 

Pv = kTln (s) X? = kTln (z) (3.66) 

Putting these expressions into Eq. 3.62 yields 

Using Eq. A.12, Eq. 3.67 can be written as a Fick's-law expression for the vacancy 

where DV is the vacancy diffusivity, the volume per site is assumed to be uniform, 
and the fact that C A  >> cv has been incorporated. The diffusion equation for 
vacancies in the absence of significant dislocation sources or sinks within the crystal 
is then * = -V . Jv = DvV2cv (3.69) 

- 
at 

From Eq. 3.68, 

(3.70) 

and an expression for the atom flux can be obtained by substituting Eq. 3.70 into 
Eq. 3.62 to obtain 

(3.71) 

If the variations in XV throughout the crystal in Fig. 3.7 are sufficiently small, 
D v X v / ( ( R ) k T )  can be assumed to be constant, and the conservation equation (see 
Eq. 1.18) may be writtenll 

'ONote that Eqs. 3.64 for the chemical potentials are of the form given by Eq. 2.2. 
"Equations 3.71 and 3.72 can be further developed in terms of the self-diffusivity using the 
atomistic models for diffusion described in Chapters 7 and 8. The resulting formulation allows for 
simple kinetic models of processes such as dislocation climb, surface smoothing, and diffusional 
creep that include the operation of vacancy sources and sinks (see Eqs. 13.3, 14.48, and 16.31). 



60 CHAPTER 3: DRIVING FORCES AND FLUXES FOR DIFFUSION 

The smoothing of a rough isotropic surface such as illustrated in Fig. 3.7 due 
to vacancy flow follows from Eq. 3.69 and the boundary conditions imposed on 
the vacancy concentration at  the surface.12 In general, the surface acts as an 
efficient source or sink for vacancies and the equilibrium vacancy concentration will 
be maintained in its vicinity. The boundary condition on cv at the surface will 
therefore correspond to the local equilibrium concentration. Alternatively, if cv , 
and therefore X V ,  do not vary significantly throughout the crystal, smoothing can 
be modeled using the diffusion potential and Eq. 3.72 subject to the boundary 
conditions on @A at the surface and in the b ~ 1 k . l ~  

During surface smoothing, differences in the local equilibrium values of XV main- 
tained in the different regions and differences in vacancy concentration throughout 
the crystal will be relatively small. Assuming that the crystal has isotropic surface 
tension, the local equilibrium vacancy concentration at  the surface is a function of 
the local curvature [i.e., c? = c ? ( K ) ] ,  and can be found by minimizing Eq. 3.63 
with respect to NV after adding in the energy required to create the vacancies 
directly adjacent to the surface. When a vacancy is added to the crystal at a 
convex region, the crystal expands by the volume AV = Rv and the surface area 
is increased by AA. Work must therefore be done to create the additional area. 
Because AA = KAV = KRV,  the work is 

A W  = YKQV (3.73) 

where y is the isotropic surface tension.14 When this surface work is added to the 
free energy in Eq. 3.63 and the sum is minimized, 

(3.74) 

When typical values are inserted into Eq. 3.74, c ? ( ~ ) / c y ( O )  does not vary from 
unity by more than a few percent. 

Because only relatively small variations in cv occur in typical specimens un- 
dergoing sintering and diffusional creep (Chapter 16), we prefer to carry out the 
analyses of surface smoothing, sintering, and diffusional creep in terms of atom 
diffusion and the diffusion potential using Eq. 3.72. In this approach, the boundary 
conditions on @ A  can be expressed quite ~ imp1y . l~  

To solve the surface smoothing problem in Fig. 3.7, Eq. 3.72 can be simplified 
further by setting &A/& equal to zero because the diffusion field is, to a good 
approximation, in a quasi-steady state, which then reduces the problem to solving 
the Laplace equation 

v 2 @ A  = 0 (3.75) 

within the crystal subject to the boundary conditions on @A described below 

12Methods for solving diffusion problems by setting up and solving the diffusion equation under 
specified boundary conditions are discussed in Chapter 5 .  
13The vacancy concentration far from the surface will generally be a function of the total surface 
curvature. In this case, the crystal can be assumed to be a large block possessing surfaces which 
on average have zero curvature. The vacancies in the deep interior can then be assumed to  be in 
equilibrium with a flat surface. 
14See Exercise 3.11 for further explanation. 
15However, during the annealing of small dislocation loops (treated in Section 11.4.3), larger 
variations of the vacancy concentration occur and Eq. 3.68 must be employed. 
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3.4.2 Boundary Conditions 

The boundary conditions on the diffusion potential @ A  = p~ - pv are readily found 
using results from the preceding section. At the surface where the vacancies are 
maintained in equilibrium, pv = 0. The diffusion potential for the atoms is the 
surface work term of the form given by Eq. 3.73 plus the usual chemical term, p i :  

@z = pi + TKflA (3.76) 

Deep within the crystal, pv = 0 and p~ = p>, and therefore = pi. The 
diffusion potential at  the convex region of the surface is greater than that at  the 
concave region, and atoms therefore diffuse to smooth the surface as indicated in 
Fig. 3.7. 

We discuss surface smoothing in greater detail in Chapter 14. Exercise 14.1 
uses Eq. 3.75 subject to  the boundary condition given by Eq. 3.76 to obtain a 
quantitative solution for the evolution of the surface profile in Fig. 3.7. 

3.5 MASS DIFFUSION I N  T H E  PRESENCE OF STRESS 

Because stress affects the mobility, the diffusion potential, and the boundary con- 
ditions for diffusion, it both induces and influences diffusion [19]. By examining 
selected effects of stress in isolation, we can study the main aspects of diffusion in 
stressed systems. 

3.5.1 

Consider again the diffusion of small interstitial atoms among the interstices be- 
tween large host atoms in an isothermal unstressed crystal as in Section 3.1.4. 
According to Eqs. 3.35 and 3.42, the flux is given by 

Effect of Stress on Mobilities 

+ 

J1 = -L11Vp1 = -M1c1Vp1 (3.77) 

The diffusion is isotropic and the mobility, M I ,  is a scalar, as assumed previously. 
If a general uniform stress field is imposed on a material, no force will be exerted 

on a diffusing interstitial because its energy is independent of position.16 Assuming 
no other fields, the flux remains linearly related to  the gradient of the chemical 
potential so that = -MlclVpl.  However, M I  will be a tensor because the 
stress will cause differences in the rates of atomic migration in different directions; 
this general effect occurs in all types of ~rys ta1s . l~  It may be understood in the 
following way: there will be a distortion of the host lattice when the jumping atom 
squeezes its way from one interstitial site to  another, and work must be done during 
the jump against any elements of the stress field that resist this distortion. Jumps 
in different directions will cause different distortions in the fixed stress field, so 
different amounts of work, W ,  must be done against the stress field during these 
jumps. The rate of a particular jump in the absence of stress is proportional to 
the exponential factor exp[-Gm/(lcT)], where G" is the free-energy barrier to the 

16When the stress is nonuniform and stress gradients exist, the stress will exert a force, as discussed 
in the following section. 
17The tensor nature of the diffusivity (mobility) in anisotropic materials is discussed in Section 4.5. 
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jumping process (see Chapter 7).  When stress is present, the work, W ,  must be 
added to this energy barrier, and the jump rate will therefore be proportional to the 
factor exp[-(Gm + W)/(kT)].  For almost all cases of practical importance, W / ( k T )  
is sufficiently small so that exp[-W/(kT)] E 1 - W / ( k T ) ,  and the factor can then 
be written as exp[-G"/(kT)] [l - W/(kT)]. The overall interstitia1,mobility will be 
the result of the interstitials making numbers of different types of jumps in different 
directions. As just shown, each type of jump depends linearly on W ,  which, in turn, 
is a linear function of the elements of the stress tensor. The latter function depends 
on the direction of the jump, and it is therefore anticipated that the mobility should 
vary linearly with stress and be expressible as a tensor in the very general linear 
form 

(3.78) 
kl  

where the stress-dependent terms in the sum are relatively small. Similar consider- 
ations hold for the migration of substitutional atoms in a stress field (see Fig. 8.3), 
and the form of Eq. 3.78 should apply in such cases as well. These and other 
features of Eq. 3.78 are discussed by Larch6 and Voorhees 1191. 

3.5.2 Stress as a Driving Force for Diffusion: Formation of Solute-Atom 

Atmosphere around Dislocations 

In a system containing a nonuniform stress field, a diffusing particle generally ex- 
periences a force in a direction that reduces its interaction energy with the stress 
field. Ignoring any effect of the stress on the mobility and focusing on the force 
stemming from the nonuniformity of the stress field, the stress-induced diffusion 
of interstitial solute atoms in the inhomogeneous stress field of an edge dislocation 
would look like Fig. 3.8. An interstitial in a host crystal is generally oversized for 
the space available and pushes outward, acting as a positive center of dilation and 
causing a volume expansion as illustrated in Fig. 3.9. To find the force exerted 
on an interstitial by a stress field, one must consider the entropy production in a 

m s o D o t e n t i a l s  

- \ ,/Direction of 7t- ctrncc-inrii irnri 
",I "V" I, lUUYVU 

force and flux 
dislocation 

Figure 3.8: Edge dislocation in an isotropic elastic body. Solid lines indicate isopotcntial 
cylinders for the portion of the diffusion potential of any interstitial atom present in the 
hydrostatic stress field of the dislocation. Dashed cylinders and tangential arrows indicate 
the direction of the corresponding force exerted on the interstitial atom. 
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Figure 3.9: 
out,warti displacenients of the interstit,inl's nearest neighbors. 

Dilation produced by an iiiterst,it,ial atoiii iii H cryst,al. Arrows iiidicate 

small cell embedded in the material as in Section 2.1. Suppose that the interstitial 
causes a pure dilation A01 and there are no deviatoric strains associated with the 
interstitial; then the supplemental work term which must be added to the right side 
of Eq. 2.4 is 

dw = -PARIdcl (3.79) 

where P is the hydrostatic pressure. For the case of an edge dislocation in an 
isotropic elastic material 

- - ffxx + f fyy  + f f zz  - ff1.7. + 0 6 6  + f f zz  p = -  

(3.80) 
3 3 

p(1+ v)b sine - p(1 + v)b y - - - 
3 ~ ( 1  - U )  T 3 ~ ( l  - V) x 2  + y2 

where p and v are the elastic shear modulus and Poisson's ratio: respectively, and 
b is the magnitude of the Burgers vector [20]. 

When this work term is added to the chemical potential term, pldcl ,  and the 
procedure leading to Eq. 2.11 is followed: the force is 

$1 = -V (p1 + AR1P) (3.81) 

The diffusion potential is therefore an "elastochemical" type of potential corre- 
sponding to18 

a1 = p1+ A R l P  (3.82) 

Therefore, using Eqs. 2.16, 3.37, 3.43, and 3.82, 

clAR1 
J1 = L11F1 = -L11V@1 = -L11V (p1 + A Q l P )  = -D1 VCl + - - f 

(3.83) 
The flux has two components: t'he first results from the concentration gradient 

and the second from the gradient in hydrostatic stress.19 The solid circles (cylinders 

18The general diffusion potential for stress and chemical effects is = 1-11 + Ae,,oi,cl, where 
Aczj is the local strain associated with the migrating species. 
"Several typically negligible effects have been neglected in the derivation of Eq. 3.83: including (1) 
interactions between the interstitials, (2) effects of the interstitials on the local elastic constants, 
( 3 )  quadratic terms in the elastic energy, and (4) nonlinear stress-strain behavior. A more complete 
treatment, applicable to the present problem, takes into account many of these effects and has 
been presented by Larch6 and Cahn 1211. 

( kT 
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in three dimensions) in Fig. 3.8 are isopotential lines for the portion of the diffusion 
potential due to hydrostatic stress. They were obtained by setting P equal to 
constant values in Eq. 3.80. Tangents to the dashed circles indicate the directions 
of the corresponding diffusive force arising from the dislocation stress field (this is 
treated in Exercise 3.6). Because AR1 is generally positive, this force is directed 
away from the compressive region (y > 0) and toward the tensile region (y < 0) of 
the dislocation, as shown. 

In the case where an edge dislocation is suddenly introduced into a region of uni- 
form interstitial concentration, solute atoms will immediately begin diffusing toward 
the tensile region of the dislocation due to the pressure gradient alone (treated in 
Exercise 3.7). However, opposing concentration gradients build up, and eventually 
a steady-state equilibrium solute atmosphere, known as a Cottrell  a tmosphere,  is 
created where the composition-gradient term cancels the stress-gradient term of 
Eq. 3.83 (this is demonstrated in Exercise 3.8). 

From these considerations, Cottrell demonstrated that the rate at which solute 
atoms diffuse to dislocations and subsequently pin them in place is proportional to 
time2/3 (this time dependence is derived by an approximate method in Exercise 3.9). 
This provided the first quantifiable theory for the strain aging caused by solute 
pinning of dislocations [22]. 

3.5.3 Influence of Stress on the Boundary Conditions for Diffusion: 
Diffusional Creep 

In a process termed dz~usional creep, the applied stress establishes different diffu- 
sion potentials at various sources and sinks for atoms in the material. Diffusion 
currents between these sources and sinks are then generated which transport atoms 
between them in a manner that changes the specimen shape in response to the 
applied stress. 

A particularly simple example of this type of stress-induced diffusional trans- 
port is illustrated in Fig. 3.10, where a polycrystalline wire specimen possessing a 
“bamboo” grain structure is subjected to an applied tensile force, $app. This force 
subjects the transverse grain boundaries to a normal tensile stress and therefore 
reduces the diffusion potential at these boundaries. On the other hand, the applied 
stress has no normal component acting on the cylindrical specimen surface and, 
to first order, the diffusion potential maintained there is unaffected by the applied 
stress. When gaPp is sufficiently large that the diffusion potential at the transverse 
boundaries becomes lower than that at the surface, atoms will diffuse from the 
surface (acting as an atom source) to the transverse boundaries (acting as sinks), 
thereby causing the specimen to lengthen in response to the applied stress.20 

A similar phenomenon would occur in a single-crystal wire containing disloca- 
tions possessing Burgers vectors inclined at various angles to the stress axis. The 
diffusion potential a t  dislocations (each acting as sources or sinks) varies with each 
dislocation’s inclination. Vacancy fluxes develop in response to gradients in diffu- 
sion potential and cause the edge dislocations to climb, and as a result, the wire 
lengthens in the applied tensile stress direction. 

The problem of determining the elongation rate in both cases is therefore reduced 
to a boundary-value diffusion problem where the boundary conditions at the sources 

20Surface sources and grain boundary sinks for atoms are considered in Sections 12.2 and 13.2. 
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Figure 3.10: Polycrystalline wire specimen with bamb2o grain structure subjected to 
uniaxial tensile stress, uzz,  arising from the applied force, Fapp. The bulk crystal-diffusion 
fluxes shown in (a) and grain-boundary and surface-diffusion fluxes shown in (b) cause 
diffusional elongation. ( c )  Enlarged view at the junction of the grain boundary with the 
surface. 

and sinks are determined by the inclination of the sources and sinks relative to the 
applied stress and the magnitude of the applied stress. In the following we outline 
the procedure for obtaining the elongation rate of the polycrystalline wire shown 
in Fig. 3.10 for the case where the material is a pure cubic metal and the diffusion 
occurs through the grains as in Fig. 3.10a by a vacancy exchange mechanism. The 
diffusional creep rate of a single crystal containing various types of dislocations is 
treated in Chapter 16. 

Flux and diffusion equations. During diffusional creep, the stresses are relatively 
small, so variations in the vacancy concentration throughout the specimen will 
generally be small and can be ignored. The flux equation and diffusion equation 
in the grains are then given by Eqs. 3.71 and 3.75 (with @ A  = p~ - p v ) ,  which 
were derived for diffusion in a crystal during surface smoothing. In both cases, 
quasi-steady-state diffusion may be assumed, and any creation or destruction of 
vacancies a t  dislocations within the grains can be neglected. 

Boundary conditions. The cylindrical wire surface is a source and sink for vacancies, 
and the condition pv = 0 is therefore maintained there. The diffusion potential at 
the curved surface, a;, is given by Eq. 3.76. 

At the grain boundaries, the condition pv = 0 should also hold. The boundaries 
will be under a traction, unn = fiT.cr.fi, and when an atom is inserted, the tractions 
will be displaced as the grain expands by the volume C I A .  For the case in Fig. 3.10, 
the boundary is oriented so that its normal is parallel to the z-axis and therefore 
unn = urz.  This displacement contributes work, unnCI~ = ~ , , Q A ,  and reduces 
the potential energy of the system by a corresponding amount. This term must 
be added to the chemical term, p;,  and therefore the diffusion potential along the 
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grain boundary is2' 

@: decreases as the stress increases; an increase in the applied force increases onn, 
and when onn is sufficiently large so that @: < @:, atoms will diffuse from the 
surface to the boundaries at a quasi-steady rate. The bamboo wire behaves like a 
viscous material, due to the quasi-steady-state diffusional transport.22 Complete 
solutions for the elongation rates due to the grain boundary and surface diffusion 
fluxes shown in Fig. 3.10a and b are presented in Sections 16.1.1 and 16.1.3. 

3.5.4 Summary of Diffusion Potentials 

The diffusion potential is the generalized thermodynamic driving force that pro- 
duces fluxes of atomic or molecular species. The diffusion potential reflects the 
change in energy that results from the motion of a species; therefore, it includes 
energy-storage mechanisms and any constraints on motion. 

@ j  = p j :  For chemical interactions and entropic effects with no other constraint 
(e.g., interstitial diffusion). Section 3.1.4. 

@ j  = pj - pv:  Reflecting the additional network constraint when sites are con- 
served (e.g., vacancy substitution). Section 3.1.1. 

@ j  = pj + q j 4 :  When the diffusing species has an associated charge q j  in an elec- 
trostatic potential #J (e.g., interstitial Li ions in a separator between an anode 
and a cathode). Section 3.2.1. 

@ j  = pj + R j P :  Accounting for the work against a hydrostatic pressure, P, to move 
a species with volume R j  (e.g., interstitial diffusion in response to hydrostatic 
stress gradients). Section 3.5.2. 

@ j  = pj + 7 ~ R . j :  Accounting for the work against capillary pressure T K  to move 
a species with volume R j  to an isotropic surface (e.g., surface diffusion in 
response to a curvature gradient). Section 3.4.2. 

@ j  = p j  + K ~ R ~ :  Accounting for the anisotropic equivalent to capillary pressure. 
K ~ ,  the weighted mean curvature, is the rate of energy increase with volume 
addition (e.g., surface diffusion on a faceted surface). Section 14.2.2. 

@ j  = pj - a,,Rj: Accounting for the work against an applied normal traction 
onn = fiT - (a f i )  as an atom with volume R j  is added to an interface with 
normal f i ;  f i T  is the transpose of f i  (e.g., diffusion along an incoherent grain 
boundary in response to gradients in applied stress). Section 3.5.3. 

@ j =  p j + R j { [ ( P . a )  x ~ ] . ( ( x ~ ) } / { [ ( ( x ~ )  xi].;}: Accountingforthechange 
in energy as a dislocation with Burgers vector b' and unit tangent ( climbs 

21Again, as in the derivation of Eq. 3.82, quadratic terms in the elastic energy, which are of lower 
order in importance, have been neglected (see Larch6 and Cahn [21]). 
22For an ideally viscous material, the strain rate is linearly related to the applied stress u by 
the relation = (l/a)o, where 17 is the viscosity. 
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with stress CT due to  applied loads and other stress sources (i.e., other defects) 
for each added volume R j  (e.g., diffusion to a climbing dislocation by the 
substitutional mechanism). Section 13.3.2.23 

Cpj = d2 fhom/acj2 - 2K,V2cj: Accounting for the gradient-energy term in the dif- 
fuse interface model for conserved order parameters (e.g., “uphill” diffusion 
during spinodal decomposition). Section 18.3.1. 
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EXERCISES 

3.1 Component 1, which is unconstrained, is diffusing along a long bar while the 
temperature everywhere is maintained constant. Find an expression for the 
heat flow that would be expected to accompany this mass diffusion. What 
role does the heat of transport play in this phenomenon? 
Solution. The basic force-flux relations are 

- 1 
J1 = -L11Vpi  - Lig-VT T (3.85) TQ = - L ~ 1 O p 1  - LQQ-VT 1 

T 
Under isothermal conditions 

J ;  = -L11Vp1 
TQ = - L ~ l V p i  

Therefore, using Eqs. 3.61 and 3.86, 

(3.86) 

(3.87) 

The heat flux consists o f  two parts. The first is the heat flux due t o  the flux of entropy, 
which is carried along by the mass flux in the form of the partial atomic entropy, 

S:. Beca_use 31 = +85'/8N1, a flux of atoms will transport a flux of heat given by 
JQ = T J s  = T S 1 J 1 .  The second part is a "cross effect" proportional t o  the flux of 
mass, with the proportionality factor being the heat of transport. 

3.2 As shown in Section 3.1.4, the diffusion of small interstitial atoms (component 
1) among the interstices between large host' atoms (component 2) produces 
a interdiffusivity, 5, for the interstitial atoms and host atoms in a V-frame 

D = c ~ O Z D ~  (3.88) 
given by Eq. 3.46, that is - 
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and therefore a flux of host atoms given by 

- dc:! 
dX 

J v  = -D- 2 (3.89) 

This result holds even though the intrinsic diffusivity of the host atoms is 
taken to be zero and the flux of host atoms across crystal planes in the local 
C-frame is therefore zero. Give a physical explanation of this behavior. 
Solution. When mobile interstitials diffuse across a plane in the V-frame, the material 
left behind shrinks, due t o  the loss o f  the dilational fields o f  the interstitials. This 
establishes a bulk flow in the diffusion zone toward the side losing interstitials and causes 
a compensating flow (influx) o f  the large host atoms toward that side even though they 
are not making any diffusional jumps in the crystal. 

The rate of loss of volume of the material (per unit area) on one side o f  a fixed plane 
in the V-frame due t o  a loss o f  interstitials is 

(3.90) 

In the V-frame this must be compensated for by a gain of volume due t o  a gain o f  host 
atoms so that - + - = o  dV1 dV2 

dt dt 
(3.91) 

where dVz/dt is the rate o f  volume gain due t o  the gain o f  host atoms corresponding 
t o  

Substituting Eqs. 3.90 and 3.92 into Eq. 3.91 and using Eq. A.lO, 

(3.92) 

(3.93) 

3.3 In a classic diffusion experiment, Darken welded an Fe-C alloy and an Fe- 
C-Si alloy together and annealed the resulting diffusion couple for 13 days at  
1323 K, producing the concentration profile shown in Fig. 3.11 [23]. Initially, 
the C concentrations in the two alloys were uniform and essentially equal, 
whereas the Si concentration in the Fe-C-Si alloy was uniform at about 3.8%. 
After a diffusion anneal, the C had diffused “uphill” (in the direction of its 
concentration gradient) out of the Si-containing alloy. Si is a large substi- 
tutional atom, so the Fe and Si remained essentially immobile during the 
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Figure 3.11: Nonuniform concentration of C produced by diffusion from an initially 
uniform distribution. Carbon migrated from the Fe-Si-C (left) to  the Fe-C alloy (right). 
From Darken [23]. 



70 CHAPTER 3: DRIVING FORCES AND FLUXES FOR DIFFUSION 

diffusion, whereas the small interstitial C atoms were mobile. Si increases the 
activity of C in Fe. Explain these results in terms of the basic driving forces 
for diffusion. 
Solution. As the C interstitials are the only mobile species, Eq. 3.35 applies, and 
therefore 

J; = -L11Vp1 (3.94) 

(3.95) 

Using the standard expression for the chemical potential, 

p1 = py + kTlna1 

where a1 = 71x1 is the activity of the interstitial C, 

(3.96) 

The coefficient L11 in Eq. 3.96 is positive and the equation therefore shows that the C 
flux will be in the direction of reduced C activity. Because the C activity is higher in 
the Si-containing alloy than in the non-Si-containing alloy at  the same C concentration, 
the uphill diffusion into the non-Si-containing alloy occurs as observed. In essence, the 
C is pushed out of the ternary alloy by the presence of the essentially immobile Si. 

3.4 Following Shewmon, consider the metallic couple specimen consisting of two 
different metals, A and B ,  shown in Fig. 3.12 [18]. The bonded end is at 
temperature TI and the open end is a t  T2. A mobile interstitial solute is 

kJ/mol in one leg and QFans = 0 in the other. Assuming that the interstitial 
concentration remains the same at the bonded interface at T I ,  derive the 
equation for the steady-state interstitial concentration difference between the 
two metal legs at Tz. Assume that TI > T2. 

present at the same concentration in both metals for which QYans = - 84 

r----------1 

Figure 3.12: Metallic couple specimen made up of metals A and B. 

Solution. In the steady state, Eq. 3.60 yields 

CiQYans  VT VCl = -~ 
kT2 

Reducing t o  one dimension and integrating, 

Therefore, 

(3.97) 

(3.98) 

(3.99) 
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Therefore, for leg A, 

(3.100) 

while for leg B ,  cf(T2) = cf(T1).  Finally, because cf(T1) = $(Ti )  = cf(T2) 
ci(Ti), 

(3.101) 1 - l >  

-84000 (Ti - T2) Ac1 = cl(T1) exp { [ NokTiTz 

3.5 Suppose that a two-phase system consists of a fine dispersion of a carbide 
phase in a matrix. The carbide particles are in equilibrium with C dissolved 
interstitially in the matrix phase, with the equilibrium solubility given by 

c1 = c,e o - A H / ( k T )  (3.102) 

If a bar-shaped specimen of this material is subjected to a steep thermal 
gradient along the bar, C atoms move against the thermal gradient (toward 
the cold end) and carbide particles shrink at the hot end and grow at the cold 
end, even though the heat of transport is negative! (For an example, see the 
paper by Mehmut et al. [24].) Explain how this can occur. 

0 Assume that the concentration of C in the matrix is maintained in local 
equilibrium with the carbide particles, which act as good sources and 
sinks for the C atoms. Also, AH is positive and larger in magnitude 
than the heat of transport. 

Solution. 
Ea. 3.102. and therefore 

The local C concentration will be coupled t o  the local temperature by 

dcl - dci  dT - AH dT 
- - I - -  dx dT dx kT2 dx 

- -- - 

Substitution of Eq. 3.103 into Eq. 3.60 then yields 

Jl = -- D1cl (AH + Qtrans) dz dT 
kT2 

(3.103) 

(3.104) 

Because (AH + Qtrans) is positive, the C atoms will be swept toward the cold end, as 
observed. 

3.6 Show that the forces exerted on interstitial atoms by the stress field of an edge 
dislocation are tangent to the dashed circles in the directions of the arrows 
shown in Fig. 3.8. 

Solution. The hydrostatic stress on an interstitial in the stress field is given by Eq. 3.80 
and the force is equal t o  = - 0 l V P .  Therefore, 

(3.105) 

where A is a positive constant. Translating the origin of the (x’, y’) coord+inate system 
t o  a new position corresponding t o  (2’ = R,y’ = 0 ) ,  the expression for Fl in the new 
( x ,  y) coordinate system is 
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Converting t o  cylindrical coordinates, 

1 r sin 8 
$1 = -R1 A V  [ r Z + R 2 + 2 r R c ~ ~ B  

The gradient operator in cylindrical coordinates is 

d l d  
V = f i r - + C e - -  dr T de 

(3.107) 

(3.108) 

Therefore, using Eq. 3.107 and Eq. 3.108 yields 

$1 = - 0 1  A {fir(Rz - r 2 ) s i n 8 + f i e  [ (R2  + r 2 ) c o s e + 2 R r ] }  

(3.109) 
The force on an interstitial lying on a cylinder of radius R centered on the origin where 

[RZ + r2 + 2Rr  cos el2 

r = R is then 

(3.110) 

The force anywhere on the cylinder therefore lies along -60, which is tangential t o  the 
cylinder in the direction of decreasing 0. 

3.7 Consider the diffusional flux in the vicinity of an edge dislocation after it is 
suddenly inserted into a material that has an initially uniform concentration 
of interstitial solute atoms. 

(a) Calculate the initial rate a t  which the solute increases in a cylinder that 
has an axis coincident with the dislocation and a radius R. Assume that 
the solute forms a Henrian solution. 

(b) Find an expression for the concentration gradient a t  a long time when 
mass diffusion has ceased. 

Solution. 

(a) The diffusion flux is given by Eq. 3.83. Initially, the concentration gradient is zero 
and the flux is due entirely t o  the stress gradient. Therefore, 

h k T ( 1  - v) 1 r2 -' 

Now, integrate the flux entering the cylinder, noting that the B component con- 
tributes nothing: 

R d 9  = 0 2 x  Asin6 (3.112) 

where A = constant. Note that this result can be inferred immediately, due t o  
the symmetry of the problem. 

(b) When mass flow has ceased, the flux in Eq. 3.83 is zero and therefore 

v c 1 =  - 7:;;;; t yVlb [-1 ] (3.113) 

3.8 The diffusion of interstitial atoms in the stress field of a dislocation was con- 
sidered in Section 3.5.2. Interstitials diffuse about and eventually form an 

sine cos0 ~ 

Cr  + T u e  r 
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equilibrium distribution around the dislocation (known as a Cottrell atmo- 
sphere), which is invariant with time. Assume that the system is very large 
and that the interstitial concentration is therefore maintained at a concentra- 
tion cy far from the dislocation. Use Eq. 3.83 to show that in this equilibrium 
atmosphere, the interstitial concentration on a site where the hydrostatic 
pressure, P ,  due to the dislocation is 

cyl = Cle 0 - n l p / ( W  (3.114) 

Solution. According t o  Eq. 3.83, 

(3.115) 

A t  equilibrium, = 0 and therefore 

lncyq + = a1 = constant (3.116) kT 

Because cyq = c? a t  large distances from the dislocation where P = 0, a1 = In&, 

Ceq 1 -  - C ; e - % P / ( k T )  (3.117) 

3.9 In the Encyclopedia of Twentieth Century Physics, R.W. Cahn describes A.H. 
Cottrell and B.A. Bilby's result that strain aging in an interstitial solid solu- 
tion increases with time as t213 as the coming of age of the science of quan- 
titative metallurgy [25 ] .  Strain aging is a phenomenon that occurs when 
interstitial atoms diffuse to dislocations in a material and adhere to their 
cores and cause them to be immobilized. Especially remarkable is that the 
t213 relation was derived even before dislocations had been observed. 

Derive this result f0r an edge dislocation in an isotropic material. 

0 Assume that the degree of the strain aging is proportional to the number 
of interstitials that reach the dislocation. 

0 Assume that the interstitial species is initially uniformly distributed and 
that an edge dislocation is suddenly introduced into the crystal. 

0 Assume that the force, - R l V P ,  is the dominant driving force for inter- 
stitial diffusion. Neglect contributions due to V c .  

0 Find the time dependence of the number of interstitials that reach the 
dislocation. Take into account the rate a t  which the interstitials travel 
along the circular paths in Fig. 3.8 and the number of these paths fun- 
neling interstitials into the dislocation core. 

Solution. The tangential velocity, u ,  of an interstitial tkaveling along a circular path 
of radius R in Fig. 3.8 will be proportional t o  the force F1 = -fIlVP exerted by the 
dislocation. In cylindrical coordinates, P is proportional t o  sinO/r, so 

(3.118) 



74 CHAPTER 3: DRIVING FORCES AND FLUXES FOR DIFFUSION 

Therefore, v K F1 LX l / r z .  As shown in Fig. 3.8, v at equivalent points on each circle 
will scale as l/r*, and because r at  these points scales as R, 

1 
(3.119) 

The averagewelocity, (v) ,  around each circular path will therefore scale as l / R Z .  Since 
the distance around a path is 2 n R ,  the time, t R ,  required t o  travel completely around 

(3 .120)  

Therefore, at time, t ,  the circles with radii less than 

R c r i t  K t1 /3  (3.121) 

will be depleted o f  solute. During an increment of t ime d t ,  the average distance at  
which interstitials along the active flux circles approach the dislocation is equal (to 
a reasonable approximation) t o  ds  = ( v ) d t .  The total volume (per unit length of 
dislocation) supplying atoms during this period is then 

d V  LX dt Jm (v) d R  0: L d t  
L i t  %it 

(3.122) 

where the integral is taken over only the active flux circles. Because the concentration 
was initially uniform, the number of interstitials reaching the dislocation in time t ,  des- 
ignated by N ,  is therefore proportional t o  the volume swept out. Therefore, substituting 
Eq. 3.121 in Eq. 3.122 and integrating, 

(3.123) 

More detailed treatments are given in the original paper by Cottrell and Bilby [25] and 
in the summary in Cottrell's text on dislocation theory [22]. 

3.10 Derive the expression 
+ D V C V P Z  J A  = -- 

kT 
for the electromigration of substitutional atoms in a pure metal, where D v  is 
the vacancy diffusivity and cv is the vacancy concentration. Assume that: 

There are two mobile components: atoms and vacancies. 

Diffusion occurs by the exchange of atoms and vacancies. 

There is a sufficient density of sources and sinks for vacancies so that 
the vacancies are maintained at their local equilibrium concentration 
everywhere. 

Solution. Vacancies are defects that scatter the conduction electrons and are therefore 
subject t o  a force which in turn induces a vacancy current. The vacancy current results 
in an equal and opposite atom current. The components are network constrained so 
that Eq. 2.21 for the vacancies, which are taken as the N,th component, is 

Because V ~ A  = 0 (see Eq. 3.64) and p v  = 0, 
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The vacancy current is therefore due solely t o  the_cross term arising from the current 
o f  conduction electrons (which is proportional t o  E ) .  The coupling coefFicient for the 
vacancies is the off-diagonal coefficient Lvq which can be evaluated using the same 
procedure as that which led t o  Eq. 3.54 for the electromigration o f  interstitial atoms in 
a metal. Therefore, if (CV)  is the average drift velocity o f  the vacancies induced by the 
current and Mv is the vacancy mobility, 

3.11 (a) It  is claimed in Section C.2.1 that the mean curvature, K ,  of a curved 
interface is the ratio of the increase in its area to the volume swept out 
when the interface is displaced toward its convex side. Demonstrate this 
by creating a small localized “bump” on the initially spherical interface 
illustrated in Fig. 3.13. 

I1 
c 
L 

Figure 3.13: Circular cap (spherical zone) 011 a spherical interface. 

(b) Show that Eq. 3.124 also holds when the volume swept out is in the form 
of a thin layer of thickness dw, as illustrated in Fig. 3.14. 

Figure 3.14: 
with curvature K = (1/R1) + (1/&). 

Layer of thickness diu swept out by additioii of material at a11 interface 

0 Construct the bump in the form of a small circular cap (spherical zone) 
by increasing h infinitesimally while holding r constant. Then show that 

dA 
dV 

/$=- (3.124) 

where dA and dV are, respectively, the increases in interfacial area and 
volume swept out due to the construction of the bump. 
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Solution. 

(a) The area of the circular cap in Fig. 3.13 is 

A = 7r (T’ + h2) 

Here T and h are related t o  the radius o f  curvature of the spherical surface, R,  by 
the relation 

R = ? ( l + $ )  2 h  (3.125) 

The volume under the circular cap is given by 

7r 7r V = -hr2 + -h3 
2 6 

If the bump is now created by forming a new cap o f  height h + dh while keeping 
T constant, 

dA = 27rhdh (3.126) 

(3.127) 

Therefore, using Eqs. 3.125, 3.126, and 3.127, and the fact that h2/r2 << 1, 

dA 2 
d V - R Z K  

- - 

(b) The increase in area is 

dA = (R1 + d w )  dB1 (Rz + dw)  dB2 - R1 dB1 R2 dBz = (RI  + Rz) dw dB1 dB2 

The volume swept out is 

dV = Ri dB1 Rz dBz dw 

Therefore, 
dA 1 1 _ -  - - + - = K  
dV Ri Rz 



CHAPTER 4 

THE DIFFUSION EQUATION 

The diffusion equation is the partial-differential equation that governs the evolution 
of the concentration field produced by a given flux. With appropriate boundary 
and initial conditions, the solution to this equation gives the time- and spatial- 
dependence of the concentration. In this chapter we examine various forms assumed 
by the diffusion equation when Fick’s law is obeyed for the flux. Cases where 
the diffusivity is constant, a function of concentration, a function of time, or a 
function of direction are included. In Chapter 5 we discuss mathematical methods 
of obtaining solutions to the diffusion equation for various boundary-value problems. 

4.1 FICK’S SECOND LAW 

If the diffusive flux in a system is f, Section 1.3.5 and Eq. 1.18 are used to write 
the diffusion equation in the general form 

d C  + _ -  - n - V * J  
at 

where n is an added source or sink term corresponding to the rate per unit volume 
at  which diffusing material is created locally, possibly by means of chemical reaction 
or fast-particle irradiation, and :is any flux referred to a V-frame. There frequently 
are no sources or sinks operating, and n = 0 in Eq. 4.1. When Fick’s law applies 
(see Section 3.1) and n = 0, Eq. 4.1 takes the general form 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 77 
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dC 
d t  - -V * f= V .  ( D V c )  _ -  

which is sometimes called Fick’s second law (note that Fick’s second law is simply 
a consequence of the conservation of the diffusing species). 

Accumulation within a volume depends only on the fluxes at its boundary. For 
example, in one dimension, 

where N is the number of particles and A is the area through which the diffusion 
occurs. In three dimensions, 

where in the final integral, I(?, t )  is the time-dependent value of flux at the oriented 
surface dV that bounds V. The geometrical interpretation in Fig. 4.1 shows how 
c ( z ,  t )  changes locally; the equations above imply a conservation constraint for the 
entire concentration field. 

Because Eq. 4.2 has one time and two spatial derivatives, its solution requires 
three independent conditions: an initial condition and two independent boundary 
conditions. Boundary conditions typically may look like 

C(T= TB) = f ( t )  = c g ( t )  or f ( ~ =  TB) . = g ( t )  = J B ( ~ )  (4.5) 

where RB is the normal to  the boundary and the initial conditions have the form 

c(z, y, 2 ,  t = t o )  = c(T, t = t o )  = h(z ,  y, 2 )  = h(F) = C O ( 5 ,  y, 2 )  (4.6) 

In Chapter 3, several different types of diffusivity were introduced for diffusion 
in a chemically homogeneous system or for interdiffusion in a solution. In each case, 
Fick’s law applies, but the appropriate diffusivity depends on the particular system. 
The development of the diffusion equation in this chapter depends only on the form 
of Fick’s law, f= -DVc .  D is a placeholder for the appropriate diffusivity, just 
as f and c are placeholders for the type of component that diffuses. 

Equation 4.2 can take various forms, depending upon the behavior of D. The 
simplest case is when D is constant. However, as discussed below, D may be a 
function of concentration, particularly in highly concentrated solutions where the 
interactions between solute atoms are significant. Also, D may be a function of 
time: for example, when the temperature of the diffusing body changes with time. 
D may also depend upon the direction of the diffusion in anisotropic materials. 

4.1.1 

Methods to solve the diffusion equation for specific boundary and initial conditions 
are presented in Chapter 5. Many analytic solutions exist forthe special case Lhat D 
is uniform. This is generally not the case for interdiffusivity D (Eq. 3.25). If D does 
not vary rapidly with composition, it can be replaced by successive approximations 
of a uniform diffusivity and results in a linearization of the diffusion equation. The 

Linearization of the Diffusion Equation 
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linearized form permits approximate models from known solutions. The diffusivity 
is expanded about its average value, DO,  as follows 

where A c  = c - ( c ) ,  and 

The diffusion equation becomes 

The lowest-order approximation for small A c  and small lVcl is 

(4.9) 

(4.10) 

which is the diffusion equation for constant diffusivity. 

4.1.2 

For evolution of a temperature field during heat flow, an equation with the same 
form as Eq. 4.2 arises: 

Relation of Fick's Second Law to the Heat Equation 

(4.11) 

where h is the enthalpy density and cp is the heat capacity per unit volume. The 
ratio K I c p  is called the thermal daffusivaty, K .  It is assumed that no enthalpy is 
stored by a phase change and that c p  is constant. 

Therefore, any result that follows from considerations of the form of Fick's second 
law applies to evolution of heat as well as concentration. However, the thermal and 
mass diffusion equations differ physically. The mass diffusion equation, dc ld t  = 
V . DVc,  is a partial-differential equation for the density of an extensive quantity, 
and in the thermal case, d T l d t  = V . KVT is a partial-differential equation for an 
intensive quantity. The difference arises because for mass diffusion, the driving force 
is converted from a gradient in a potential V p  to a gradient in concentration Vc, 
which is easier to measure. For thermal diffusion, the time-dependent temperature 
arises because the enthalpy density is inferred from a temperature measurement. 
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4.1.3 

The rate of entropy production, tr (Eq. 2.19), for one-dimensional diffusion becomes 

Variational Interpretation of the Diffusion Equation 

. k D  dc .=&) (4.12) 

when the activity coefficient is independent of concentration. Localized changes in 
c(x ,  t )  affect the rate of total entropy production. How changes in the evolution of a 
field affect a functional (such as an integral quantity like total entropy production) 
is a topic in the calculus of variations [l]. 

For an adiabatic system, the rate of total entropy production Stot is a functional 
of the concentration field c (x ) ,  

(4.13) 

The functional gradient of Stot indicates the function pointing in the “direction” 
of fastest increase. Gradients depend on an inner product because it provides a 
measure of “distance” for functions [2]. One choice of an inner product for functions 
is the L2 inner product, defined by 

(4.14) 
J 

so the magnitude of a function is related to  the integral of its square: lp(x)l = 
(pp) l / ’ .  Note that least-squares data fits use this inner product. 

The functional gradient of F (or gradient of a vector function) can be defined 
by G F ,  and the inner product with a velocity field v: 

(4.15) 

That is, of all possible functions v ( x ) ,  those that are parallel, subject to choice 
of norm or inner product, to GF give the fastest increase in F .  For the entropy 
production with D = constant, 

(4.16) 
2kD dC 

dt 

Integrating by parts, 

(4.17) 
x 2  d2c dc dc dc 

If the boundary conditions are zero flux or fixed composition, the last term vanishes. 
Comparison with the L2 inner product reveals that for evolution according to the 
diffusion equation, c(x ,  t )  changes so that Stot (total entropy “acceleration”) is its 
most negative. Thus, entropy production, which is always positive, decreases in 
time as rapidly as possible when dcldt cc -Gs,,, cc d2c/dx2. 
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4.2 CONSTANT DlFFUSlVlTY 

When D is constant, Eq. 4.2 takes the relatively simple form of the linear second- 
order partial differential equation 

d C  
- = DV'C at (4.18) 

Some of the major features of this equation are discussed below, and methods of 
solving it under a variety of boundary and initial conditions are described at  length 
in Chapter 5 .  

4.2.1 Geometrical Interpretation of the Diffusion Equation when Diffusivity is 
Constant 

Figure 4.1 illustrates how a one-dimensional concentration field, c(x,  t ) ,  evolves ac- 
cording to  Eq. 4.18. The right-hand side of Eq. 4.18 is proportional to  the curvature 
of the concentration profile. Where the curvature is negative, as on the left-hand 
side, the concentration must decrease at  a rate proportional to the magnitude of 
the curvature. Conversely, the concentration must increase on the right-hand side, 
where the curvature is positive. 

h z 

%- v 

X 

Figure 4.1: Evolut,ion of concentration field according to  Fick's law. &/at is 
proportional to the curvature of the concentration field. 

4.2.2 

Under certain conditions, boundary-value diffusion problems can be solved conve- 
niently by scaling. First, introduce the dimensionless variable q,  

Scaling of the Diffusion Equation 

(4.19) 
2 q = -  rn 

into the diffusion equation. Using Eq. 4.18 for one-dimensional diffusion and 

(4.20) 
a aq a a av a 

at at aq ax a x a q  
- = -- - = -- 

the diffusion equation becomes 

(4.21) 
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Next, suppose that for the particular boundary-value problem under consideration, 
the initial and boundary conditions are unchanged by scale change: 

z= Ax t =  A2t (4.22) 

Then 77 is invariant under the scaling corresponding to Eq. 4.19 and c becomes 
a function of the single variable, v. The diffusion equation becomes an ordinary 
differential equation (i.e., d + d ) .  

If the boundary-value diffusion problem can be scaled according to Eq. 4.19, it is 
considerably easier to  solve. Consider the one-dimensional step-function diffusion 
problem shown in Fig. 4.2, where 

- m < x < o  { :: o < x < m  c(x , t  = 0 )  = 

c(-co,t) = cL; C(co,t) = C R  

(4.23) 

The initial and boundary conditions given by Eq. 4.23 are transformed by scaling 
into 

c(-co) = c L  and c ( m )  = c  R (4.24) 

and the diffusion equation has the form in Eq. 4.21. The entire boundary-value 
diffusion problem is now rescaled. Equation 4.21 can be integrated by letting 

dc 
9 ' -  

d7 

Then 
d q  -279 = - 
d v  

which can be integrated to produce 

where a1 is a constant. Integrating again yields 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

Applying the step-function initial conditions in Eq. 4.24, 

Figure 4.2: One-dimensional step-function initial conditions. 

lThe  diffusion equation itself can always be rescaled. However, to solve a boundary-value diffusion 
problem using the scaling method, the initial and boundary conditions must also be scalable. 
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where a2 is a constant. The integral with the limit x / m  is known as the error 
function, abbreviated "erf" : 

(4.30) 

The error function has the properties erf(0) = 0, erf(m) = 1, and erf(-z) = -erf(z). 
So, after evaluating a2 by using the boundary conditions, the diffusion problem 

posed above has the solution 

(4.31) 

where C = (cR + cL) /2  and A c  = cR - cL.  When c is assigned units of particles per 
unit length, Eq. 4.31 describes the one-dimensional diffusion along r from an initial 
step function on a line in one dimension as in Fig. 4 . 3 ~ .  When c has units of particles 
per unit area. it describes the one-dimensional diffusion from a step function in a 
two-dimensional plane as in Fig. 4.3b, and when the units are particles per unit 
volume, it describes the one-dimensional diffusion from a step function in three 
dimensions. as in Fig. 4 . 3 ~ .  

Figure 4.3: 
diriierisioris. 

Initial step-function distributions iri  (a) one, (b) two, arid (c) three 

Scaling as a Means to Compare Similar Systems. When the diffusion problem is 
invariant to the scaling parameter ri = x / m .  equal values of can be used 
to determine relationships between length. time, and the value of the diffusivity. 
For example. consider two masses that differ only in their length dimension. Let 
the first block have length L and the second block have length NL. If at a time, 
7 .  a particular concentration appears at the center of the first block. the same 
concentration will appear in the second block at time o2r. 

4.2.3 Superposition 

Suppose that ~ ( x .  t )  is a solution to  the one-dimensional diffusion equation 

(4.32) 
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with boundary and initial conditions 

p ( ~  = a,  t )  = A p ( t )  p(x  = b, t )  = B,(t) p (x ,  t = 0 )  = I P ( x )  

and that q(x ,  t )  is a solution to 

(4.33) 

(4.34) 

with boundary and initial conditions 

q(x  = a ,  t )  = Aq( t )  q(x  = b, t )  = Bq(t)  q(x ,  t = 0 )  = I q ( x )  (4.35) 

Then, because the diffusion equation is a linear second-order differential equation, 
T ( X ,  t )  = p ( x , t )  + q ( x , t )  is a solution for the boundary conditions and the initial 
condition: 

T ( X  = a ,  t )  = A p ( t )  + A q ( t )  
T ( Z  = b, t )  = Bp(t )  + Bq(t)  
T ( X ,  t = 0 )  = I p ( x )  + I q ( x )  

(4.36) 

The superposition of two solutions therefore also solves the diffusion equation with 
superposed boundary and initial conditions. 

Superposition of two displaced step-function initial conditions permits solutions 
that describe diffusion from an initially localized source into an infinite domain. 
The two step-function initial conditions in Fig. 4.4 have error-function solutions 
(Eq. 4.31), and their superposition is a localized source of width A x .  The two step 
functions are 

- m < x < o  
o < x < m  c (x , t  = 0 )  = 

and2 
-W < x < AX 

c(x ,  t = 0 )  = { " 0  A x < x < m  

(4.37) 

(4.38) 

- - co 
x =  A x  

Figure 4.4: 
diffusion along 2. 

'Although one initial condition is uiiphysical (i.e., a negative concentration), the superposition 
is physical and justifies its use. The negative concentration is similar to the use of a negative 
electrical image charge to solve the electrostatics problem of the potential field produced by a 
positive charge in a planar half-space where the plane bounding the half-space is held at zero 
potential. The negative image charge outside the half-space allows superposition and satisfies the 
boiindary condition at the plane bounding the half-space [3]. 

Superposition method for coIistructing localized source for one-dimensional 
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Each step function evolves according to an error-function solution of the type 
given by Eq. 4.31. and their superposition is 

When Ax is small compared to the distance x, 

(4.40) 

where the source strength, n d ,  is given by 

When c is assigned units of particles per unit length, nd corresponds to the to- 
tal number of particles in the source, and Eq. 4.40 describes the one-dimensional 
diffusion from a point source as in Fig. 4 . 5 ~ .  Also, when c has units of particles 
per unit area, nd has units of particles per unit length and Eq. 4.40 describes the 
one-dimensional diffusion in a plane in two dimensions from a line source initially 
containing nd particles per unit length as in Fig. 4.5b. Finally, when c has units 
of particles per unit volume, nd has units of particles per unit area, and Eq. 4.40 
describes the one-dimensional diffusion from a planar source in t’hree dimensions 
initially containing nd particles per unit area as in Fig. 4 . 5 ~ .  These results are 
summarized in Table 5.1. 

Figure 4.5: One-dirrierisiorial diffusion into an infinite doriiaiii. (a) Point source diffusing 
into it liric. (b) Line soiircc diffusing into a plane. ( c )  Planar source diffusiiig into a volume. 

4.3 DlFFUSlVlTY AS A FUNCTION OF CONCENTRATION 

When D is a function of concentration [i.e., D = D ( c ) ] ,  Eq. 4.2 takes the form 

dC 
dt 
-- - V .  [D(c)VC]  (4.42) 

This differential equation is generally nonlinear [depending upon the form of D ( c ) ] .  
and solutions therefore can be obtained analytically only in certain special cases 
which are not discussed here [4]. 
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When Fick’s law applies, the concentration profile generally contains informa- 
tion about the concentration dependence of the diffusivity. For constant D ,  step- 
function initial conditions have the error function (Eq. 4.31) as a solution to  dc/dt = 
Dd2c/dx2.  When the diffusivity is a function of concentration, 

dC d2c dD(c)  (8c)2 
dt dx2 dc - = D(c)- + - (4.43) 

For identical initial conditions, the difference between a measured profile and the 
error-function solution is related to the last (nonlinear) term in Eq. 4.43. When 
diffusivity is a function of local concentration, the concentration profile tends to 
be relatively flat at  a concentration where D(c)  is large and relatively steep where 
D(c)  is small (this is demonstrated in Exercise 4.2). Asymmetry of the diffusion 
profile in a diffusion couple is an indicator of a concentration-dependent diffusivity. 

Matano developed a graphical method which, for certain classes of boundary 
value problems, relates the form of the diffusion profile with the concentration de- 
pendence of the interdiffusivity, E ( c ) ,  introduced in Section 3.1.3 [ 5 ] .  This method 
can determine 6 ( c )  from the diffusion profile in chemical concentration-gradient dif- 
fusion experiments where atomic volumes are sufficiently constant so that changes 
in overall specimen volume are insignificant and diffusion can be formulated in a 
V-frame. The method uses scaling, as discussed in Section 4.2.2. 

Consider a case where the initial and boundary conditions for a diffusion couple 
are 

- 0 0 < x < o  { :I o < x < 0 0  c (x , t  = 0 )  = 

c ( - m , t )  = c: C ( 0 0 , t )  = c1 R 

Using the scaling parameter q = x/&, the diffusion equation becomes 

(4.44) 

(4.45) 

and the initial and boundary conditions become 

c1(q = 00) = c? c1(q = -00) = c1 L (4.46) 

Equation 4.45 can be integrated as 

(4.47) 

If c1 is a monotonically increasing function, variables can be changed so that 

If the profile is measured at some particular time t = 7, x = q&?, so 

(4.48) 

(4.49) 
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because dcl /dx(cl  = cF) = 0.  Equation 4.49 is an equation for 6 in terms of 
integrals and derivatives of the function q ( x )  and its inverse x ( c ~ ) ,  which can be 
determined from a measured profile. The boundary condition 

(4.50) 

determines the position of the original interface (commonly termed the Matano 
interface) where x = 0 (Exercise 4.1 demonstrates this). The expression for the 
interdiffusivity is 

(4.51) 

Equation 4.51 is an integral equation that can be used to determine E(c1)  by a 
graphical construction or numerical solution. The derivative required in Eq. 4.51 
is provided by the measured concentration profile at time r and the integration is 
performed on the inverse of q ( z )  [6] .  However, this historically important method 
is only moderately accurate, and it would be preferable to obtain diffusion profiles 
for various assumed diffusivities as a function of concentration by computation. 
D(c) could be deduced by fitting calculated results for a parametric representation 
of 6 ( c )  to an experimentally determined diffusion profile. 

4.4 DlFFUSlVlTY AS A FUNCTION OF TIME 

When D is a function of time, but not position, Eq. 4.2 takes the form 

dC - = V .  [D(t)Vc] = D ( t ) V 2 c  at (4.52) 

This could be the case for a diffusion specimen that is slowly cooled while a uniform 
temperature is maintained. Problems of this type can be treated by making the 
change of variable 

t 
TO = Jd D(t’) dtl (4.53) 

Then d c / d t  = (dc/dTD)(dTD/dt)  = (dC/dTD)D(t) and Eq. 4.52 is transformed to 

dC 
- = v 2 c  
drD 

(4.54) 

with the solution c = c ( x , r ~ )  for unit diffusivity. Equation 4.54, with the same 
form as Eq. 4.18, holds when D is uniform. If the boundary conditions for a 
time-dependent diffusivity problem are invariant under this change of variable, so- 
lutions from known constant-D problems can be applied to the time-dependent D 
case. Consider, for example, the boundary-value problem in Fig. 4.2, which for 
the constant-D case was solved by Eq. 4.31. Because TD = 0 when t = 0, the 
initial and boundary conditions are invariant under the change of variable, and the 
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solution is 

4.5 DlFFUSlVlTY AS A FUNCTION OF DIRECTION 

(4.55) 

In the expressions for Fourier's law of heat conductivity and Fick's law for niass flux, 
it has been assumed that the flux vector is always parallel to the driving force vector. 
However, these vectors are not parallel for general materials. For instance, consider 
a bar. made of alternating layers of copper and silica glass, which is conducting heat 
from a reservoir a t  high temperature to  one of lower temperature, as in Fig. 4.6. 
Because copper's heat conductivity is more t,han 60 times greater than silica's, the 
temperature along each inclined copper sheet will be nearly uniform. Furthermore, 
because the thermal gradient is always normal to lines of uniform temperature, 
it points in a direction approximately normal to the copper sheets. However, the 
heat flux is parallel to  the bar because the only sources and sinks for heat are the 
reservoirs at the ends. 

This hypothetical example is similar to the case of a graphite single crystal. 
Graphite has a hexagonal Bravais lattice. Along the basal planes, the carbon bond- 
ing is covalent, so the thermal conductivity is K11 = 355 J m-' s-' K-* , nearly that 
of carbon-diamond. Between the graphite layers, where the bonding is very weak, 
the conductivity is much lower, K l  = 89.3 J m - l s - l  K-l . F igure 4.6 is therefore 
representative of single-crystal graphite, where the basal plane is parallel to the 
layers shown. 

In general, the properties of crystals and other types of materials, such as com- 
posites, vary with direction (i.e., macroscopic materials properties such as mass 
diffusivity and electrical conductivity will generally be anisotropic). It is possible 
to  generalize the isotropic relations between driving forces and fluxes to  account for 

High conductivity 

Low conductivity 

Figure 4.6: Tlierrrial conduction in a laminar composite. The macroscopic value of the 
thermal conductivity depends on the individual values of conductivity for the materials as 
well as the inclination of the larriiriates. 
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Dll - Dl2 Dl3 
det D12 0 2 2  - X 0 2 3  

Dl3 0 2 3  0 3 3  - 

ani~ot ropy .~  The isotropic form for Fick’s law is 

f= -DVc Ji = - 

= 0 (4.62) 

dC 
D- 

dXi 
(4.56) 

where the final expression represents three equations, one for each coordinate axis, 
written in component form. For the anisotropic case, there is a linear relation 
between the flux and gradient vectors. As discussed in Section 1.3.7, the matrix of 
the linear coefficients depends on the particular material and the orientation of the 
material with respect to the V-frame: 

or in component form, 
dC 

J~ =  ED^^--- 
3 8% 

or simply, 
f= -DVc 

(4.58) 

(4.59) 

D is called the diffusivity tensor and acts as an object that connects one vector 
to another (e.g., the flux vector with the gradient vector). This connection can be 
written in matrix form as in Eq. 4.57. The diffusivity tensor D is symmetric (i.e.> 
Dij = Dji )  for any underlying material symmetry. 

The anisotropic form of Fick’s law would seem to complicate the diffusion equa- 
tion greatly. However, in many cases, a simple method for treating anisotropic 
diffusion allows the diffusion equation to keep its simple form corresponding to 
isotropic diffusion. Because Daj is symmetric, it is always possible to find a linear 
coordinate transformation that will make the Dij diagonal with real components 
(the eigenvalues of D ) .  Let elements of such a transformed system be identified by 
a “hat.” Then .=[ ; i3] (4.60) 

The diagonal elements of b are the eigenvalues of D, and the coordinate system 
of b defines the principal axes  21,22, 23 (the eigensystem). In the principal axes 
coordinate system, the diffusion equation then has the relatively simple form 

B,, 0 0 
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If & is the matrix that rotates the original ( 2 1 ,  2 2 ,  x 3 )  coordinate system into the 
principal ( 2 1 , 2 2 , 2 3 )  system, then according to Eq. 1.36, fi must be related to D 

D = RDR-l (4.63) 

To solve the diffusion equation in the principal coordinate system (i.e., Eq. 4.61), 
the Cartesian space can now be stretched or contracted along the principal axes by 
scaling: 

by 

(4.64) 

A 1 / 2  

This scaling conserves the volume. Using Eq. 4.64, the diffusion equation can now 
be written in terms of the &: 

(4.65) 

where V = ( 6 1 1 f i 2 2 f i 3 3 ) 1 / 3 .  Equation 4.65 has the same form as Fick’s second law 
for a material with a constant isotropic diffusivity. Thus, known solutions to the 
diffusion equation for constant isotropic diffusivity can be used to find solutions for 
anisotropic constant diffusivities by a simple algorithm. A solution to Eq. 4.65 with 
ID and coordinates [1,<2,[3 is rescaled back to the the principal axis coordinates 
2 1  , 2 2 , 2 3  using Eq. 4.64. If necessary, the system can be transformed back into the 
original, anisotropic laboratory coordinate system with D = &-‘DB. 

The diffusivity tensor has special forms for particular choices of coordinate axes if 
the diffusing body itself has special symmetry (e.g., if it is crystalline). Neumann’s 
principle states: 

The symmetry elements of any physical property of a material must include 
the symmetry elements of the point group of the materiaL4 

A consequence of Neumann’s symmetry principle is that direct tensor Onsager 
coefficients (such as in the diffusivity tensor) must be symmetric. This is equivalent 
to the addition of a center of symmetry (an inversion center) to a material’s point 
group. Thus, the direct tensor properties of crystalline materials must have one 
of the point symmetries of the 11 Laue groups. Neumann’s principle can impose 
additional relationships between the diffusivity tensor coefficients Dij in Eq. 4.57. 
For a hexagonal crystal, the diffusivity tensor in the principal coordinate system 
has the form 

D 1 1  0 0 
(4.66) 

4This also applies to  the macroscopic properties of composite materials with underlying 
symmetry-like honeycomb, wood, and woven materials-for which the crystal structure, if any, 
may play no direct role. 
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when i g  lies along the crystal's c-axis arid il and i 2  lie anywhere in the basal 
plane. Exercise 4.6 demonstrates that the diffusivity tensor in a cubic crystal has 
the form 

r o  0 0 1  
(4.67) 

and that the diffusion is therefore isotropic. Forms of the diffusivity tensor D for 
other crystal systems are tabulated in Nye's text [7].  
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EXERCISES 

4.1 Consider the Boltzmann-hIatano analysis leading to Eq. 4.51. Explain why 
the condition imposed by Eq. 4.50 determines the location of the x = 0 plane 
(i.e.. the position of the original interface). 

Solution. The laboratory coordinate system is used and there is no change in the overall 
specimen volume. The integral in Eq. 4.50 is proportional t o  the sum area 1 + area 2 
in Fig. 4.7. Area 1 is positive and area 2 is negative. When z = 0 is set at the position 
of the original interface, area 2 is proportional t o  the amount o f  diffusant that has left 

0 X- 

Figure 4.7: Composition profile arising from interdiffusiori 
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the original block o f  composition c f ,  and area 1 is proportional t o  the amount that has 
entered the original block of composition cp.  Because these quantities must be equal, 
the condition imposed by Eq. 4.50 determines the z = 0 plane. 

4.2 The interdiffusivity, 5, which measures the interdiffusion between Cu and Zn 
in the laboratory frame, is a strong function of the concentration of Zn. The 
curve describing 5(czn)  is concave upward and roughly parabolic in shape, 
and 6 (czn )  increases by a factor of about 20 when the Zn content increases 
from 0 to 30 at. % [8]. Describe how the shape of the diffusion-penetration 
curve for a diffusion couple made of Cu/CuSO at. % Zn is expected to deviate 
from the symmetric form of the constant diffusivity error-function solution. 

Solution. Base your argument on the Boltzmann-Matano solution (Eq. 4.51), which 
links the interdiffusivity with the shape of the diffusion curve. Two factors are present: 
the integral under the diffusion curve from cz", t o  the concentration in question, czn,  
and the reciprocal o f  the slope at  czn. The integral varies from 0 at  z = 00 t o  0 at 
z = -m and reaches a maximum a t  z = 0 (see Exercise 4.1). The slope varies from 
0 at  z = 03 t o  0 at  x = -m and reaches a maximum somewhere in between. A l itt le 
trial and error quickly shows that  the only way D can increase by a factor of 20 with 
increasing czn with a difFusion curve o f  reasonable shape is t o  have a curve with a small 
slope at  high CZ,, and a large slope at low czn. Such a curve is markedly nonsymmetric 
around its midpoint. Figure 4.8 shows an observed interdifFusion profile for this system. 

30 

0 
-0.6 -0.4 -0.2 0 0.2 

Distance (cm) 

Figure 4.8: 
Silva and Mehl [8]. 

Concentration profile observed in Cu-30 at. % Zn diffusion couple. From Da 

4.3 The Kirkendall effect can be studied by embedding an inert marker in the 
original step-function interface (x = 0) of the diffusion couple illustrated in 
Fig. 3.4. Show that this marker will move in the V-frame or, equivalently, 
with respect to the nondiffused ends of the specimen, according to 

x, = at1I2 

where cy is a constant. 

Solution. According t o  Eq. 3.23, the instantaneous velocity of any marker is given by 

(4.68) 
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Now, in general, c1 = C I ( ~ ) ,  where q = x/&. Because (Dl  - 0 2 )  is a function 
of 7, we can represent it as [Dl - 0 2 1  = h(q). Similarly, we can write dc l /dx  = 
(dcl/dq) t-’/’ = f (7)  t-’l2. Putt ing these results into Eq. 4.68 yields 

A solution that satisfies this equation and also the initial condition that x m  = 0 when 
t = O i s  

xm = a t ’ /2  

with the constant a given by a = 2 f l l h (a ) f ( a ) .  

4.4 A diffusion measurement at the temperature TO is made by annealing a dif- 
fusion couple comprised of two semi-infinite bars. However, there is a com- 
plication; after the completion of the isothermal anneal, carried out at TO for 
the time to, the specimen must be cooled to room temperature a t  a finite 
rate. During this cooling period, a small amount of additional nonisothermal 
diffusion occurs. If an expression can be found for the amount of time, At, re- 
quired to produce this same additional increment of diffusion at the constant 
temperature TO, the specimen could be analyzed very simply at the end of 
the experiment by assuming that it was annealed at To for the time to + At. 
Assume that D = Doexp[-E/(kT)] and that the temperature during the 
cooling period is 

(4.69) 

where a is constant. When t = t o  + a, T = To12 and it may be assumed that 
beyond that time during the cooling, any further diffusion is negligible. Find 
an expression for At. 
Solution. During the cooling the diffusivity is t ime dependent and the solution is there- 
fore obtained by utilizing the variable T O ,  which is described and defined in Section 4.4. 
The value o f  T D  at  the end o f  the actual experiment is then 

(4.70) 

where D = DO exp[-E/(ICTo)] and 

D ( t )  = Do e - E / ( k T o )  (4.71) 

Putt ing these expressions into Eq. 4.70 and integrating, 

(4.72) 

On the other hand, the value of r achieved at  the end of an isothermal diffusion anneal 
o f  duration t o  + A t  is 

The amounts o f  diffusion achieved in these two anneals will be equal i f  .Ed = rzd’ 
Therefore, setting these two quantities equal, 

rzd’ = Doe-E/ (kTo)[ to  + At] (4.73) 

(4.74) 
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- J? 
JZQ 
J? 
51" 
J,4 

- 539 

4.5 The transport relations for the thermoelectric effect in an isotropic material 
are 

LQQ (4.75) 
+ 

JQ = --UT - L Q ~ U $  
T 

Jq + = --VT LqQ - LqqU$ (4.76) 
T 

(a) Write the corresponding relations that apply for an anisotropic material. 

(b) From Onsager's symmetry theorem, what can be said about the symme- 
try of the rank-two tensors that are involved and any relations between 
them? 

(c) Are the cross-coupling tensors (which couple nonconjugate forces and 
fluxes) positive definite? 

Solution. 
Therefore, 

For an anisotropic material, the coefficients must be rank-two tensors. 

(4.77) 

(4.78) 

or in a matrix representation involving rank-one tensors (vectors) and rank-two tensors, 

(a) When written in full, Eq. 4.79 becomes 

ff11 ff12 ff13 p11 pl2 p13 

f f 2 l  ff22 ff23 p 2 l  p22  p 2 3  

a 3 1  a 3 2  ff33 p 3 1  p 3 2  p 3 3  

711 712 7 1 3  711 v12 713 

721 7 2 2  7 2 3  721 722 7723 

. 7 3 1  732 7 3 3  731 v32 v33 

(4.79) 

(b) Onsager's relation applies t o  the entire 6 x 6 matrix above, so 

p2, = y3% or P = Y~ 

at, = aj2  or a = a 

7 1 % ~  = ~ 7 , ~  or TI = vT 
(4.81) T 

(c) If a flux, 2, is coupled t o  a force, 2', by a tensor, <, so that 2 = < Z b ,  the 
tensor is positive definite if the projection of 2 on ib is always positive; that is, 

p . p =  ( < l b ) . d b > O  (4.82) 

The direct-effect a and 77 must be positive definite because of Fourier's law of 
heat conduction (where the thermal conductivity is always positive, according t o  
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Eq. 2.18) and Ohm's law for electrical conduction (where the electrical conductivity 
is also always positive, according t o  Exercise 2.1's solution). However, this is not 
necessarily the case for the cross-effect tensors and y.  For example, in mass 
diffusion in a thermal gradient, the heat o f  transport can be either positive or 
negative; the direction of the atom flux in a temperature gradient can then be 
in either direction. The anisotropic equivalent t o  the heat of transport relates 
the direction of the mass difFusion t o  the direction o f  the temperature gradient. 
There is  no physical requirement that these quantities could not be in reversed 
directions, and indeed, sometimes they are. 

4.6 Show by the use of symmetry arguments that the diffusivity in a cubic crystal 
must be isotropic. 

Solution. Take the three cubic axes 2 1 ,  2 2 ,  and 2 3  as the coordinate system and 
assume initially that  the diffusivity has the most general form possible, which, according 
t o  Eq. 4.57, is 

(4.83) 

Now, establish a concentration gradient o f  magnitude, g, successively along 21, 2 2 ,  and 
2 3 .  The three corresponding flux vectors will then be, respectively, 

1 Dii D 1 2  0 1 3  

D =  [ D 1 2  D 2 2  0 2 3  

0 1 3  0 2 3  0 3 3  

- g [  :::I - 9  [ :::I - 9  [ I , I ]  (4.84) 

Because of the cubic crystal symmetry, the fluxes parallel t o  the directions o f  the gra- 
dients in the three cases (i.e., - g D 1 1 ,  - g D 2 2 ,  and - 9 0 3 3 )  must be equal. Therefore, 

0 1 1  = D 2 2  = 0 3 3  (4.85) 

Preservation o f  fourfold symmetry along the 2 1 ,  2 2 ,  and 2 3  axes requires that any flux 
components in directions perpendicular t o  the gradients be zero. Therefore, 

0 1 3  0 2 3  

9 0 1 2  = 9 0 1 3  = g D 2 3  = 0 (4.86) 

and 
D O 0  1 0 0  

D = [  i :I=.[; :] (4.87) 

According t o  Eq. 4.63, the diffusivity tensor in any other rotated system (indicated by 
a prime) will have the form 

r l  o 0 1  
(4.88) 

Because D ' = D, the difFusivity is isotropic. 

4.7 Consider two-dimensional anisotropic diffusion in an infinite thin film where 
the initial condition consists of a point source of atoms located at  2 1  = x2 = 0. 
The diffusivity tensor D ,  in arbitrary units, in the (XI, z2) coordinate system 
is .=[ -y] 

4 4 

(4.89) 
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Determine the fundamental solution, c = c ( q ,  22, t ) ,  of the diffusion equation 
for the point source in this coordinate system. 

Solve the problem in the principal axes coordinate system and then trans- 

Note that a rotation matrix, a, has the properties det = 1 and B-' = 

form the solution back to the ( 2 1 ,  22) system. 

- RT, where BT is the transpose of a. 
Solution. First transform the problem t o  the principal axes system. The eigenvalue 
equation for D is 

Therefore, the diffusivity tensor in the principal axes system is 

16 0 
D = [  0 1 1  

(4.91) 

The rotation, B, required t o  rotate the original (x1,x2) coordinate system into the 
principal coordinate system must satisfy 

D = BDR-' (4.92) 

yielding a set o f  linear equations which, in conjunction with the properties of rotation 
matrices given above produces the result 

.=[? $ 1  (4.93) 

which corresponds t o  a rotation of x/6.  Now solve the diffusion problem in the principal 
coordinate system where the difFusion equation is 

(4.94) 

Changing variables in Eq. 4.94 using 21 = (&/@)<I, 22 = (&/a)&, and 

V = d m ,  a new difFusion equation is obtained with the solution 

N - ( € ? + € 3 / ( 4 D t )  = c(21,22,t) 
C(El,EZ,t) = a e  

- -- N e - l ~ t : / ( 4 D l l t ) + ~ : H l ( 4 D ~ ~ t ) l  

4 n v t  

The concentration therefore spreads t o  an ellipse. 

We can now find the final solution in the original coordinate system by using 

(4.95) 

- 
f = & r '  (4.96) 

where ?= (21 , i z )  and r '= (xl,x2) t o  solve for 21 and $2 and by putting the results 
into Eq. 4.95. It is an ellipse of aspect ratio 4 with axes rotated x/6 with respect t o  
the axes of the original coordinate system. 

4.8 To measure self-diffusivities along different directions in a hexagonal crystal, 
a flat surface is prepared perpendicular to the direction along which the dif- 
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fusivity is to be measured. A thin instantaneous plane source is deposited on 
this surface and the specimen is then annealed at a constant diffusion tem- 
perature. After the diffusion anneal, the diffusion-penetration profile normal 
to the surface is measured and D is determined. (The technique is described 
further in Section 5.2 .1 . )  If the selected crystal direction makes an angle 8 
with the c-axis of the crystal, show that the measured D [i.e., D(O)] is given 
by 

D(8)  = DS3 cos2 8 + Dl l  sin2 8 (4.97) 

0 Note that the concentration gradient will always be along the selected 
crystal direction (perpendicular to the planar source), regardless of the 
direction of the diffusion flux. 

Solution. Adopting a principal axis system in which k is parallel t o  the c-axis and .i 
and j lie in the basal plane, the diffusivity tensor will have the form given in Eq. 4.66 
and the flux will be given by 

(4.98) 

The-normal t o  the isoconcentration surfaces will be A = Vc/ lVc l  and the component 
of J along 4 [i.e., J ( e ) ]  is 

Therefore, 

But 
VC . k 1 

Therefore, Eq. 4.100 has the form 

(4.101) 

(4.102) 

q e )  = D~~ sin’ e + 0 3 3  cos’ e (4.103) 



CHAPTER 5 

SOLUTIONS TO THE DIFFUSION 
E Q U AT I 0 N 

In Chapter 4 we described many of the general features of the diffusion equation 
and several methods of solving it when D varies in different ways. We now address 
in more detail methods to solve the diffusion equation for a variety of initial and 
boundary conditions when D is constant and therefore has the relatively simple 
form of Eq. 4.18; that is, 

dC 
- = DV2c  at 

This equation is a second-order linear partial-differential equation with a rich math- 
ematical literature [l]. For a large class of initial and boundary conditions, the solu- 
tion has theorems of uniqueness and existence as well as theorems for its maximum 
and minimum values. 

Many texts, such as Crank’s treatise on diffusion [2], contain solutions in terms 
of simple functions for a variety of conditions-indeed, the number of worked prob- 
lems is enormous. As demonstrated in Section 4.1, the differential equation for 
the “diffusion” of heat by thermal conduction has the same form as the mass 
diffusion equation, with the concentration replaced by the temperature and the 
mass diffusivity replaced by the thermal diffusivity, K .  Solutions to many heat-flow 

‘If the diffusivity is imaginary, the diffusion equation has the same form as the time-dependent 
Schrodinger’s equation at zero potential. Also, Eq. 4.18 implies that the velocity of the diffusant 
can be infinite. Schrodinger’s equation violates this relativistic principle. 

99 Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 
Copyright @ 2005 John Wiley & Sons, Inc. 
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boundary-value problems can therefore be adopted as solutions to corresponding 
mass diffusion problems.2 

For problems with relatively simple boundary and initial conditions, solutions 
can probably be found in a library. However, it can be difficult to find a closed-form 
solution for problems with highly specific and complicated boundary conditions. In 
such cases, numerical methods could be employed. For simple boundary conditions, 
solutions to the diffusion equation in the form of Eq. 4.18 have a few standard forms, 
which may be summarized briefly. 

For various instantaneous localized sources diffusing out into an infinite medium, 
the solution is a spreading Gaussian distribution: 

nd e--r’?/(4Dt) 
2d (.rrDt)d/2 C ( F , t )  = 

where d is the dimensionality of the space in which matter is diffusing and nd is 
the source strength introduced in Section 4.2.3. When the initial condition can be 
represented by a distribution of sources, one simply superposes the solutions for 
the individual sources by integration, as in Section 4.2.3. When the boundaries are 
planar orthonormal surfaces, solutions to the diffusion equation have the form of 
trigonometric series. For diffusion in a cylinder, the trigonometric series is replaced 
by a sum over Bessel functions. For diffusion with spherical symmetry, trigonomet- 
ric functions apply. All such solutions can be obtained by the separation-of-variables 
method, which is described below. 

A third method-solution by Laplace transforms-can be used to derive many of 
the results already mentioned. It is a powerful method, particularly for complicated 
problems or those with time-dependent boundary conditions. The difficult part 
of using the Laplace transform is back-transforming to the desired solution, which 
usually involves integration on the complex domain. Fortunately, Laplace transform 
tables and tables of integrals can be used for many problems (Table 5.3). 

5.1 STEADY-STATE SOLUTIONS 

A particularly simple case occurs when the diffusion is in a steady state and the 
composition profile is therefore not a function of time. Steady-state conditions 
are often achieved for constant boundary conditions in finite samples at very long 
times.3 Then dc/dt = 0, all local accumulation (divergence) vanishes, and the 
diffusion equation reduces to the Laplace equation, 

v2c = 0 (5.2) 

Solutions to the Laplace equation are called harmonic functions. Some harmonic 
functions are given below for particular boundary conditions. 

5.1.1 One Dimension 

Consider diffusion through an infinite flat plate of thickness L,  with 0 < x < L,  
subject to boundary conditions 

c(0, t )  = co c(L,  t )  = CL (5.3) 

2Carslaw and Jaeger’s treatise on heat flow is a primary source [3]. 
3Estimates of times required for “nearly steady-state’’ conditions are addressed in Section 5.2.6. 



5 1 STEADY-STATE SOLUTIONS 101 

Integrating the one-dimensional Laplacian, d2 c / d x 2  = 0 ,  twice yields 

~ ( z )  = a l z  + a2 (5.4) 

where al  and a2 are integration constants. Solving for the integration constants 
using the boundary conditions, Eq. 5 . 3 ,  produces the one-dimensional steady-state 
solution, 

(5.5) 
0 0 t z  

L c ( x )  = c - (c - c  ) -  

i.e., the concentration varies linearly across the plate as illustrated in Fig. 5.1. The 
flux is constant and proportional to  the slope: 

L 0 X- 

Figure 5.1: Concentration, C(Z). vs. J for steady-state diffusion through a plate 

5.1.2 Cylindrical Shell 

Consider steady-state diffusion through a cylindrical shell with inner radius r'" and 
outer radius rollt as in Fig. 5.2. The boundary conditions are 

c(T ' " ,  8, z ,  t )  = c'" c(rUUt. 8. z .  t )  = c""~ (5.7) 

The Laplacian operator operating on c(r ,  8. z )  in cylindrical coordinates is 

Figure 5.2: 
shell. 

Concentration, c ( T ) ,  vs. T for steady-state diffusion through a cylindrical 
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Because the boundary conditions are independent of 0 and z ,  the solution will also 
be independent of these variables. The solution must therefore satisfy 

Integrating twice produces 
c ( r )  = a1 l n r  + a2 

and applying the boundary conditions gives 

- Gout 
c ( r )  = cln - 

In( r o u t / r i n )  

The flux J = -D(dc/dr)  depends inversely on r :  

,in - ,out 1 

(5.10) 

(5.11) 

(5.12) 

Note that the total current of particles entering the inner surface per unit length of 
cylinder [ I  = J ( r i " )2min]  is the same as the total current leaving the outer surface, 

,in - ,out 
(5.13) 

which is a requirement for the steady state. 

5.1.3 Spherical Shell 

The Laplacian operator operating on c(r,  8 , # )  in spherical coordinates is 

The steady-state solution for diffusion through spherical shells with boundary con- 
ditions dependent only on r may be obtained by integrating twice and determining 
the two constants of integration by fitting the solution to the boundary conditions. 

5.1.4 Variable Diffusivity 

When steady-state conditions prevail and D varies with position (e.g., D = D ( f ) ) ,  
the diffusion equation can readily be integrated. Equation 4.2 then takes the form 

In one dimension] the solution can then be obtained by integration, 

I: & c ( z )  = c(z1)  + a1 (5.15) 
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5.2 N 0 N - S T  E A DY - STAT E (TI M E- D E P E N D E N T) D I F F U S I 0 N 

When the diffusion profile is time-dependent, the solutions to Eq. 4.18 require 
considerably more effort and familiarity with applied mathematical methods for 
solving partial-differential equations. We first discuss some fundamental-source 
solutions that can be used to build up solutions to  more complicated situations by 
means of superposition. 

5.2.1 Instantaneous Localized Sources in Infinite Media 

Equation 4.40 gives the solution for one-dimensional diffusion from a point source 
on an infinite line, an infinite thin line source on an infinite plane, and a thin 
planar source in an infinite three-dimensional body (summarized in Table 5.1). 
Corresponding solutions for two- and three-dimensional diffusion can easily be ob- 
tained by using products of the one-dimensional solution. For example, a solution 
for three-dimensional diffusion from a point source is obtained in the form 

where n d z ,  n d , ,  and n d ,  are constants. This may be written simply 

c(r , t )  = nd e - r 2 / ( 4 D t )  

( 4 ~ D t ) ~ ~ ~  
(5.17) 

where n d  E n d ,  x n d ,  x n d ,  This result has spherical symmetry and describes the 
spreading of a point source into an infinite domain. Integration verifies that n d  

is equal to the total amount of diffusant in the system. As t -+ 0, the solution 
approaches a delta function form, corresponding to the initial localized source [i.e., 

Table 5.1: 
in One-, Two-, and Three-Dimensional Infinite Media 

Fundamental Solutions for Instantaneous, Localized Sources 

Solution Type Symmetric Part of V2 Fundamental Solution 

One-Dimensional Diffusion 

Point source in 1D 
d 2  e-z2/(4Dt) 

Line source in 2D 2 2  c ( z , t )  = (4n;:)1,2 

Plane source in 3D 

Two-Dimensional Diffusion 

Point source in 2D 
Line source in 3D 

I d  d 
r d r r z  
_ _  

Three-Dimensional Diffusion 

1 d 2 d  e-r2/(4Dt) 
Point source in 3D Tzr  d r  C ( T ,  t )  = (4n;:)3,2 
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C(T, t = 0 )  = b ( ~ ) ] . ~  Corresponding results for two-dimensional diffusion are given 
in Table 5.1. 

The form of the solution for one-dimensional diffusion is illustrated in Fig. 5.3. 
The solution c(x, t) is symmetric about x = 0 (i.e., c(x, t )  = c(-x, t ) ) .  Because the 
flux at this location always vanishes, no material passes from one side of the plane 
to the other and therefore the two sides of the solution are independent. Thus the 
general form of the solution for the infinite domain is also valid for the semi-infinite 
domain (0 < x < m) with an initial thin source of diffusant at x = 0. However, in 
the semi-infinite case, the initial thin source diffuses into one side rather than two 
and the concentration is therefore larger by a factor of two, so that 

nd e - - 2 2 / ( 4 D t )  

(r Dt)  l I 2  
c(x,t) = (5.18) 

Figure 5.3: Spreading of point, line, and planar diffusion sources with increasing time 
according to the one-dimensional solution in Table 5.1. Curves were calculated from Eq. 5.18 
for times shown and n d  = 1, D = and -1 < 3: < 1 (all units arbitrary). 

Equation 5.18 offers a convenient technique for measuring self-diffusion coeffi- 
cients. A thin layer of radioactive isotope deposited on the surface of a flat specimen 
serves as an instantaneous planar source. After the specimen is diffusion annealed, 
the isotope concentration profile is determined. With these data, Eq. 5.18 can be 
written 

X2 
In *c = constant - - 

4 *Dt (5.19) 

and *D can be determined from the slope of a In *c vs. x2 plot, as shown in Fig. 5.4.5 

4A delta function, 6(F'),is a distribution that equals zero everywhere except where its argument is 
zero, where it has an infinite singularity. It has the property s j (F ' )6 (F -  Fo)dr'= f ( r ' 0 ) ;  so it also 
follows that s 6 ( F -  Fo)dr '= 1. The singularity of 6 ( F -  TO) is located at Fo. 
5This technique can be used to measure the diffusivity in anisotropic materials, as described in 
Section 4.5. Measurements of the concentration profile in the principal directions can be used to 
determine the entire diffusion tensor. 
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,,-+Slope = -1/(4 *Dt) \ 
Figure 5.4: 
planar source is used and Eq. 5.18 applies. 

Plot of In *c vs. xz used to determine self-diffusivity when an iiistaiitaneous 

5.2.2 

The instantaneous local-source solutions in Table 5.1 can be used to build up solu- 
tions for general initial distributions of diffusant by using the method of superpo- 
sition (see Section 4.2.3). 

Section 4.2.2 shows how to use the scaling method to obtain the error function 
solution for the one-dimensional diffusion of a step function in an infinite medium 
given by Eq. 4.31. The same solution can be obtained by superposing the one- 
dimensional diffusion from a distribution of instantaneous local sources arrayed to 
simulate the initial step function. The boundary and initial conditions are 

Solutions Involving the Error Function 

cg x > o  { 0 x < o  c(x,O) = (5.20) 

dc 
dx 
-(x = k x , t )  = 0 

The initial distribution is simulated by a uniform distribution of point, line, or 
planar sources placed along x > 0 as in Fig. 5.5. The strength, or the amount 
of diffusant contributed by each source, must be co dx. The superposition can be 
achieved by replacing n d  in Table 5.1 with c(Z)dV [c(x)dx in one dimension] and 
integrating the sources from each point. 

Consider the contribution at  a general position x from a source at some other 
position 5. The distance between the general point x and the source is 5 - x, thus 

(5.21) 

So the solution corresponding to  the conditions given by Eq. 5.20 must be the 
integral over all sources, 

I I - m t  I 
X x = o  6 

(5.22) 

Figure 5.5:  
souice of strength cg d< located at [. 

Diagram used to determine the contribution at the general point z of a local 



106 CHAPTER 5 SOLUTIONS TO THE DIFFUSION EQUATION 

or by transforming the integration variable by using u = (< - x ) / m  and the 
properties of an even integrand, 

c ( x , t )  = - e-u2 du 

(5.23) 

= - co + -erf co (-) X 

2 2 2 m  

which is consistent with the solution given by Eq. 4.31. 

the general method of Green's functions. 
conditions for a triangular source are 

Summations over point-, line-, or planar-source solutions are useful examples of 
For instance, the boundary and initial 

x > a  

(5.24) 

x < -a 

c ( x , t  = 0 )  = 

0 
- dC ( x  = f c q t )  = 0 
dX 

A solution to this boundary-value problem can be obtained by using Eq. 4.40 with 
a position-dependent point-source density (this method is useful for solving Exer- 
cise 5.7). 

As a last example, the solution for two-dimensional diffusion from a line source 
lying along z in three dimensions can be obtained by integrating over a distribution 
of point sources lying along the z-axis. If the point sources are distributed so that 
the source strength along the line is n d  particles per unit length, the contribution 
of an effective point source of strength n d  d< at (0, O , < )  to  the point ( x ,  y, z )  is 

n d  d< e-[x2+y2+(E-z)2]/(40t) 
(4n D t )  3/2 

dc = (5 .25)  

so that 

In cylindrical coordinates, r2 = x2 + y2 and, after integration, in agreement with 
the entrv in Table 5.1. 

(5.27) 

where the source strength n d  has dimensions length-'. 

6Green's functions arise in the general solution to  many partial-differential equations. They are 
generally obtained from the fundamental solution for a point, line, or planar source. Subsequently, 
an integral equation for a general solution is obtained by integrating over all the source terms; 
the fundamental solution becomes the kernel to  the integral equation, which is the term that 
multiplies the source density in the integrand. 
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5.2.3 Method of Superposition 

In Section 4.2.3 we described application of the method of superposition to infinite 
and semi-infinite systems. The method can also be applied, in principle, to finite 
systems, but it often becomes unwieldy (see Crank’s discussion of the reflection 
method [2]). 

5.2.4 Method of Separation of Variables: Diffusion on a Finite Domain 

A standard method to solve many partial-differential equations is to assume that 
the solution can be written as a product of functions, each a function of one of the 
independent variables. Table 5.2 provides several functional forms of such solutions. 

Table 5.2: 
Cartesian and Cylindrical Coordinates 

Product Solutions for the Separation-of-Variables Method in 

System Equation Solution 

One dimension, z - dc d t  - - Ds d 2 c  c(a,  t )  = X ( z ) T ( t )  

c(r ,  8 ,  z ,  t )  = R ( r ) @ ( e ) q z ) T ( t )  

Three dimensions, (z, y ,  z )  = DV2c c(a,  y ,  z ,  t )  = X ( z ) Y ( y ) Z ( z ) T ( t )  
dc - Cylindrical, ( T ,  8, z )  - dt - ~o~~ 

The following example illustrates the method. Consider a one-dimensional dif- 
fusion problem with the initial and boundary conditions for the domain 0 < x < L: 

c(z,O) = co c (0 , t )  = 0 c ( L , t )  = 0 (5.28) 

This situation may represent the diffusion of a high-vapor-pressure dopant out of a 
thin film (thickness L ,  initial dopant concentration cg) of silicon when placed in a 
vacuum. Assume that the variables are ~ e p a r a b l e . ~  Letting c(x,  t )  = X ( x ) T ( t )  and 
substituting into the diffusion equation gives 

1 dT 1 d2X 
DT dt X dx2 

- - -- -- (5.29) 

Because the left side depends only on t and the right side depends only on x ,  each 
side must be equal to  the same constant. This may be understood by considering 
Fig. 5.6, in which f is a function of y only and g is a function of x only. Each surface 
is a “ruled” surface; that is, the surface contains lines of constant value running in 
one direction. If the two functions are equal as in the separation equation (Eq. 5.29), 
the surface must be flat in both variables. Thus, if the two functions are equal, 
they are constant. 

Let that constant be -A. Then 

= -XDT (5.30) 
dT 
d t  
- 

71f a solution is found for the initial and boundary conditions, there is a uniqueness theorem that 
justifies the assumption. Whether a solution can be found using separation of variables depends 
on whether the boundary conditions follow the symmetry of the separation variables. 
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and 

X X 

Figure 5.6: Represer1tat)ion in (z, y) space of g(z) and f ( y )  

- = -AX 
d2X 
dx2 (5.31) 

Equation 5.31 has solutions of the form 

A sin( fix) + B cos( fix) ( A  > 0) 
x ( x )  = A I e G ”  + B I e - G ”  ( A  0) (5.32) { A//x  + B//  ( A  = 0) 

where A and B are constants that must satisfy t,he boundary conditions. For the 
particular boundary conditions specified in Eq. 5.28, nontrivial solutions to Eq. 5.31 
exist only if A > 0 and B = 0. However, there is no nonzero A that can satisfy the 
boundary conditions for a general X > 0, so X must take on values appropriate to 
the boundary conditions. Therefore, 

A,, = n 2 - 7r2 (5.33) 
L2 

because sin f i L  = sin nr = 0, where n is an integer. The A, are the linear 
differential equation’s eigenvalues for the boundary conditions. 

Because use of any A,, satisfies the boundary conditions in Eq. 5.28, each of the 
functions 

X n ( z )  = a,  sin nr- (5.34) ( 3 
satisfies Eq. 5.31 for the boundary conditions in Eq. 5.28. The X,, are known as 
the eigenfunctions for the boundary conditions. 

The general solution to Eq. 5.30 is 

(5.35) o - X D t  T ( t )  = T e 

where T o  is a constant. But A must take on the values given in Eq. 5.33, and 
t,herefore the time-dependent eigenfunction solutions can be written 

(5.36) 

The general solution, satisfying the boundary conditions. is then (by superposi- 

n2n2 D t l  L z  TTL(t)  = T,” e-  

t’ion) a sum of the products of the eigenfunction solutions and is of the form 
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where A, = a,T,O. 

that 
It is now necessary to satisfy the initial condition given in Eq. 5.28. This requires 

00 

co = c A,  sin (n7rz) 
n = l  

which, as seen in Eq. 5.42, is a Fourier sine series representation of CO. 

(5.38) 

Synopsis of Fourier Series 
If a function u(z)  exists on the interval -L  < z < L ,  u(z)  can be represented as 

b m  
u(z) = < + [ansin (n.2) + bncos 

n=l 

where the coefficients are given by 

If u ( z )  is an odd function [u(z)  = -.(-.)I and the sine expansion is applied, 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

Similarly, if u(z)  is an even function [u(z)  = u( -z ) ] ,  all an will vanish and u(z)  can 
be written as a cosine expansion only: 

Finally, any function can be written as a sum of an odd and an even function. 

(5.44) 

(5.45) 

Using Eq. 5.43, the coefficients, A,, are then given by 

(5.46) 
n7r 0 n even 

Therefore, the final solution is given by 

(5.47) 

The coefficients of the higher-order (shorter-wavelength) terms in Eq. 5.47 de- 
crease as l /n .  Not only do the shorter-wavelength terms start out smaller but they 
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also decay exponentially at rates that scale inversely as the square of the wave- 
length. Thus, even at times as short as L2/(250), the first term of the series in 
Eq. 5.47 suffices to a good approximation, such that 

(5.48) 

with a maximum error of about 1%. The average composition C in this “long-time” 
regime can be obtained by integration of Eq. 5.48: 

8cO - r 2 D t / L 2  c ( t )  = 7 e (5.49) 

C therefore decays exponentially with the characteristic time r = L 2 / ( r 2 0 ) .  This is 
reasonably consistent with estimates of diffusion depths and times in Section 5.2.6. 

The method of separation of variables can be applied in the same manner to other 
initial distributions of diffusant. The effort lies only in determining the Fourier coef- 
ficients, which, for many cases, can be looked up in tables. If the spatial dimension 
of the system is higher [e.g., c(z, y, z ,  t ) ] ,  a separate Fourier series must be obtained 
for each of the three separate functions in the product X ( x ) Y ( y ) Z ( z ) .  

Cylindrical Coordinates. The separation-of-variables method also applies when the 
boundary conditions and initial conditions have cylindrical symmetry (see Eqs. 5.7 
and 5.8). If c( r ,  t )  = R(r)T( t ) ,  the resulting ordinary differential equation for R(r)  
is 

d2R 1dR 
- + -- + a2R = 0 
dr2 r dr 

This equation has general solutions 

(5.50) 

(5.51) 

where Jo and YO are Bessel functions of order zero of the first and second kind. The 
an are solved by matching boundary conditions, and the coefficients a,  and bn are 
determined by matching the initial conditions in a Bessel function series expansion. 
See Carslaw and Jaeger for examples [3]. 

5.2.5 Method of Laplace Transforms 

The Laplace transform method is a powerful technique for solving a variety of 
partial-differential equations, particularly time-dependent boundary condition prob- 
lems and problems on the semi-infinite domain. After a Laplace transform is per- 
formed on the original boundary-value problem, the transformed equation is often 
easily solved. The transformed solution is then back-transformed to obtain the 
desired solution. 

The Laplace transform of a function f(z, t )  is defined as 

(5.52) 
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The Laplace-transformed f is represented by both the operational form L{f} and 
the shorthand f. The variable p is the transformation variables8 

The key utility of the Laplace transform involves its operation on time deriva- 
tives: 

(5.53) 

Integrating the right-hand side of Eq. 5.53 by parts, 

t=m 

e-Ptf(x,  t )  ~ + p~~ e-ptf(x,  t )  d t  = pelf} - f ( x ,  t = 0) (5.54) 
t=O 

Therefore, 

c - =pC{f} - f ( x , t  = O )  (5.55) { ::} 
The Laplace transform of a spatial derivative of f is seen from Eq. 5.52 to be 

equal to the spatial derivative of f; that is, 

(5.56) 

The method can be demonstrated by considering diffusion into a semi-infinite 
body where the surface concentration c(x = 0, t )  is fixed: 

c(x = 0 ,  t )  = co 

dC 
dX - (x  = 03, t )  = 0 (5.57) 

c ( x , t  = 0) = 0 for 0 5 x < co 

Applying the Laplace transform to both sides of the diffusion equation yields 

L: { $} = DC { g} 
d2? p c ( x , t  = 0 )  -c=  - = o  -- 
ax2 D D 

(5.58) 

Thus, the Laplace transform removes the t-dependence and turns the partial- 
differential equation into an ordinary-differential e q ~ a t i o n . ~  The solution to Eq. 5.58 
is 

t ( x , p )  = a l e m x  + a z e - m x  (5.59) 

The boundary conditions must also be transformed: 

CO eCPt d t  = - ?(x  = 0 , p )  =CO I" P 
d? 
dX - (x  = 03 ,p )  = 0 

(5.60) 

*Technical requirements on p are that its real part must be positive and large enough that the 
integral converges. 
gNote that it also automatically incorporates the initial condition. 
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Solving for the coefficients in Eq. 5.59 leads to the solution 

(5.61) 

This solution is then inversely transformed by use of a table of Laplace transforms 
(see Table 5.3) to obtain the desired solution: 

c(x,  t )  = co 1 - erf - [ (&)I = coerfc ( 7 3  (5.62) 

where erfc(z) = 1 - erf(z) is known as the complementary error function. Note that 
this solution could have been deduced directly from Eq. 5.23 (the solution for the 
step-function initial conditions for an infinite system) because in that solution, the 
plane 2 = 0 always maintains a constant composition. 

Table 5.3: Selected Laplace Transform Pairs 

1 
P 

1 

pyil v > - 1  t" 
r ( v  + 1) 

w 
w2 + w 2  

sin w t  

cos w t  

Example with Time-Dependent Boundary Conditions. 
constant flux, J o ,  is imposed on the surface of a semi-infinite sample: 

Consider the case where a 

d C  Jo -(x = 0 , t )  = -- =constant 
dX D 
c(x = 0, t )  = co (5.63) 

c(x,  t = 0 )  = co for 0 5 x < 00 

This boundary condition might apply for solute absorption with its rate moderated 
by some thin passive surface layer. Note that the surface concentration at  x = 0 
must be a function of time to maintain the constant-flux condition (see Fig. 5.7). 



5.2: NON-STEADY-STATE DIFFUSION 113 

Figure 5.7: 
body. Note the fixed value of dc/dz(,=o for t > 0. 

Diffusion profiles necessary to maintain constant flux into a semi-infinite 

Using the Laplace transform, 

(5.64) 

Equation 5.64 is an inhomogeneous ordinary differential equation and its solution 
is therefore the sum of the solution of its homogeneous form (i.e., Eq. 5.59) and a 
particular solution (i.e., E = c o / p ) .  Therefore, 

The transformed boundary conditions are 

%(x = 0 , p )  5, = -- 
ax P D  

CO 

P 
E(x = C q p )  = - 

Solving for the coefficients a1 and a2, 

Jo e-&Fa: E(X1P) = - + p 3 / 2 D l / 2  
CO 

P 
Inversely transforming this solution with the use of Table 5.3 yields 

(5.65) 

(5.66) 

(5.67) 

The surface concentration must therefore increase as 

(5.69) 

5.2.6 

A rough estimate of the diffusion penetration distance from a point source is the 
location where the concentration has fallen off by M l / e  of the concentration at  
x = 0. This occurs when 

5 M 2 f i  (5.70) 

Estimating the Diffusion Depth and Time to Approach Steady State 
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An estimate of the penetration distance for the error-function solution (Eq. 5.23) 
is the distance where c(x ,  t )  = ~ 0 / 8 ,  or equivalently, e r f [ x / ( 2 m ) ]  = -3/4: which 
corresponds to 

x RZ 1 . 6 f i  (5.71) 

A reasonable estimate for the penetration depth is therefore again 2m. 
To estimate the time at  which steady-state conditions are expected, the required 

penetration distance is set equal to the largest characteristic length over which 
diffusion can take place in the system. If L is the characteristic linear dimension 
of a body, steady state may be expected to apply at times r >> L2/Dmin, where 
Dmin is the smallest value of the diffusivity in the body. Of course, there are many 
physical situations where steady-state conditions will never arise, such as when the 
boundary conditions are time dependent or the system is infinite or semi-infinite. 
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EXERCISES 

5.1 A flat bilayer slab is composed of layers of material A and B ,  each of thickness 
L. A component is diffusing through the bilayer in the steady state under 
conditions where its concentration is maintained at  c = co = constant at one 
surface and at  c = 0 at  the other. Its diffusivity is equal to the constants D A  
and D B  in the two layers, respectively. No other components in the system 
diffuse significantly. 

Does the flux through the bilayer depend on whether the concentration is 
maintained a t  c = co at the surface of the A layer or the surface of the B 
layer? Assume that the concentration of the diffusing component is continuous 
at  the A / B  interface. 

Solution. Solve for the difFusion in each layer and match the solutions across the A / B  
interface. Assume that c = co at  the surface of the A layer and let c = c ~ / ~  be the 
concentration at  the A / B  interface. Using Eq. 5.5, the concentration in the A layer in 
the interval 0 < x < L is 

(5.72) 

(5.73) 

For the B slab in the interval L 5 x 5 2 L ,  

(5.75) 
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Setting J A  = JB and solving for c A I B ,  

D A  
D A  + D B  co C A I B  = 

The steady-state flux through the bilayer is then 

c0 D ~ D ~  J = -  
L D A + D B  

(5.76) 

(5.77) 

J is invariant with respect t o  switching the materials in the two slabs, and therefore it 
does not matter on which surface c = CO. 

5.2 Find an expression for the steady-state concentration profile during the radial 
diffusion of a diffusant through a cylindrical shell of thickness, AR, and inner 
radius, R'", in which the diffusivity is a function of radius D(r ) .  The boundary 
conditions are C(T = R'") = c'" and c(r = R'" + AR) = coUt. 

Solution. The gradient operator in cylindrical coordinates is 

d 1 6  d 
d r  r d 0  d z  V = -Cr + --go + -Cz 

The divergence of a flux J ' in  cylindrical coordinates is 

- 1 d ( r J r )  1 dJ0 d J ,  V .  J = - -  +--+-  
r d r  r d0 d z  

Therefore, the steady-state radially-symmetric difFusion equation becomes 

which can be integrated twice t o  give 

(5.78) 

(5.79) 

(5.80) 

(5.81) 

The integration constant a1 is determined by the boundary condition at  R'" + A R :  

(5.82) 

5.3 Find the steady-state concentration profile during the radial diffusion of a 
diffusant through a bilayer cylindrical shell of inner radius, R'", where each 
layer has thickness AR/2 and the constant diffusivities in the inner and outer 
layers are Din and DOut. The boundary conditions are c(r = R'") = c'" and 
C(T = R'" + AR) = coUt. Will the total diffusion current through the cylinder 
be the same if the materials that make up the inner and outer shells are 
exchanged? Assume that the concentration of the diffusant is the same in the 
inner and outer layers a t  the bilayer interface. 
Solution. The concentration profile a t  the bilayer interface will not have continuous 
derivatives. Break the problem into separate difFusion problems in each layer and then 
impose the continuity of flux at  the interface. Let the concentration at  the bilayer 
interface be 

Inner region: R'" 5 r 5 Ri" + 
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Using Eq. 5.82, 

The flux at  the bilayer interface is 

Outer region: R'" + 5 r 5 Rin + AR 

r + $0 
C ~ u t  - ci/o 

R'"+AR 
In ( R 1 " + A R / 2 )  

In ( Rin + AR/2 
COUt(T) = 

The flux at  the bilayer interface is 

Setting the fluxes at  the interfaces equal and solving for ci/O yields 

C y ~ u t  out + ainCin 

aout + Cyin 
ci/o = c 

where 

R'" + A R/ 2 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

Putt ing Eq. 5.87 into Eqs. 5.83 and 5.85 yields the concentration profile of the entire 
cylinder . 
The total current diffusing through the cylinder (per unit length) is 

Using Eq. 5.87, 
aout (Gout - Gin) 

ci/o - - - 
@out + 

(5.89) 

(5.90) 

If everything is kept constant except Din and DOut, use of Eq. 5.90 in Eq. 5.89 shows 
that 

n i n  nout u u  
I K  

C Y ~  DOut + C Y ~  Din 
(5.91) 

where a1 and a2 are constants. Clearly, I will be different if the materials making up the 
inner and outer shells are exchanged and the values o f  DOut and Din are therefore ex- 
changed. This contrasts with the result for the two adjoining flat slabs in Exercise 5.1. 

5.4 Suppose that a very thin planar layer of radioactive Au tracer atoms is placed 
between two bars of Au to produce a thin source of diffusant as illustrated 
in Fig. 5.8. A diffusion anneal will cause the tracer atoms to spread by 
self-diffusion as illustrated in Fig. 5.3. (A mathematical treatment of this 
spreading out is presented in Section 4.2.3.) Suppose that the diffusion ex- 
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Thin source 

Figure 5.8: Thin planar tracer-atom source between two long bars. 

periment is now carried out with a constant electric current passing through 
the bars along x. 

(a) Using the statement of Exercise 3.10, describe the difference between the 
way in which the tracer atoms spread out when the current is present 
and when it is absent. 

(b) Assuming that DVCV is known, how could you use this experiment to 
determine the electromigration parameter p for Au? 

Solution. 

(a) The electric current produces a flux of vacancies in one direction and an equal 
flux of atoms in the reverse direction, so that 

4 + 
JA = - J v  (5.92) 

Using the statement of Exercise 3.10, this will result in an average drift velocity 
for each atom, given by 

(5.93) 

The tracer atoms will spread out as they would in the absence of current: however, 
they will also be translated bodily by the distance Ax = ( V A ) t  relative t o  an 
embedded inert marker as illustrated in Fig. 5.9. 

Inert 
em bedded 

marker 

(a) t = O  1 1 4 
I I 

Figure 5.9: (a) The initially thin distribution of tracer atoms that, subsequently, will 
spread due to diffusion and drift due to electromigration. (b) The electromigration has 
caused the distribution to spread out and to be translated bodily by Ax = ( V A ) t  relative to 
the fixed marker. 
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This may be shown by choosing an origin at  the initial position of the source in 
a coordinate system fixed with respect t o  the marker. The diffusion equation is 
then 

(5 .94)  

where ( V A ) C  is the flux due t o  the drift. Defining a moving (primed) coordinate 
system with its origin at  x = (‘UA)t, 

2’ = X - (WA)t  (5.95) 

Using [a( )/ax], = [a( )/ad]t, the drift velocity does not appear in the resulting 
diffusion equation in the primed coordinate system, which is 

d *c * a2 *c 
at ax‘2 
- =  D- 

The solution in this coordinate system can be obtained from Table 5.1; 

n d  e-e’2/(4*Dt)  *c(x/, t )  = - d m  

(5.96) 

(5.97) 

The distribution therefore spreads independently of ( w A ) ,  but is translated with 
velocity ( V A )  with respect t o  the marker. 

(b) The velocity ( V ) A  can be measured experimentally and then p can be obtained 
through use of Eq. 5.93 if DVCV is known. It will be seen in Chapter 8 that DVCV 
can be determined by use of Eq. 8.17 if *D is known. *D can be determined from 
the measured distribution illustrated in Fig. 5.96 using Eq. 5.97 and the method 
outlined in Section 5.2.1. 

5.5 Obtain the instantaneous plane-source solution in Table 5.1 by representing 
the plane source as an array of instantaneous point sources in a plane and 
integrating the contributions of all the point sources. 

Solution. Assume an infinite plane containing m point sources per unit area each of 
strength nd.  The plane is located in the ( y ~ )  plane a t  x = 0. All the point sources 
in the plane lying within a thin annular ring of radius r and thickness dr centered on 
the z-axis will contribute a concentration a t  the point P located along the x-axis at a 
distance, x ,  given by 

n d  e-(z2+r2)/(4Dt) 
(47rDt)3I2 dc = m27rr dr (5.98) 

where the point-source solution in Table 5.1 has been used. The total concentration is 
then obtained by integrating over all the point sources in the plane, so that 

where M = mnd is the total strength of the planar source per unit area. 

5.6 Consider an infinite bar extending from -cc to +cc along x. Starting at 
t = 0, heat is generated at a constant rate in the x = 0 plane. Show that the 
temperature distribution along the bar is 

(5.100) 
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where P = power input at  x = 0 (per unit area) and cp = specific heat per 
unit volume. Next, show that 

Finally, verify that this solution satisfies the conservation condition 

x 

T ( z ,  t )  cp dx = Pt 

Solution. The amount o f  heat added (per unit area) at z = 0 in time dt is Pdt .  
Using the analogy between problems o f  mass diffusion and heat flow (Section 4.1), each 
added amount of heat, P d t ,  spreads according t o  the one-dimensional solution for mass 
diffusion from a planar source in Table 5.1: 

d T = - [  1 P d t  ] e - z 2 / ( 4 n t )  

CP 2(7rKt)1/2 
(5.102) 

Because the term in brackets represents an incremental energy input per unit volume, the 
factor (cp)-’  must be included t o  obtain an expression for the corresponding incremental 
temperature rise, dT. Let 

Then 

2 X 2  

a 2 = l G  t = y -  
P 

a1 = - 2CP J... 

J:/” exp (-my2) 
T(x ,y )  = -2a1 dY Y2 

(5.103) 

(5.104) 

Integrating by parts and converting back t o  the variables (z, t )  yields 

~ ( z ,  t )  = 2a1 e - a z l t d 2  + 4 a 1 6  eCCZ d< (5.105) 

Substituting for a1 and a2, we finally obtain 

(5.106) 

Note that  the solution given by Eq. 5.106 holds for z 2 0 because the positive root of 
& was used. The symmetric solution for z 5 0 is easily obtained by changing the sign 
of z. All the heat stored in the specimen at the time t is represented by the integral 

Q = 2 [w T ( a ,  t )  c p  dx 

The first bracketed term in Eq. 5.107 has the value 2 P t .  The second term can be 
integrated by parts and has the value Pt. Therefore, 

Q = 2 P t  - Pt = Pt 

and the stored heat is equal t o  the heat generated during the time t ,  given by Pt.  
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5.7 Consider the following boundary-value problem: 

d C  
-(z = 4 m ,  t )  = 0 ax 

0 Use the superposition method to  find the time-dependent solution. 
Show that when 2 6  >> a, the solution in (a) reduces to a standard in- 
stantaneous planar-source solution in which the initial distribution given 
by Eq. 5.108 serves as the source. 

0 Use the following expansions for small E :  

(5.109) 
2E 2 erf(z + E )  = erf(z) + -e-' + * * .  e' = 1 + E + . . .  
J;; 

Solution. 

(a) The concentration of diffusant located between 6 and 5 + d< in the initial dis- 
tribution acts as a planar source of thickness, d<, and produces a concentration 
increment a t  a distance, 2,  given by 

(5 .110)  

The total concentration produced at  x is then obtained by integrating over the 
distribution. Therefore, 

Using the relations 

o e - u 2  d u  = - J;; [erf(P) - erf(cu)] (5 .112)  
2 

The solution is 

(5.113) 

x + a  x - a  
c ( 2 ,  t )  =% 2a { erf ( -) x - erf ( T) 
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(b) Expanding Eq. 5.114 for small values o f  a/A = a / m  produces the result 

c (x , t )  = - (5.115) 

This is just the solution for a planar source of strength n d  corresponding t o  the 
content per unit area o f  the original distribution given by Eq. 5.108. 

5.8 (a) Find the solution c(z, y,  z ,  t )  of the constant-D diffusion problem where 
the initial concentration is uniform at CO, inside a cube of volume u3 
centered at  the origin. The concentration is initially zero outside the 
cube. Therefore, 

if 1x1 5 4 and Iy1 5 $ and 121 5 4 
otherwise c(z, y, z ,  t = 0) = 

and 

c(z = fm, y = f m l  z = Am,  t )  = 0 

(b) Show that when 2m >> a, the solution reduces to a standard instan- 
taneous point-source solution in which the contents of the cube serve as 
the point source. Use the erf(z + E) expansion in Eq. 5.109. 

Solution. 

(a) The method of superposition o f  point-source solutions can be applied t o  this 
problem. Taking the number of particles in a volume dV = dXdqdC equal t o  
dN = co dXdqdC as a point source and integrating over all point sources in the 
cube using the point-source solution in Table 5.1, the concentration at  x ,  y, z is 

c (x ,  Yl 2, t )  
co dX dqdC e-[(~-~)2+(y-q)2+(z-C)z]/(4Dt) (5.116) 

( 4 ~ D t ) ~ l ~  

The integral can be factored 

J - a / 2  ' J - a / z  

The integrals all have similar forms. Consider the first one. Let u = ( x - x ) / a ;  
then 
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Therefore, the solution can be written 

x - a/2 

(b) Expansion o f  Eq. 5.119 using Eq. 5.109 produces the result 

cga3 - r 2 / ( 4 D t )  

(47rDt)3/2 
C =  (5.119) 

which is just the solution for a point source containing the contents of the cube 
corresponding t o  cga3 particles. 

5.9 Determine the temperature distribution T = T ( z ,  y, 2, t )  produced by an ini- 
tial point source of heat in an infinite graphite crystal. Plot isothermal curves 
for a fixed temperature as a function of time in: 

(a) The basal plane containing the point source 

(b) A plane containing the point source with a normal that makes a 60" 

(c) A plane containing the c-axis and the point source 

angle with the c-axis 

The thermal diffusivity in the basal plane is isotropic and the diffusivity along 
the c-axis is smaller than in the basal plane by a factor of 4. 

Solution. Using Eq. 4.61 and the analogy between mass diffusion and thermal diffusion, 
the basic differential equation for the temperature distribution in graphite can be written 

(5.120) 

where 21 and 22 are the two principal coordinate axes in the basal plane and 2 3  is the 
principal coordinate along the c-axis. 

In order t o  make use of the point-source solution for an isotropic medium as in Sec- 
tion 4.5, rescale the axes 

Then Eq. 5.120 becomes 

d T  
at - = ( R i R L )  

The solution of Eq. 5.122 for the point source in 
(Table 5.1) 

5 3  = 1/6  6 (5.121) ( q h )  

(5.122) 

these coordinates then has the form 

T - e-(€:+Eg+E~)/[4(kini)1/3tl (5.123) 
t 3 / 2  

where cy is a constant. Converting back t o  the principal axis coordinates yields 

(5.124) 
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(a) Isotherms in the basal plane: In the basal plane passing through the origin, 3% = 0 

(5.125) 
Q 

and 
T 22,  %3 = 0,  t )  = - ,-(*?+*P)/(4kllt) 

t 3 / 2  

Isotherms for a fixed temperature at  increasing times are shown in Fig. 5.10. 
They are circles, as expected, because the thermal conductivity is isotropic in the 
basal plane. Initially, the isotherms spread out and expand because of the heat 
conduction but  they will eventually reverse themselves and contract toward the 
origin, due t o  the finite nature of the initial point source of heat. 

h 

i 

Figure 5.10: 
passes through the origin. 

Isotherms for a fixed temperature at increasing times in a basal plane that 

(b) Isotherms in a 60" inclined plane: The isotherms on a plane with a normal in- 
clined 60" with respect t o  the c-axis can be determined by expressing the solution 
(Eq. 5.124) in a new coordinate system rotated 60" about the 21 axis. The new 
(primed) coordinates are 

0 ( ) = ( ;os60" sin60' ) ( ii ) 
0 -sin60" cos60" 

In the new coordinates, with zb = 0, the temperature profile in the inclined plane 
passing through the origin is 

Figure 5.11 shows the isotherms as a function of time. Again the curves expand 
and contract with increasing time. However, the isotherms are elliptical because 
the thermal conductivity coefFicient is different along the c-axis and in the basal 
plane. 
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Figure 5.11: 
normal inclined 60' from the c-axis and passing through the origin. 

Isotherms for a fixed temperature at increasing times in a plane with its 

(c) Isotherms on a plane containing the c-axis: Here we simply examine the plane con- 
taining 21 and &. The temperature profile on this plane is 

T ( & , 6 2  =0 ,23 , t )  = t3/2exp cy [- (&+&)I (5.127) 

The isotherms are shown in Fig. 5.12. Again they expand and contract with 
increasing time. The elliptical isotherms are slightly more eccentric than those in 
Fig. 5.11 because of the greater rotation away from the basal plane. 

Figure 5.12: 
23 (the c-axis) and 21. 

Isotherms for a fixed temperature at increasing times in a plane containing 

5.10 Consider one-dimensional diffusion in an infinite medium with a periodic 
"square wave" initial condition given by 

if 0 5 2 + n~ 5 $ 
otherwise 

c ( 2 , t  = 0) = (5.128) 

where n takes on all (positive and negative) integer values. 
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(a) Obtain a solution involving an infinite sine series. 

(b) Investigate the accuracy of truncating the full series solution. How many 
sine terms must be retained in order for the concentration at x = X/4 
to agree with the full solution to within 1% when Dt/X2 = 0.002? 

Solution. 

(a) Use the method o f  separation o f  variables. Let c ( x , t )  = Y ( x ) T ( t ) .  Substituting 
this into the diffusion equation yields 

(5.129) 

where q is a constant. The solutions t o  these two ordinary differential equations 
a re 

T = a1 exp(-qDt) Y ( x )  = bl sin(&x) + bzcos(&x) (5.130) 

where a l ,  b l ,  and b2 are constants. The constant b2 must be zero because the 
initial concentration profile is an odd function if the origin is shifted upward by 
- c 0 / 2 .  Further, the periodicity requires that 

Y ( &  ( x  + 4) = Y ( & X )  (5.131) 

This condition will be satisfied if & A  = 27rm, where m is an integer. Therefore, 
solving for q and assigning i t  an index, 

27rm 
x &=-  (5.132) 

The general solution is then the sum of all the terms with different indices, plus a 
constant, Ao. Thus, 

(5.133) 

The coefficients can be determined by using the initial condition given by Eq. 5.128. 
When t = 0, Eq. 5.37 is a standard Fourier series with coefFicients given by 

2m7rx x x 
A0 = c ( x ,  0 )  dx A ,  = f 1 c(x ,  0 )  sin (x> dx (5.134) 

Inserting Eq. 5.128 and integrating, A0 = c 0 / 2  and A ,  = 2co/(m7r) for m odd 
and A ,  = 0 for m even. Therefore, 

(b) Symbolic algebra software can efFiciently calculate the partial sums in Eq. 5.135 for 
the specified values of x and Dt/X2. Setting co = 1, partial sums for 1 t o  10 sine 
terms give the values: 1.08829, 0.984021, 1.00171, 0.999809, 0.999927, 0.999923, 
0.999923, 0.999923, 0.999923, 0.999923, respectively. The series converges fairly 
rapidly t o  a value of approximately 0.9999, From the partial sums calculated, 
three sine terms are required t o  give a concentration value that is within 1% of 
that given by the complete series. Note that successive terms in the sum are of 
opposite sign, causing the partial sums t o  oscillate about the exact value of the 
complete sum. 
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5.11 

5.12 

CHAPTER 5 :  SOLUTIONS TO THE DIFFUSION EQUATION 

Consider a plate of thickness L (0 < x < L )  with the following boundary and 
initial conditions: 

T ( x  = 0, t )  = 0 T ( x  = L , t )  = 0 T ( z ,  t = 0) = To sin 

Assume that the thermal diffusivity, IE., is constant. 

(a) Find an exact expression for the temperature as a function of time. 

(b) Find an exact relation for t l p ,  the time when the temperature at the 

(c) If the heat flux at the surface of the plate is set to  zero, would the time 

center of the plate drops to T0/2 (half its initial value). 

calculated in part (b) be longer, shorter, or the same? 

Solution. 

(a) Use the separation-of-variables method as in Exercise 5.10. Assume a solution of 
the form T(x , t )  = Y(x)T( t ) .  Putt ing this into the thermal diffusion equation, 
two ordinary difFerential equations are obtained whose solutions are 

T ( t )  = a1 exp(-qnt) 

Y ( x )  = bl sin ( f ix)  + bz cos ( f i x )  
(5.136) 

where a l ,  b l ,  bz ,  and q are constants. The resulting product solution can be fitted 
t o  the initial and boundary conditions by setting al = 1, bl = To, bz = 0 ,  and 
fi = r / L ,  so that 

T = T, sin (n:) e - r ’ f i t l ~ ~  (5.137) 

Equation 5.137 is a sine-series solution t o  the diffusion equation, but because of 
the sinusoidal initial condition, it consists of only a single term. 

(b) Setting T = T0/2, x = L/2 ,  and t = t l lz in Eq. 5.137, the time for the temper- 
ature in the center o f  the plate t o  drop t o  half i t s  initial value is 

L2 
t l p  = -- ln(0.5) 

7r2n 
(5.138) 

(c) Much longer! In fact, if no heat is allowed t o  leave the plate, the fixed amount 
o f  heat in the plate will spread unti l the temperature everywhere is uniform at  the 
value T, given by 

2 
T, = lL To sin (rz) dx = -To r (5.139) 

The temperature in the center will therefore never drop t o  the level T = T,/2! 

It is desired to de-gas a thick plate of material containing a uniform concen- 
tration of dissolved gas by annealing it in a vacuum. The rate at which the 
gas leaves the plate surface is proportional to its concentration at the surface; 
that is, 

Jsurf = -a csurf (5.140) 

where a = constant. 

(a) Solve this diffusion problem during the early de-gassing period before 
the outward diffusion of gas has any significant effect a t  the center of 
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the plate. The initial and boundary conditions are therefore 

c(z,O) = co c(oo,~) = co J =  -D = -a ~ ( 0 ,  t )  (5.141) 

Incorporate the parameter h = a / D  into the solution. 

(b) Show that when the dimensionless parameter h a  is large, c(0, t )  M 0, 
and that when h a  is small, c(0 , t )  M co. You will need the following 
series expansions of erf(z): 
For small z ,  

(5.142) 

and for large z ,  

+...) 1 1 1 x 3  1 X 3 X 5  - - - + - - 
2 3 9  

erfc(z) = 1 - erf(z) = 

(5.143) 

(c) Give a physical interpretation of the results in (b). 

Solution. 

(a) Use the Laplace transform method. Transforming the diffusion equation along 
with the initial condition given by Eq. 5.141 yields the same result as Eq. 5.64: 

The solution is therefore Eq. 5.65 with a1 = 0: 

co 

P 
~ ( x , p )  = - + u2 e - m m  

(5.144) 

(5.145) 

To determine u2, transform the boundary condition given by Eq. 5.141 t o  obtain 

-D (g) = -a E(0,p) 
x = o  

Therefore, putt ing Eq. 5.145 into Eq. 5.146 yields 

CY Cn 

and 

(5.146) 

(5.147) 

(5.148) 

where h = a / D .  Find the desired solution by taking the inverse transform using 
a table o f  transforms t o  obtain 

X 
c(x, t )  = co [erf ( m) + eh=+h2g t  erfc (& + h m ) ]  (5.149) 

(b) From Eq. 5.149 the concentration at the surface is 

c(0,  t )  = co e-h2’(Dt) erfc ( h m )  (5.150) 
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For large h m ,  use the series expansion for a large argument, t o  obtain 

co c(0, t )  = - 
h a  

(5.151) 

Therefore, c(0 , t )  approaches zero for large h m .  For small h m ,  use the 
small-argument expansion t o  obtain 

~ ( 0 ,  t )  = co (1 + h2Dt) (5.152) 

Therefore, c(0, t )  approaches co for small h m ,  

(c) We can rewrite h m  as a m .  Therefore, as cy becomes small, or at short 
times t ,  or as D increases, c(0, t )  approaches CO. For small a, surface desorption 
is compensated by diffusion from the bulk, so that c(0, t )  decreases slowly. How- 
ever, a t  short times, the concentration gradients near the surface will be large, 
so c(0, t )  will initially change rapidly. W i th  large D ,  bulk difFusion t o  the surface 
compensates the surface desorption. The reverse applies for large values o f  h f i .  

5.13 Solve the following boundary value problem on the semi-infinite domain with 
discontinuous initial conditions, 

co O < x < L  { 0 L < x < m  c(x ,  t = 0 )  = 

with zero flux conditions a t  x = 0 and x = cm. 

Suggestion: Use superposition of known solutions, or split the problem into 
two parts and use continuity to match Laplace-transformed solutions. 

Solution. Designate the region z < L as region I and the region x > L as region 
II. The Laplace transform method will be used t o  solve the problem in each region 
and the solutions will then be matched across the interface at  z = L .  In region I 
the diffusion equation and initial condition are the same as in the problem leading t o  
Eq. 5.64, and therefore the general solution after Laplace transforming corresponds t o  
Eq. 5.65. Similarly, in region 11, the initial condition is the same as in the problem 
leading t o  Eq. 5.58 and the general solution therefore corresponds t o  Eq. 5.59. The 
four constants of integration can be determined from the boundary conditions imposed 
at  z = 0, z = L ,  and z = co. After Laplace transforming, these become 

(5.153) 

(5.154) 

E ' ( L , p )  = E J ' ( L , p )  (5.155) 

After determining the four constants o f  integration and putting them into Eqs. 5.59 
and 5.65, the solutions in regions I and II are 

I co co E = - - - exp(-ql) [exp(qz) + exp(-qz)] 
(5.156) P 2P 

co 6'' = -- exp(-qz) [exp(-qL) - e x p ( q ~ ) l  
2P 
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where q = @, Using standard tables of transforms t o  transform back t o  (2, t )  
coordinates, the final solutions are 

Because erf(z) = -erf(-z), the solutions are identical in the two regions and thus 

c(x,  t )  = 2 2 [erf (s) - erf (%)I (5.158) 



CHAPTER 6 

DIFFUSION IN MU LTICOM PON ENT 
SYSTEMS 

In earlier chapters we examined systems with one or two types of diffusing chem- 
ical species. For binary solutions, a single interdiffusivity, 5, suffices to describe 
composition evolution. In this chapter we treat diffusion in ternary and larger mul- 
ticomponent systems that have two or more independent composition variables. 
Analysis of such diffusion is complex because multiple cross terms and particle- 
particle chemical interaction terms appear. The cross terms result in N 2  indepen- 
dent interdiffusivities for a solution with N independent components. The increased 
complexity of multicomponent diffusion produces a wide variety of diffusional phe- 
nomena. 

The general treatment for multicomponent diffusion results in linear systems 
of diffusion equations. A linear transformation of the concentrations produces a 
simplified system of uncoupled linear diffusion equations for which general solutions 
can be obtained by methods presented in Chapter 5 .  

6.1 GENERAL FORMULATION 

In Chapter 2 we considered diffusion in a closed system containing N components, 
exclusive of any mediating point defects.l If only chemical potential gradients are 
present and all other driving forces-such as thermal gradients or electric fields- 

'Such defects, if present, will be assumed to be in local thermal equilibrium at  very small concen- 
trations. 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 131 
Copyright @ 2005 John Wiley & Sons, Inc. 
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are absent, the general formulation presented in Eq. 2.21 and developed further in 
Chapter 3 applies, and for one-dimensional diffusion,’ 

Equation 2.15 for the rate of entropy production is then 

Assuming that the atomic volumes of the components are constants and the fluxes 
are measured in a V-frame, as defined in Section 3.1.3, Eq. 3.22 holds for all N 
components, 

N 

C Q i J i  = 0 
i=l 

The Nth  flux can now be eliminated in Eq. 6.2 by using Eq. 6.3 and putting the 
result into Eq. 6.2, so that 

.( N-1 

and 

The force, Fi, conjugate to the flux, J i ,  is 

and therefore the general linear relation between the independent fluxes and the 
N - 1 independent driving forces is 

The chemical potential gradients and Onsager coefficients in Eq. 6.7 can be con- 
verted to concentration gradients and interdiffusivities (Table 3.1). Each chemical 
potential in Eq. 6.7 is a function of the local concentration: 

2This treatment is similar to that of Kirkaldy and Young [l]. 
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There are N - 1 independent concentrations because Eq. A.10 provides a single 
relation between concentrations and their atomic volumes. 

Under the assumption of local equilibrium, the Gibbs-Duhem relation applies, 
which places an additional constraint on chemical potential changes in Eq. 6.7 and 
implies that only N - 1 of the p i  can vary independently: 

Interdiffusivities, Eij, are defined by Eq. 6.10, 

D i j  is the product of two matrices, 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

where the L i k  are Onsager coefficients and T k j  are thermodynamic factors that 
couple chemical potentials to concentrations, 

(6.14) 

The analysis of 
concentrations and 

the diffusion for N components requires N - 1 independent 
( N  - 1)2 interdiffusivities. For the ternary case, 

(6.15) 
L J 

The eigenvalues, A h ,  of the interdiffusivity matrix (see Eq. 4.62) must be real and 
positive [l]. For the ternary case, 

where 
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The real and positive condition on the eigenvalues places physical limits on the 
interdiffusivities. For the ternary case, 

(6.18) 

( 5 1 1 5 2 2  - 5 1 2 5 2 1 )  L 0 
I I 

The sum (Dll + D 2 2 )  must be positive, but a direct interdiffusivity, oii, could be 
negative and still satisfy the conditions in Eq. 6.18. The off-diagonal terms, Eij, 
need not be symmetric with respect to the exchange of i and j. 

In the steps leading to Eq. 6.5, the choice of the Nth  component is arbitrary, and 
a different set of values for the four interdiffusivities will be obtained for each choice. 
However, each set leads to the same physical behavior predicted for the system: the 
diffusion profiles of the three components predicted by the equations are indepen- 
dent of the choice for N.3 For some choices, the interpretation of interdiffusivities 
in terms of kinetic and thermodynamic data may be more straightforward [l]. 

6.2 SOLUTIONS OF MULTICOMPONENT DIFFUSION EQUATIONS 

Generally, a set of coupled diffusion equations arises for multiple-component diffu- 
sion when N 2 3. The least complicated case is for ternary ( N  = 3) systems that 
have two independent concentrations (or fluxes) and a 2 x 2 matrix of interdiffusivi- 
ties. A matrix and vector notation simplifies the general case. Below, the equations 
are developed for the ternary case along with a parallel development using compact 
notation for the more extended general case. Many characteristic features of gen- 
eral multicomponent diffusion can be illustrated through specific solutions of the 
ternary case. 

The coupled ternary diffusion equations in one dimension are obtained from the 
accumulation fluxes in Eq. 6.11: 

_ -  d C l  - - V . J 1 = -  + a  ax (Ell%) + & (E12$) 

_ -  ac2 - - V .  J2 + a  = - (&%) + (5222) 
(6.19) 

at 

at dX 

or 

and generally, 
- ac' = - a [5E] 
at ax -ax 

(6.20) 

(6.21) 

In general, the 5ij are functions of the concentrations, so these equations are 
nonlinear. Numerical methods must then be employed. However, solutions can be 
obtained for a variety of special cases, several of which are described below. 

3This independence is similar to a constrained system's insensitivity to the choice of Nc in Sec- 
tion 2.2.2. 
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6.2.1 Constant Diffusivities 

If the interdiffusivities are each constant and uniform, the coupled ternary diffusion 
equations, Eq. 6.20, are a linear system, 

(6.22) 

and in general, 

= 5,Vzc' (6.23) 

It is possible to uncouple the expressions for the fluxes by diagonalizing the diffu- 
sivity matrix through a coordinate transformation. The transformed interdiffusivity 
matrix will have eigenvalues X i  as its diagonal entries. For the ternary system, the 
eigenvalues are the A& from Eq. 6.16. There will be N positive eigenvalues AN in 
the general case, where N is the number of indeKendent components. 

According to E% 1.36, the eigenvectors 2i of D form the columns of the matrix 
that diagonalizes 12 by the coordinate transformation. For the ternary system, let 
the eigenvector for the (fast) A+ eigenvalue be f a n d  for the (slow) A- be s': 

dc' 
at - 
- 

The slow and fast eigendirections are related by an angle 8,  

- 
(6.25) s'. f D2l - 5 1 2  case = ---= = - Iqlfl J ( D l l  - zj22)2 + (zj12 + fj21)2 

The transformation matrix, A, that diagonalizes 5 has columns formed by the 
eigenvectors f a n d  3. For the ternary case, 

and for the general case, 

and therefore 

Transforming Eq. 6.43 yields 

or [;I=-[ ;+ ]v [  :,I 

(6.28) 

(6.29) 

(6.30) 
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or 

J ,  = - X-VC, 
Jp  = - X+Vcp 

(6.31) 

and the fluxes are seen to be uncoupled in the diagonalized system. J ,  and J p  are 
the two fluxes in the diagonalized system given by 

[ $ I = ” - “  ; ; I  
and c, and cp are the two concentrations given by 

[ ;; ] = A - l [  ;; ] 
These quantities therefore have the forms 

J2 
Di i  - D22 + A 

2A Ji  + - 0 2 1  J ,  = - 
A 

D2 1 Jp = - J1 - 
A 5 2  

D l l -  D22 - A 
2A 

and 

- 0 2 1  D l l -  D22 + A  c2 
c1 + 2A 

c, = - 
A 

Dll - D22 - A 
2A c2 

D2 1 cp =-c1 - 
A 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

The flux problem can now be easily solved in the diagonalized system using 
Eq. 6.31; the solution can then be transformed back to the original concentration 
coordinates by using the inverse relationships 

and 

[ ; : ] = A [  :] 

[:;I=”[ :;] 
Steady-State Solutions. For the steady-state case, Eq. 6.22 becomes 

and in general, 

If has an inverse, 

0’ = kv2z 
- - I -  - - I -  
- D O = Q  QV2Z 

or 

[ ; ] = v 2 [  : ; ]  

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

(6.41) 
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that is, 

v2ci = 0 (6.42) 

Therefore, Laplace's equation holds for each component separately. However, the 
steady-state fluxes are interdependent, as may be seen from Eq. 6.11 for the ternary 
case, 

(6.43) 

Time-Dependent Solutions. In the time-dependent case, the diffusion equations 
given by Eq. 6.23 are coupled. However, they can be uncoupled by again using the 
diagonalizat ion met hod. 

Using the transformation matrix A on Eq. 6.23 gives for the ternary case, 

a - [  at cg '.I = [  ;- :+Iv2[  :; ] 
and for the general case, 

a 
at 
- 

A1 0 . ' '  0 0 

0 x 2 0 :  

: 0 . * .  0 
0 . . .  0 AN-1 

(6.44) 

(6.45) 

where the concentrations Ei are linear combinations given by the eigensystem trans- 
formation of the actual components ci. 

Each partial-differential equation in the diagonal frame is independent: 

Tr(@ - A 
at 

In general, 

(6.46) 

(6.47) 
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For one-dimensional ternary diffusion, the boundary and initial conditions- 
c1(z = L , t ) ,  c1(x = R,t) ,  cl(x,t  = 0), c2(x = L , t ) ,  C Z ( X  = R,t ) ,  and cz(x,t = 0)- 
become 

I - 
c 2 ( 2 ,  t = 0) 

- 0 2 1  

A 
Dii - 5 2 2  + A 

2A ca(s,t = 0) = - C l ( X ,  t = 0) + 

In general, 

Z(x = L,  t )  = A-lc'(x = L,  t )  

qx, t = 0) = A-lc'(z, t = 0) 

Z(x = R, t )  = A-lc'(x = R, t )  
+ 

(6.48) 

(6.49) 

The system is reduced to a set of uncoupled diffusion equations with diffusivities 
constructed from the component interdiffusivities by a prescribed algorithm. Each 
equation can be solved by methods described in Chapter 5. 

The transient behavior at the interface of two ternary alloy compositions in a 
system with complete solid solubility will lead to a path in composition "space" as 
shown in Fig. 6.1. Evolution is initially parallel to  the fast eigendirection S a n d ,  
after its gradients become small, finally proceeds parallel to the slow direction S: 

+ 
c .  c S 

Figure 6.1: 
specified by a concentration pair on the left (z = L )  and on the right (z = R). 

General evolution of a ternary diffusion couple with initial conditions 
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The solution for a diffusion couple in which two semi-infinite ternary alloys are 
bonded initially at a planar interface is worked out in Exercise 6.1 by the same basic 
method. Because each component has step-function initial conditions, the solution 
is a sum of error-function solutions (see Section 4.2.2). Such diffusion couples are 
used widely in experimental studies of ternary diffusion. In Fig. 6.2 the diffusion 
profiles of Ni and Co are shown for a ternary diffusion couple fabricated by bonding 
together two Fe-Ni-Co alloys of differing compositions. The Ni, which was initially 
uniform throughout the couple, develops transient concentration gradients. This 
example of uphill diffusion results from interactions with the other components in 
the alloy. Coupling of the concentration profiles during diffusion in this ternary 
case illustrates the complexities that are present in multicomponent diffusion but 
absent from the binary case. 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Distance (arbitrary scale) 

Fi ure 6.2: 
w i f i  Fe-Ni-Co alloys. From Kirkaldy and Young [l], and Vignes and Sabatier [2]. 

Concentration profiles for Ni and Co in ternary diffusion couple fabricated 

The results of ternary diffusion experiments are often presented in the form of 
daflusion paths, which are plots of the concentrations measured across the diffusion 
zone. The diffusion path corresponding to the measurements in Fig. 6.2 is shown 
in Fig. 6.3; note the characteristic S-shape, due to the inflections in the C N ~  profile. 

6.2.2 Concentration-Dependent Diffusivities 

If the diffusivities are functions of concentration, the Boltzmann-Matano method, 
described in Section 4.3 for the binary case, can be employed if the initial and 
boundary conditions are appropriate. The diffusion equations are 

(6.50) 

and when the scaling parameter 77 = x / d  is employed, these equations become 

(6.51) 
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Ni 

Fe " 0  20 40 60 80 100 c o  

xco - 
Figure 6.3: 
Sabatier [2] .  

Diffusion path for ternary diffusion profiles shown in Fig. 6.2. From Vignes and 

Consider a ternary diffusion couple in which each component has an initial step- 
function profile and boundary conditions similar to those given by Eq. 4.44. In- 
tegrating and changing variables, as in the development leading up to Eqs. 4.48 
and 4.49 for the binary case, 

(6.52) 

and 

(6.53) 

Because the diffusion profiles q ( x )  and c2(x) are known, the fluxes 51 and 5 2  can 
be determined at any x by inverting c ~ ( x )  and ~ ( x )  and evaluating the integrals 
in Eqs. 6.53 for i = 1 , 2 .  Because dclldx and dcsldx are known at the selected 
x ,  two equations relating the four diffusivities are obtained. Therefore, if two 
ternary diffusion experiments are analyzed at a point of common concentration, 
four equations relating the four diffusivities at those common concentrations will 
be obtained and all four diffusivities can be determined. However, use of this 
method to derive diffusivities from experimental results is highly labor intensive 
and subject to  significant error [3]. 

Alternatively, coupled diffusion equations with concentration-dependent diffu- 
sivities and comparison with experimental results can be solved with numerical 
methods (see Kirkaldy and Young [l] and Glicksman [4]). 

In many systems, complex particle-particle interactions can produce a plane 
inside the diffusion zone where the flux of one of the components is zero. Such planes 
can be found by evaluating the integral in Eq. 6.53 along the diffusion profile to find 
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points where Ji = 0. This approach can be used to obtain information regarding 
diffusion in the system [5]. Exercise 6.3 provides an illustration. 

6.3 MEASUREMENTS AND INTERPRETATIONS OF DlFFUSlVlTlES 

There are extensive reviews of the many measurements of the Eij, particularly 
in ternary systems [l]. Numerous systems exhibit uphill diffusion, due to strong 
particle-particle interactions, and efforts have been made to interpret the diffusivity 
behavior in terms of thermodynamic activity data and particle-particle interaction 
models. In many cases the diffusion behavior has been explained, and more details 
and discussion are found in Kirkaldy and Young’s text [l]. 
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EXERCISES 

6.1 Find the diffusion profile solutions for ternary diffusion in a diffusion couple 
fabricated by bonding two semi-infinite alloy blocks face to face along a planar 
interface. Assume constant diffusivities. 

Solution. The method o f  diagonalization described in Section 6.2.1 is employed. The 
initial conditions for all components are step-function concentration profiles and hence 
error-function profiles having the form 

(6.54) 

are tried as solutions t o  the uncoupled diffusion equations given by Eq. 6.44. Using 
Eqs. 6.26 and 6.37, the relationships between the concentrations c1 and c2 and the 
concentrations ca and cp in the diagonalized system are 

DII - 0 2 2  - A DII - DZZ + A 
(6.55) 

cp 
‘Or + 2021 

c1 = 
2021 

cz = co. + cg 
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By combining the equations above, the solutions take the forms 

(6.56) 

The boundary conditions on c1 and c2 are 

R 
(6.57) 

C 2 ( C o , t )  = C 2 ( Z , O )  = c2 C l ( C o , t )  = Cl(X,O) = c1 
c1(-Co,t) = C1(-Z,O) = cf c2(-Co,t) = c2(-x,O) = c2 

R 
L 

and therefore 

R 

L 
c2 = a1 + a2 + a3 + a4 
c2 =a1 - a2 + a3 - a4 

Solving the four equations above for the four coefficients, 

(6.59) 

( 0 2 2  - Dl1 + A)(c,R - c;) + 2D21(~? - c?) 
4A 

a4 = 

Substituting Eq. 6.59 into Eq. 6.56, the final solution for c2 is 

cz" + ck 
c2 = ___ 

2 
(011 - 0 2 2  + A)(c,R - c;) - 2 0 2 1 ( ~ p  - ~ f )  

4A + 
(D22 - Dli + A)($ - ck) + 2 0 2 1 ( ~ ?  - c?) erf 

4A 
+ 

A similar expression holds for c1. 

6.2 Point sources of components 1 and 2,  containing N1 and Nz atoms, respec- 
tively, are located at the origin r = 0 in a large piece of pure component 
3. Solve for the resulting three-dimensional diffusion field, assuming that the 
diffusivities Dl l ,  0 2 1 ,  and 0 2 2 ,  are independent of concentration. 
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Solution. Assume solutions in the diagonalized system having the standard point- 
source form 

C, = 

r2 
cp = (4.iixa+Rt)3/2 exp (-w) 

Using Eqs. 6.26 and 6.37, 

c1 = Dii - 0 2 2  - A 

c2 = c, + cg 

Dll - D~~ + A CP 

2021 -t 2021 

Conservation o f  components 1 and 2 requires that 

W 

47~ I c l r2dr  =N1 = constant 

W 

4n r c27-2dr = N ~  = constant 

(6.61) 

(6.62) 

(6.63) 

J o  

By substituting Eq. 6.61 into Eq. 6.62 and requiring that Eq. 6.63 be satisfied, 

ag  = N1 

a, + a p  = N2 

Dl1 - 0 2 2  - A Dl1 - 0 2 2  + A 
2021 + 2021 (6.64) 

By solving Eq. 6.64 for a, and ag and putting the results into Eq. 6.62 with the help 
of Eq. 6.61, the final solution for c2 is 

2D21N1 + (A  + 0 2 2  - D11)Nz 
16A( 7 ~ X + t ) 3 / 2  

exp (- &) (6.65) 

c2 = 

(Dl1 - 0 2 2  + A)N2 - 2021 N1 
16A(rX- t)3/2 exp (-A) + 

A similar expression may be found for c1. 

6.3 Show that the simple relation 

(6.66) 

holds for a plane of zero flux of component 1 in the diffusion zone of a ternary 
system when component 3 is chosen as the Nth  component, the approximation 
01 = 0 2  = 023 is used, and the activity coefficients are constants. 
Solution. From Eq. 6.7, 

(6.67) 
d d 
dX OX 

J1 = -L11- (111 - p3) - L12 - (p2 - p3) = 0 

Therefore, 

(6.68) 

Then, substitution o f  Eq. 2.2 into Eq. 6.68 produces the desired result 

6.4 Construct a diffusion path for the Cu/Zn binary diffusion zone in Fig. 4.8. 
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Solution. For the binary Cu-Zn system, 

xcu + Xzn = 1 

Therefore, the path appears as in Fig. 6.4. 

0 0.7 1 

xcu - 

(6.69) 

Figure 6.4: Diffusion path for the Cu/Zn binary diffusion zone in Fig. 4.8. 



CHAPTER 7 

ATOMIC MODELS FOR DIFFUSION 

Macroscopic treatments of diffusion result in continuum equations for the fluxes 
of particles and the evolution of their concentration fields. The continuum models 
involve the diffusivity, D, which is a kinetic factor related to the diffusive motion 
of the particles. In this chapter, the microscopic physics of this motion is treated 
and atomistic models are developed. The displacement of a particular particle can 
be modeled as the result of a series of thermally activated discrete movements (or 
jumps)  between neighboring positions of local minimum energy. The rate at  which 
each jump occurs depends on the vibration rate of the particle in its minimum- 
energy position and the excitation energy required for the jump. The average 
of such displacements over many particles over a period of time is related to the 
macroscopic diffusivity. Analyses of random walks produce relationships between 
individual atomic displacements and macroscopic diffusivity. 

7.1 THERMALLY ACTIVATED ATOMIC JUMPING 

The fundamental process in atomistic diffusion models is the thermally activated 
jump between neighboring sites of local minimum energy. The duration of any jump 
is typically very short compared to the particle’s residence time in a minimum- 
energy site. Therefore, the average jump rate-the basis for any model of atomistic 
diffusive motion-is essentially inversely proportional to the average residence time. 

The residence time depends upon the probability that the local potential en- 
ergy will undergo a fluctuation large enough to enable the particle to surmount the 
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potential-energy barrier that  it will encounter while making a jump. This barrier 
can readily be visualized by considering, as an example. t,he diffusion of intersti- 
tial a t o m  among the interstices of large substitutional host atoms as described in 
Section 3.1.4. In this case, a jumping interstitial atom must squeeze its way past 
the large intervening substitutional atjonis to  make a successful jump between in- 
terstices. This squeezing increases the potential energy in the local region, and a 
potential-energy barrier to  the jump t,herefore exists. Similar barriers exist for t,he 
jumps of particles in other systems. The height of the barrier will depend upon 
the interaction between the jumping particle and its surroundings arid can vary 
depending upon the path of the jumping particle and the posit,ioiis of its neighbors. 
For example, neighboring atoms may cooperatively enlarge the gap through which 
the jumping particle passes. The complexit,y of any analysis is increased by this 
multiplicity of possible activated configurations. However, useful approximations 
of varying accuracy can be obtained. 

There are numerous approaches to  modeling the jump rate.' Below, three pro- 
gressively more realistic models are presented. All three approaches produce the 
same basic result-the jump rate is a product of the vibration frequency in the 
initial stable site and a Boltzmann probability of a sufficient energy fluctuat,ion for 
the jump. 

7.1.1 

The simplest model is composed of identical noniriteracting particles sitting in rect- 
angular potential-energy wells separated by flat potential-energy barriers. The bar- 
riers have widths L A ,  as illustrated in Fig. 7.1. The rate at which the particle1 
traverses a barrier is calculated as a one-particle event that occurs in one dimen- 
sion. The many-bodied aspects are ignored and it is assumed that the migrating 
particle's surroundings-and therefore the potential-energy landscape--is static. 
Furthermore. the system is assumed to be in thermal equilibrium, so that the local 
temperature provides a statistical probability of a particle's kinetic energy fluctua- 
tions. Under this condition, a given particle spends most of its time in the energy 

One-Particle Model with Square Potential-Energy Wells 

t I 

I 

Distance. x - 
Figure 7.1: Square poterit,ial-eIiergy wells arid an eriergy barrier for a particle jurnpirig 
in one dinierisiori. The iiuniber of particles is proportioiial t,o t lie occupat,ioii probnhilit~y of 
well st,ates along L~~~~  rid activateci states along L ~ .  

'See Glasstone et al.. Wert and Zener. Vineyard, Rice, Flynn, Girifalco. Christian, and Franklin 
for examples [l-81. 
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wells that correspond to low-energy (high-probability) well states. However, fluc- 
tuations produce brief intervals during which a particle is situated atop the energy 
barrier along L A  in high-energy (low-probability) activated states. The jump rate 
is the inverse of the average migration time, the average amount of time between 
an atom’s arrival at one site and its arrival at a neighboring site. The average 
migration time is the sum of two distinct terms: the time an atom waits to reach 
an activated state and the migration time in the activated state. It is assumed that 
the system behaves classically and that any contribution from quantum-mechanical 
tunneling between the energy wells is negligible. Quantum tunneling can become 
important for light particles at low temperatures and is discussed elsewhere [5, 81. 

The average time for a particle in an activated state to cross the activation 
barrier is 

where (v) is the particle’s average velocity along L A  and m is its mass. The ex- 
pression for (u )  is found by determining its average momentum (p) and then using 
(w) = (p)/m. In this classical system, the probability that the particle has momen- 
tum in the forward direction (i.e., with positive values of p) between p and p + dp 
is proportional to exp[-p2/(2mkT)]dp [l]. Therefore, 

In a system of N particles, the total rate at which particles cross the barrier, 
&cross , is 

(7.3) 
- number of particles in an activated state 
- 

Tcross 

Consider a total time T >> rA ,  where r A  is the time that a particle spends in an 
activated state. Then. 

where rwel1 N T is the average duration in a well state. Therefore, for one particle, 
the crossing frequency (i.e., the jump frequency, I?’), is 

or 

The ratio of times spent in a well state and in an activated state is 

T A  2-4 CAe-EA/(bT) 
Twell Zwell Cwell e-Ewe” /(kT) 

- - - - - -  

(7.5) 

(7.6) 

(7.7) 

where Z A  and Zwel1 are the partition functions for the activated and well states.2 

2The partition function plays a central role in statistical mechanics [9]. If the probability of 
finding a system in a state i with energy Ei is proportional to exp[-Ei/(kT)], the partition 
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If d(z) is the potential energy function illustrated in Fig. 7.1, the classical limit 
is 

Therefore, 

where Em = EA - Ewe'' (i.e., the height of the barrier) is termed the activa- 
tion energy for migration of the particle. The bracketed term that multiplies the 
Boltzmann-Arrhenius term exp[-Em/(kT)] has dimensions (time)-' and repre- 
sents the number of attempts a t  the barrier per unit time-the average attempt 
frequency. The Boltzmann-Arrhenius exponential term is the activation success 
probability for each attempt. As demonstrated in less simple models below, this 
simple result-that there is a characteristic attempt frequency multiplied by a 
Boltzmann-Arrhenius factor containing the activation energy-is quite robust. 

7.1.2 

An improved approximation to the potential-energy landscape can be obtained by 
introducing parabolic wells and a smooth barrier as in Fig. 7.2.3 This model is 
more realistic, as particles that are displaced small distances from their average 
positions of minimum energy in a solid will generally experience restoring forces 
that increase linearly with the displacements. This leads to a potential energy that 
increases as the square of the particle displacement, which corresponds to a static 
(i.e., non-many-bodied) harmonic model for a solid [9]. The energies of the states 
of the particles are approximately 

One-Particle Model with Parabolic Potential-Energy Wells 

In Fig. 7 .2 ,  the well states are located in the region denoted by Lwei' near the 
minima. The particles spend the remainder of their time at the approximately 
flat region denoted by LA,  where the changes in average particle velocity are small. 
Particles at  other positions experience significant forces from -V+(z) and therefore 
tend to accelerate, resulting in low occupation probabilities for those positions. The 
analysis method is the same as that for the rectangular-well model, and Eqs. 7.6 
and 7.7 again hold. Using the harmonic potential, the ratio of partition functions 

function is related to the normalization factor for the probabilities 2 = Estates exp[-E,/(kT)] 

number of states of identical energy E3 . Because ZA is proportional to a sum of probabilities, it 
is proportional to the total probability of finding a particle in the activated state and therefore 
the average time in that state. 
3By illustrating the potential-energy landscape in one dimension in Fig. 7.2,  it appears that 
the activated state is one of maximum energy. The single dimension represents the most likely 
trajectory between the minimum states which requires the least energy, so the activation energy is 
that  of the trajectory's saddle point-the minimum of all the maximum energies of the trajectories 
between two minima (see Fig. 7 . 3 ) .  

- - Eenergles 3 W E , )  exp[-J%/(kT)l = Cenergies 3 exp(%/k) exp[-J%/(kT)I, where WE,) is the 
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EA 

F 
C 
a, 
m 
E Emin  
a, 
0 

- 
.- 

I 

a I U  Lwell 
f) 

Lwell 

Distance. x - 
Figure 7.2: Parabolic potential-energy well for one-dimensional particle jumps. Unlike 
the square potential energy function in Fig. 7.1. the energy barrier is no longer perfectly flat. 

(Eqs. 7.6 and 7.7) becomes 

and because states far from the well minimum do not contribute significantly, the 
limits of integration can be approximated with 

and integrated to  give 

where 

(7.13) 

(7.14) 

is the characteristic attempt frequency. Again, the activation energy is the height 
of the energy barrier and the jump rate is given by an attempt frequency niultiplied 
by a Boltzmann-Arrhenius factor of the form exp[-Em/(kT)]. The frequency. u. 
is that  of a simple harmonic oscillator of mass, m, with a restoring-force constant 
given by /3 (demonstrated in Exercise 7.1). 

7.1.3 Many-Body Model 

The two simple single-body models can be improved by including many-body as- 
pects and by allowing the jumping particle to differ from the remaining particles. 
A treatment similar to Vineyard's is developed [3]. The N-body system consists 
of N - 1 identical particles of mass m and a single migrating particle of mass m J .  
The state of such a system of N interacting particles can be defined by 3 N  spatial 
coordinates, q L ,  and 3N momenta, p , ,  and can then be represented by a point in 
a 6N-dimensional phase space with coordinates (41,  q2, . . . . q 3 N .  P I .  p2 .  . . . . p 3 ~ )  [9]. 
Furthermore, the total energy of such a system can be expressed as the sum of its 
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kinetic energy (a function of the 3 N  momenta) and its potential energy (a function 
of the 3 N  spatial coordinates). 

Assuming that there are numerous sites in the system that the jumping par- 
ticle can occupy while maintaining a stable system structure, the rate at which 
this particle jumps from one stable site to another can be determined. Figure 7.3a 
depicts how the total potential energy of the system, o = + ( q ~ .  q 2  
as t'he jumping particle occupies positions throughout the syste 
sites of local minimum energy. Because it is impossible to  make such a plot in 
three dimensions, the many displacements of particles in the system that acconi- 
pany the displacement of the jumping particle are suggested by the added multiple 
axes. Point P represents the situation of the jumping particle in a stable site while 
point Q represents the corresponding situation when the jumping particle is in a 
neighboring stable site. In both cases, the system is stable because it is at a local 
potential-energy minimum, as indicated by the two minima in the hypersurface 
shown in the 3N-dimensional space of Fig. 7.3. In Fig. 7.3b, hypersurfaces of con- 
stant potential energy are a function of the 3 N  coordinates indicated in Fig. 7.3a. 
[These hypersurfaces are of dimensionality 3 N  - 1 because they are defined by the 
level sets of 4 = + ( q l , q 2 ,  , q 3 ~ ) ,  so that 3 N  - 1 coordinates are independent.] 
There are many choices for a particle trajectory between P and Q, but the trajec- 
tories that cross the saddle point (located at  the point P A )  require the smallest 
energy fluctuation and are the most probable. Therefore, the saddle point ener- 
gies in the potential-energy landscape determine the transition probabilities. The 
saddles are present because each minimum is surrounded by neighboring maxima. 
Neighboring niininia pairs have at  least one connecting path that has an associated 
saddle energy; the path between P and Q in Fig. 7.3 passes through the saddle 
point PA.  The force on a particle exactly at PA is zero, but the configuration is 
an unstable equilibrium. A unique hypersurface, S A ,  passes through P A  and is 

Figure 7.3: In a syst,eni with 3N spatial coordinates. t,he potential-energy landscape 
consists of minima for each of the stable at,omic sites. such as P and Q. The pot,ential- 
energy landscape surface (a is the surface and b shows its isopot,entials) represents such a 
landscape. but only for t,wo spatial coordinates. The surface is impossible to  illustrate as a 
funct,ion of all coordinates 41. q 2 :  . . . , q 3 ~ .  The migrating atom traverses t,he region between 
P and Q via the saddle point P A .  During migration the landscape chaiiges in response to 
the geometrical coiifiguratiori of the activat,ed state. 
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perpendicular to the contours of constant 4. S A  constitutes an energy ridge and is 
analogous to a “continental divide” separating the region associated with P from 
the region associated with Q. 

In an equilibrium system, a migrating particle spends most of its time vibrating 
with small amplitude about low-energy states such as P and Q. The crossing time is 
very short compared to  the equilibrium duration, but as the migrating atom crosses, 
it slows near the saddle point. For the crossing interval depicted in Fig. 7 .3 ,  most 
of the active migration time is spent near saddle points such as PA in a volume of 
the hyperspace centered on the saddle point of width L A .  Considering the states 
in the activated volume and the states near the minima, Eqs. 7.6 and 7.7 can be 
applied to model the jump rate, I?, but the analysis must be modified if the system 
is a t  constant pressure instead of constant volume. The jump rate for a system at 
constant temperature and pressure is 

(7.15) 

where Z p  is the fixed-pressure partition function, Z is the fixed-volume partition 
function, and V A  and Vwel1 are the system volumes in the activated and well states. 

Using Ui = p:/2mi + &(x) in the classical limit [the number of energetically 
degenerate states = (dp  dq ) /h ]  and integrating the momentum terms for Z yields 

To find an expression for the potential energy of the vibrating system in the well 
state at P, the harmonic approximation is used and $(3 is expanded about P, so 
the potential-energy surface near P has the form 

where i and j sum over the 3N displacements of the J atom and the N - 1 other 
atoms, q; is the average coordinate of the ith vibrating atom, and $O is the po- 
tential energy per atom when all atoms are located in their average positions. The 
elements of the matrix of second derivatives are the linearized spring constants 
for each atom site pair and correspond to the quantity p in Eq. 7.10, which was 
employed in the static harmonic model. Typically, only the near neighbors have 
nonnegligible entries, the number of which depends on the interatomic potential 
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length scale. The matrix of second derivatives is real and symmetric and therefore 
has real eigenvalues, all of which are positive in the stable state. If the 6qi are 
transformed to its diagonalized coordinate eigensystem 6qi, 

(7.18) 

where mi and wi are the effective masses and characteristic angular frequencies of 
the three vibrational modes of each harmonic mode and i now runs over the 3N 
modes of the J atom and the N - 1 other atoms. The modes are decoupled in 
the eigensystem and this transformation exists for any interatomic potential. If the 
interactions are short-range, the matrix will be sparse and the effective masses and 
characteristic frequencies will be nearly the same in the eigensystem (qi) and the 
lattice system (q i ) .  

In Eq. 7.16,$ can be approximated using Eq. 7.18; the integral's value is domi- 
nated by 6qi x 0, and therefore its limits can be taken to be km,  even though the 
parabolic approximation is valid only near equilibrium, 

= e  - N $ ' / ( k T )  /F/F. , . /? 
- - e - N $ o / ( k T )  ( 2 T k T ) B  (z) 

m u l  m 2 w 2  ~ ~ N W S N  

3(N--1) 

~ J W J  m w 2  
(7.19) 

where w is the same for all masses except the migrating atom. If the masses and 
characteristic frequencies differ, a product would appear above for each unique 
effective mass and characteristic frequency. 

When the jumping atom is located along LA,  where the potential-energy hyper- 
surface has principal curvatures of opposite sign, there is one negative eigenvalue 
corresponding to the unstable direction along the path between P and Q and 

where i iterates over all N atoms and j iterates over all but the J atom. 
It is reasonable to assume that only a relatively small number of atoms sur- 

rounding the jumping atom are affected when the system goes from the well state 
to the activated state. Let this number be N A .  Also, approximate the potential 
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energy of the jumping atom along L A  at the saddle point by a parabola in a single 
variable, 77.~1. Let the approximating parabola have its maximum 4f at 6 7 5 1  = 0 
and decrease by a factor 1 - E at 6 7 ~ 1  = f L A / 2 :  

(7.21) 

- 3 N A  3 ( N - N A - 1 )  

where i iterates over all N A  affected atoms, j iterates over the 3 N A  modes of the 
affected atoms, and k iterates over all modes of the ( N  - N A  - 1) nonaffected atoms. 
Equation 7.21 can be integrated with the same approximation employed to obtain 
Eq. 7.19. To lowest order in L A  and E ,  

(7.22) 

where i iterates over all N A  affected atoms and 1 iterates over the modes of the 
affected atoms and it is assumed that w f 2  = wf3.  Therefore, 

2 r k T  
- = L  ZA A e -[$$+C,": +f+(N-NA-l)+o]/(kT)e-N+O/(kT) m J ( w ? ) 2  
Zwell 

(7.23) 
and 

3 N A  
r' = %e-[+$+Ez{ 27r + f - ( N A + l ) + a + P ( V A - V w e ' '  (2)' (n e= 1 2) (7.24) 

The final expression for the jump rate is then 

r' = y e - G " / ( k T )  = y e S m / k e - H m / ( k T )  = ue-PVm/(kT)eS"/k,-U'/(kT) (7.25) 
where 

(7.26) 

3 k N A ( A w )  3 N A  

W 
($)I N 2 k ( w f  W J  - ' " J )  + 
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and ( A w )  is the average difference between the activated and stable frequencies, 

The interpretation of the jump rate for this multibody harmonic model is the 
same as for the simpler models. Equation 7.25 is the product of an attempt fre- 
quency and a Boltzmann-Arrhenius exponential factor containing a migration ac- 
tivation energy. This result will be used throughout the remainder of this book. 
If none of the migrating atom’s neighbors are affected in Eq. 7.25, the activation 
energy is simply the difference between the migrating atom’s energy in the acti- 
vated and well states, and the entropy is proportional to the difference between the 
migrating atom’s frequencies in the activated and well states. 

wf - w .  

7.2 DIFFUSION AS A SERIES OF DISCRETE JUMPS 

In general, a particle migrates in a material by a series of thermally activated jumps 
between positions of local energy minima. Macroscopic diffusion is the result of all 
the migrations executed by a large ensemble of particles. The spread of the ensemble 
due to these migrations connects the macroscopic diffusivity to the microscopic 
particle jumping. 

If a particle jumps with average frequency r in a sequence of displacements r‘, 
(6 gives the magnitude and direction of the ith jump), then after a period of time, 
7 ,  the particle will execute N,  = individual jumps.4 The position relative to its 
starting point is the sum of the individual displacements, 

i=l i=l  

The random walk process can be characterized by the distribution of total dis- 
placements for either a large set of noninteracting walkers or for repeated trials of 
an isolated walker. The average displacement is a vector (Z(N,))and the mean- 
square displacement (Z(N,) . Z(N,))  = ( R 2 ( N T ) )  is a scalar that characterizes the 
spread or difluseness of the distribution of total displacements about its average. 

The square displacement for a given sequence of random steps is 

4r represents the average total jump rate during the sequence, which generally consists of jumps 
of different lengths and directions. This contrasts with r’, which represents the jump rate between 
two specified sites. 
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This sum consists of N,  x N,  products that can be collected into diagonal 
and off-diagonal (6 Fj = Fj ..i) parts, 

* Fi 

N ,  N,-1 N,-j 
(7.29) 

i=l j=1 i=l 

The 6 . 6+j can be expressed as products of the jump distances and the cosine of the 
angle between the jump-vector directions, O i , i + j  (i.e., ?'i . Fi+j = lFi l \ f i+j \  cos &,i+j). 
The mean-square jump distance is 

(7.30) 

Averaging over a large number of independent walkers or trials for a single walker, 

(7.31) ) 
N,-l N,-j 

w2 (w) = ~ , ( r ~ )  + 2 c C IF~ I IF~+~I  cosei,i+j ( j=1 i=l 

Equation 7.31 is general. No assumptions have been made about the randomness 
of the displacements, the lengths of the various displacements, the allowed values 
of O i , i + j ,  or the number of dimensions in which the random walk is occurring. 

7.2.1 Relation of Diffusivity to the Mean-Square Particle Displacement 

A relationship between the macroscopic diffusivity, D,  of a component i and the 
mean-square displacement, (R2 ( N T ) ) ,  can be obtained from the behavior of ci(z, t )  
as it evolves from an initial point source at the origin. Using the solution for 
diffusion from an instantaneous point source in three dimensions in Table 5.1, the 
distribution of particles after a time T will be given by 

The second moment of the distribution in Eq. 7.32, 

Jr r2c(r, T )  47rr2 dr 
(R2 = c(r ,  T )  47rr2 dr 

(7.32) 

(7.33) 

gives the mean-square displacement away from the original point source. Using 
Eq. 7.32 and the relationship 

(7.34) 

in Eq. 7.33, the mean-square displacement for isotropic three-dimensional diffusion 
is related to the diffusivity by 

(R2 ( T ) )  = ~ D T  (7.35) 
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For diffusion in one and two dimensions, similar calculations show that (R2 ( r ) )  = 
2 D r  and 4 D r ,  respectively. An analogous expression for (R2  ( r ) )  when the diffu- 
sivity is anisotropic is explored in Exercise 7.4. 

Equation 7.35 is a fundamental relationship between the diffusivity and the 
mean-square displacement of a particle diffusing for a time 7. Because diffusion 
processes in condensed matter are comprised of a sequence of jumps, the mean- 
square displacement in Eq. 7.31 should be equivalent to Eq. 7.35. This equivalence, 
as demonstrated below, results in relations between macroscopic and microscopic 
diffusion parameters. 

7.2.2 Diffusion and Random Walks 

If a particle moves by a series of displacements, each of which is independent of the 
one preceding it, the particle moves by a random walk. Random walks can involve 
displacements of fixed or varying length and direction. The theory of random 
walks provides distributions of the positions assumed by particles; such distributions 
can be compared directly to those predicted to result from macroscopic diffusion. 
Furthermore, the results from random walks provide a basis for understanding non- 
random diffusive processes. 

The distribution of positions is easily formulated for a random walker on a one- 
dimensional lattice and illustrates important aspects of all random walks. Such a 
distribution can be compared to the solution for macroscopic diffusion in Table 5.1. 
Extensions to two and three dimensions are not difficult. The particles are assumed 
to  migrate independently. A given particle starts at the origin and jumps either 
forward (along +z) with probability p~ or backward (along -z) with probability 
p ~ ,  where 0 < p~ < 1 and p~ + p~ = 1. Suppose that each displacement is of 
length one, then after N, >> 1 displacements it is possible that the particle will 
end up at -N,, -N, + 1, . . . - 1,  0 ,  1, . . . N, - 1, N,. It is highly unlikely that 
the particle will make all positive jumps to reach site N, or all negative jumps to 
reach -N,. If p~ = p~ = 1 / 2 ,  then, on average, the particle will be located at 
the origin because the equally probable positive and negative displacements negate 
each other. To find the probability that a particle occupies a position n after N, 
jumps, let NR be the number of positive displacements and NL be the number of 
negative displacements, 

NR - N L  = n (7.36) 
NR + N L  = N, 

The number, R(n, N,), of different ways (trajectories, sequences, etc.) the walker 

(7.37) 

can get to  site n from the origin is given by the binomial coefficient 

N ,  ! 
[ (N ,  + n ) / 2 ] !  [ (N ,  - n ) / 2 ] !  

- - N,! n(n,  N,) = ~ 

NR! N L !  
Therefore, the probability of getting to site n after N, jumps is 

(7.38) 

(7.39) 

If the probability of jumping right, p ~ ,  is equal to the probability of jumping left, 
P L  1 

(7.40) 
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Using Stirling's formula, 
Q! = m Q Q e - &  

and taking the limit n /N,  << 1 yields 

(7.41) 

Equation 7.42 shows that the distribution of a point source in one dimension spreads 
as a Gaussian. 

Letting R = n(r2) l I2 ,  the probability distribution for the displacement R is 

The probability distribution must be normalized, so that 

00 

p(R, 7 )  dR = 1 

Therefore, the probability distribution becomes 

(7.43) 

(7.44) 

(7.45) 

which is of the same form as the macroscopic solution for one-dimensional diffusion 
from a point source in Table 5.1. 

The first and second moments of Eq. 7.45 are readily evaluated: 

and 
00 

(R2)  = p(R,  N,)R2 dR = N , ( r 2 )  

(7.46) 

(7.47) 
J--03 

Equation 7.46 demonstrates that if each jump of a walk occurs randomly (i.e., 
is uncorrelated), the average displacement is zero and the center of mass of a large 
number of individual random jumpers is not displaced. Equation 7.47 gives the 
mean-square displacement of a random walk, N T ( r 2 ) .  Although Eqs. 7.46 and 7.47 
were derived here for one-dimensional random walks, both are valid for two- and 
three-dimensional random walks. 

The probability distribution of a random walk shows that the mean-square dis- 
placement after N, jumps is ( R 2 )  = NT(r2 )  = I '7 ( r2)  (Eq. 7.47). Comparison of the 
probability distribution (Eq. 7.45) to the point-source solution for one-dimensional 
diffusion from a point source (Table 5.1) indicates that 

(7.48) 

Equation 7.48 relates the macroscopic diffusivity and microscopic jump parameters 
for uncorrelated diffusion in one dimension. 
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7.2.3 Diffusion with Correlated Jumps 

The calculated root-mean-square displacement for a general sequence of jumps has 
two terms in Eq. 7.31. The first term, N,(r2), corresponds to an ideal random 
walk (see Eq. 7.47) and the second term arises from possible correlation effects 
when successive jumps do not occur completely at random. 

For walks with  correlation^,^ a correlation factor, f ,  can be defined 

so that Eq. 7.31 becomes 
(R2) = N,(r2)f 

(7.49) 

(7.50) 

For a random walk, f = 1 because the double sum in Eq. 7.49 is zero and 
Eq. 7.50 reduces to the form of Eq. 7.47. In principle, f can have a wide range of 
values corresponding to physical processes relating to specific diffusion mechanisms. 
This is readily apparent in extreme cases of perfectly correlated one-dimensional 
diffusion on a lattice via nearest-neighbor jumps. When each jump is identical to 
its predecessor, Eq. 7.49 shows that the correlation factor f equals N7.6 Another 
extreme is the case off = 0, which occurs if each individual jump is exactly opposite 
the previous jump. However, there are many real diffusion processes that are nearly 
ideal random walks and have values of f x 1, which are described in more detail in 
Chapter 8. 

The relationship between the macroscopic isotropic diffusivity, D, and micro- 
scopic jump processes can be evaluated in three dimensions. The equivalence of 
Eqs. 7.31 and 7.35 means that 

\ j=1 i = l  I 

Substitution of Eq. 7.49 into Eq. 7.51 yields the relation between the macroscopic 
isotropic diffusivity and microscopic parameters 

(7.52) 

Equation 7.52 is of central importance for atomistic models for the macroscopic 
diffusivity in three dimensions (see Chapter 8). For isotropic diffusion in a system 
of dimensionality, d ,  the generalized form of Eq. 7.52 is 

(7.53) 

Equations 7.52 and 7.53 reduce to D for random-walking particles (i.e., Eq. 7.48) 
where there are no correlations and f = 1. 

Values of f for several diffusion mechanisms are discussed in Section 8.2.1. 

5Correlated jumps are discussed in Chapter 8. 
6There are (N: - N T ) / 2  cosine terms in the double sum and all are equal to unity. 
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EXERCISES 

7.1 Prove that the pre-exponential frequency factor given by Eq. 7.14 is indeed 
the frequency of a linear oscillator of mass, m, and force constant, p. 
Solution. The equation o f  motion o f  a linear oscillator is 

d2x 
mdt2 F ( x )  = -px ( t )  = (7.54) 

where z ( t )  is the displacement o f  the mass from the position where the restoring force, 
F, is zero. The solution of Eq. 7.54 is of the form x(t) = Asin(wt) where A = constant. 
Substitution of z ( t )  in Eq. 7.54 shows that 

w = 27ru = (7.55) 

7.2 The quantity V”, given by Eq. 7 . 2 6 ,  is the difference between the volume of 
the system in an activated state and a well state. This volume difference is 
generally termed the activation volume for migration and is a positive quan- 
tity because of the atomic squeezing and resulting expansion of the system 
that occurs in the activated state. The activation volume can be measured 
experimentally by measuring the pressure dependence of the jump frequency, 
I”. Find an expression for the pressure dependence of I” and describe how it 
can be used to determine Vm.  
Solution. Use Eq. 7.25 for I?’ and differentiate r’ with respect t o  pressure, so that 

d In r’ d l n v  
(7.56) 
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Using the standard thermodynamic relation [ ~ G / B P ] T  = V and realizing that the 
pressure dependence o f  l n v  will be relatively very small, we may write t o  a good ap- 
proximation 

(7.57) 

If a plot of l n r '  vs. P is now constructed using the experimental data, V" can be 
determined from its slope. 

7.3 Consider small interstitial atoms jumping by the interstitial mechanism in 
b.c.c. Fe with the diffusivity D for a time T .  

(a) What is the most likely expected total displacement after a large number 

(b) What is the standard deviation of the total displacement? 

Solution. 

of diffusional jumps? 

(a) The expected total displacement will be zero because there is no correlation be- 
tween successive jumps-after a jump the interstitial loses its memory of its jump 
and makes its next jump randomly into any one o f  its nearest-neighbor sites. 

(b) The distribution of displacements will be Gaussian (Eq. 7.32) and the standard 
deviation will be the root-mean-square displacement given by Eq. 7.35 as m. 

7.4 Suppose the random walking of a diffusant in a primitive orthorhombic crystal 
where the particle makes N1 jumps of length a1 along the XI axis, NZ jumps 
of length a2 along the xz axis, and N3 jumps of length a3 along the 2 3  

axis. The three axes are orthogonal and aligned along the crystal axes of the 
orthorhombic unit cell and the diffusivity tensor in this axis system is 

Dll 0 0 .=[ : Dozz 4 (7.58) 

(a) Find an expression for the mean-square displacement in terms of the 
numbers of jumps and jump distances. 

(b) Find another expression for the mean-square displacement in terms of the 
three diffusivities in the diffusivity tensor and the diffusion time. Your 
answer should be analogous to Eq. 7.35 ,  which holds for the isotropic 
case. 

Solution. 

(a) Using Eqs. 7.30 and 7.31, 

N 

(R2) = c r', . r', = Nla: + N2a; + N3ai (7.59) 
i=l 

(b) The diffusion equation will have the form o f  Eq. 4.61. By using the method of 
scaling described in Section 4.5 (based on the scaling relationships in Eq. 4.64), 
the solution can be written 

A 
c ( a , m , ~ , t )  = -exp d 
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where A = constant. The mean-square displacement is then 

S;;OS,"S;;"c(zi,22,23,t)~~d5id~2d23 (R2) = 
~,oo~o~~o~c(zl,z2,z3,t)dzl~~2~~3 

L -2L -L J," J," J," e - 4 D i i t  e 4D22t e 4 D 3 3 t  (zf + zg + z:) dzl dz2dz3 
- - 

SoooSoooS,"C(zl1z2,X3,t)dzldz2dz3 
(7.61) 

Equation 7.61 can be factored into standard definite integrals and the result is 

(R2) = 2D11t + 2022t + 2D33t (7.62) 

Comparison of Eqs. 7.59 and 7.62 shows that the mean-square displacement con- 
sists of three terms, each of which is the mean-square displacement that would be 
achieved in one dimension along one of the three coordinate directions. 

7.5 Suppose a random walk occurs on a primitive cubic lattice and successive 
jumps are uncorrelated. Show explicitly that f = 1 in Eq. 7.49. Base your 
argument on a detailed consideration of the values that the cosOi,i+j terms 
assume. 
Solution. Because all jumps are o f  the same length, 

(7.63) 
2 

= 1 + - (cos 01,2 + cos 01,3 . . . + cos e2,3 + cos e2,4 ' ' + cos eN,-l,NT) 
NT 

and thus, 

2 
NT f =  I +  -[(cosel,2) + (  cosel,3)+...+(cose2,3)...+(COSeN,-1,NT)1 (7.64) 

Any jump can be one of the six vectors: [aOO], [TiOO], [OaO], [OZO], [OOa], and [OOTi]. Each 
occurs with equal probability. For each pair o f  jump vectors, i and i+j, the six possible 
values of cosQz,a+3 are 1, - 1 , O ,  O , O ,  and 0, and these occur with equal probability. For a 
large number o f  trajectories, each mean value in Eq. 7.64 is zero and therefore f = 1. 

7.6 For the diffusion of vacancies on a face-centered cubic (f.c.c.) lattice with 
lattice constant a, let the probability of first- and second-nearest-neighbor 
jumps be p and 1 - p ,  respectively. At what value of p will the contributions 
to diffusion of first- and second-nearest-neighbor jumps be the same? 
Solution. There is no correlation and, using Eq. 7.29, 

N -  

(7.65) 

The number of first nearest-neighbor jumps is NTp and the number of second nearest- 
neighbor jumps is N T ( l  - p ) .  Therefore, 

(7.66) a2 (R2) = N T p ~  + NT(1 -p)a2 

They make equal contributions when NTpa2/2 = N T ( l  -p)a2 or p = 2/3. 



CHAPTER 8 

DIFFUSION IN CRYSTALS 

The driving forces necessary to induce macroscopic fluxes were introduced in Chap- 
ter 3 and their connection to microscopic random walks and activated processes was 
discussed in Chapter 7. However, for diffusion to occur, it is necessary that kinetic 
mechanisms be available to permit atomic transitions between adjacent locations. 
These mechanisms are material-dependent . In this chapter, diffusion mechanisms 
in metallic and ionic crystals are addressed. In crystals that are free of line and 
planar defects, diffusion mechanisms often involve a point defect, which may be 
charged in the case of ionic crystals and will interact with electric fields. Addi- 
tional diffusion mechanisms that occur in crystals with dislocations, free surfaces, 
and grain boundaries are treated in Chapter 9. 

8.1 A T O M I C  M E C H A N I S M S  

Atom jumping in a crystal can occur by several basic mechanisms. The dominant 
mechanism depends on a number of factors, including the crystal structure, the 
nature of the bonding in the host crystal, relative differences of size and electrical 
charge between the host and the diffusing species, and the type of crystal site pre- 
ferred by the diffusing species (e.g., anion or cation, substitutional or interstitial). 

Kinet ics  of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 163 
Copyright @ 2005 John Wiley & Sons, Inc. 
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8.1.1 Ring Mechanism 

A substitutional atom (indicated by shading in Fig. 8.1) may jump and replace an 
adjacent nearest-neighbor substitutional atom. In the rang mechanasm. the substi- 
tutional atom exchanges places with a neighboring atom by a cooperative ringlike 
rotational movement. 

00000 
00000 
OOOc90 
00000 

00000 
00000 
OOO@O 
00000 

Figure 8.1: Riiig riiecliaiiisiri for diffusioii of  substitutioiial atorris. 

8.1.2 Vacancy Mechanism 

A substitutional atoni can migrate to  a neighboring substitutional site without co- 
operative motion and with a relatively small activation energy if the neighboring 
substitutional site is unoccupied. This is equivalent to exchange with a neighbor- 
ing vacancy.l In Fig. 8.2a, the vacancy is initially separated from a particular 
substitutional atom (again indicated by shading). In Fig. 8.2b, it has migrated by 
exchanging places with host atoms to  a nearest-neighbor substitutional site of the 
shaded atom. In Fig. 8 . 2 ~  the vacancy has exchanged sites with the substitutional 
atom: and in Fig. 8 .2d  the vacancy has migrated some distance away. As a result, 
the particular substitutional at,om is displaced by one nearest-neighbor distance 
while the vacancy has undergone at least five individual displacements. 

The atomic environment during a vacancy-exchange mechanism can be illus- 
trated in a three-dimensional cubic lattice. Figure 8.3 shows an atom-vacancy 
exchange between two face-centered sites in an f.c.c. crystal. The migrating atom 
( A  in Fig. 8.3) moves in a (110)-direction through a rectangular “window” framed 
by two cube corner atoms and two opposing face-centered atoms. The f.c.c. crys- 
tal is close-packed and each site has 12 equivalent nearest-neighbor sites [l]. In 
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Figure 8.2: Vacaiicy mecliaiiism for diffiisioii of substitutional atonis. 

‘Vacancies will always exist in equilibrium in a crystal because their enthalpy of formation can 
always be compensated by a configurational entropy increase a t  finite temperatures (see the deriva- 
tion of Eq. 3.65). Therefore, vacancies function as a component that  occupies substitutional sites. 
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X 

4 

Figure 8.3: Atom-vacancy exchange in f.c.c. cryshl. Atom init,ially a t  A jumps into a 
nearest-neighbor vacancy (dashed circle). The four nearest,-neighbor atoms common to A 
and t,he vacant site (joined by the bold rectangle) form a "window" 1234 through which the 
A atom must, pass. The A atom is centered in unit-cell face 2356. The vacancy is centered 
in unit-cell face 2378. 

a hard-sphere model. in which nearest-neighbor atoms are in contact, the atoni 
must "squeeze" through a window that is about 27% smaller than its diameter. 
The potential-energy increases required for such distortions create the energetic 
migration barriers discussed in Section 7.1.3. 

8.1.3 lnterstitialcy Mechanism 

A substitutional atom can migrate to a neighboring substitutional site by the two- 
step process illustrated in Fig. 8.4. The first step is an exchange with an interstitial 
defect in which the migrating substitutional atom becomes the interstitial atom.2 
The second step is to exchange the migrating atom with a neighboring substitu- 
tional atom. This mechanism is only possible when substitutional atoms can occupy 
interstitial sites. This cooperative and serpentine motion constitutes the intersti- 
tialcy mechanism, and when large normally substitutional atoms are involved, can 
occur with a much lower migration energy than the interstitial mechanism (see 
below). 

Interstitialcy migration depends on the geometry of the interstitial defect. How- 
ever, an a priori prediction of interstitial defect geometry is not straightforward 
in real materials. For an f.c.c. crystal, a variety of conceivable interstitial defect 
candidates are illustrated in Fig. 8.5. The lowest-energy defect will be stable and 
predominant. For example. in the f.c.c. metal Cu. the stable configuration is the 
(100) split-dumbbell configuration in Fig. 8.5d [ 3 ] .  

The (100) split-dumbbell defect in Fig. 8.5d, while having the lowest energy of all 
interstitial defects, still has a large formation energy (Ef = 2.2  eV) because of the 
large amount of distortion and ion-core repulsion required for its insertion into the 
close-packed Cu crystal. However, once the interstitial defect is present, it persists 
until it migrates to  an interface or dislocation or annihilates with a vacancy. The 

21nterstitial point defects involving normally substitutional atoms will always exist (although 
typically at very low concentration) a t  equilibrium in a crystal a t  finite temperatures because. as 
in the case of vacancies described above, their enthalpy of formation can always be compensated 
by a configurational entropy increase. 
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Figure 8.4: Substitutional diffusion by the iiiterst,itialcy mechanisrn. (a) The iiiterstit ial 
defect, corresponding to the interstitial atom ( 3 )  is separated from a part,iciilar siibst,itutional 
atom B (shaded). (b) The interstitial defect, moved adjacent t,o B when t>he previously 
interstitial atom (3) replaced the substit,utional atom (2). (2) then became the int,erstitial 
atom. ( c )  At.om (2) has replaced B. and B has become the interst,it,ial atom. (d) B has 
replaced atom (4): which has become the interstitial atom. (e) The int,erstitial defect has 
migrated away from B.  As a result. B has completed one nearest-neighbor jump and the 
interstitial defect has moved at, least four times. 

Figure 8.5: Geonietric corifiguratioris for a self-interst,itial defect atom in an f.c.c. crystal: 
(a) oct,ahedral site, (b) tetrahedral site, ( c )  (110) crowdion, (d) (100) split, dumbbell. 
(e) (111) split,. ( f )  (110) split crowdioii [2]. 

activation energy for migration (Em = 0.1 eV) is small compared to Ef because 
little additional distortion is required for its serpentine motion, which is illustrated 
in Fig. 8.6. It therefore migrates relatively rapidly. 
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Figure 8.6: 
uystal .  
durnbbells [one of which is sliowii iii (b)] atrid into four others. creatirig [OlO] diirnbliells. 

Diffusiorial niigratioii of a [loo] split-duiiibbell self-iiiterstitial iii ail f.c..c.. 
The durnbbell in (a) rail juirip int,o four iiearest-iieighbor sites: c,rwtiiig [OOl] 

8.1.4 Interstitial Mechanism 

An interstitial atom can simply migrate between interstitial sites as in Fig. 8.7. 
The interstitial atom must attain enough energy to  distort the host crystal as it 
migrates between substitutional sites. This mechanism is expected for small solute 
atoms that normally occupy interstitial sites in a host crystal of larger atoms. 

Diffusion by the interstitial mechanism and by the interstitialcy mechanism are 
quite different processes and should not be confused. Diffusion by the vacancy 
and interstitialcy niechanisms requires the presence of point defects in the system. 
whereas diffusion by the ring and interstitial mechanisms does not. 
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Figure 8.7: Interstitial mechanism for diffusion of interstitial atoms. T h r  snialler 
shaded interstitial atom niigrates through the openiiig betweeii host atoms (1) and ( 2 )  to a 
neighboring interstitial site. 

8.1.5 Diffusion Mechanisms in Various Materials 

Diffusion of relatively small atoms that normally occupy interstitial sites in the sol- 
vent crystal generally occurs by the interstitial mechanism. For example, hydrogen 
atoms are small and migrate interstitially through most crystalline materials. Car- 
bon is small compared to  Fe and occupies the interstitial sites in b.c.c. Fe illustrated 
in Fig. 8.8 and migrates between neighboring interstitial sites. 

Migration of atoms that occupy substitutional sites may occur through a range 
of mechanisms involving either vacancy- or interstitial-type defects. In f.c.c., b.c.c., 
and hexagonal close-packed (h.c.p.) metals, self-dzffuszon occurs predominantly 
by the vacancy mechanism [4, 51. However, in some cases self-diffusion by the 
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X 

Figure 8.8: 1nterst)itial sites for C atjoins iii b.c..c.. Fe. (a) Tlie intrrstitial sites liwe 
point-group syriiirietry 4/mmm, and tlie orient,at ions of tlie fourfold axes are indicxtrti by 
the shorter, grey spokes on tlie symbols. (b) Noiiicnclat,ure uscd in t,he model for diffusion 
of interstitial atonis in b.c.c. Fe discussed in Section 8.2.1 Three different types of sit,es are 
present: sites 1. 2. and 3 have nearest-neighbor Fe atonis lying along 2 .  y. and z .  rcymtiwly.  

interstitialcy mechanism contributes a small amount to the overall diffusion (see 
Section 8.2.1). In Ge, which has the less closely packed diamond-cubic structure, 
self-diffusion occurs by a vacancy mechanism. In Si (which like Ge has covalent 
bonding), self-diffusion occurs by the vacancy mechanism at low temperatures and 
by an interstitialcy mechanism at  elevated temperatures [6-81. In ionic materials, 
diffusion mechanisms become more complex and varied. Self-diffusion of Ni in N i 0  
occurs by a vacancy mechanism; in Cua0 the diffusion of 0 involves interstit,ial 
defects [9]. In the alkali halides, vacancy defects predominate and the diffusion of 
both anions and cations occurs by a vacancy mechanism. However: the predominant 
defect is not easy to  predict in ionic materials. For example, vacancy-interstit,ial 
pairs dominate in AgBr and the smaller Ag cations diffuse by an interstitialcy 
mechanism (see Section 8.2.2). 

Solutes that normally occupy substitutional positions can migrate by a vari- 
ety of mechanisms. In many systems they migrate by the same mechanism as for 
self-diffusion of the host atoms. However, the details of migration become more 
complex if there is an interaction or binding energy between the solute atoms and 
point defects-this is described in Section 8.2.1 for vacancy-solute-atom binding. 
Certain solute a t o m  can migrate by more than one mechanism. For example. while 
Au solute atoms in Si are mainly substitutional, under equilibrium conditions: a rel- 
atively small number of Au atoms occupy interstitial sites. The rate of migration of 
the interstitial Au atoms is orders of magnitude faster than the ratme of the substitu- 
tional Au atoms, and the small population of interstit,ial Au atoms therefore makes 
an important contribution to  the overall solute-at,om diffusion rate [6. 81. The so- 
lute atoms transfer from substitutional sites to  interstitial sites by either kick-out or 
dissociative mechanisms (Fig. 8.9). In the kick-out mechanism, an interstitial host 
atom, H I ,  pushes the substitutional solute atom, Ss. into an interstitial position 
and simultaneously takes up a substitutional position according to the reaction 
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Figure 8.9: 
interstitial site by (a) the kick-out rriechanisni arid (b) t,lw dissoriative mechanism. 

Transfer of a soliitr at,oni (filled at,orii) from a subst,it,utional site to ail 

In the dissociative mechanism,  a substitutional solute atom enters an interstitial 
site. leaving a vacancy, V ,  behind according to the reaction 

ss = v, + SI (8.2) 

These reactions are reversible. This dual-sit,e occupancy leads to complicated solute 
diffusion behavior and has been described for several solut,e species in Si [4, 6, 81. 
There is no compelling evidence that the ring mechanism in Fig. 8.1 contributes 
significantly to  diffusion in any material. 

8.2 ATOMIC MODELS FOR DlFFUSlVlTlES 

Atomic models for the diffusivity can be constructed when the diffusion occurs 
by a specified mechanism in various crystalline materials. A number of cases are 
considered below. 

8.2.1 Metals 

Diffusion o f  Solute Atoms by the Interstitial Mechanism in the B.C.C. Structure. The 
general expression that connects the jump rate. I?. the intersite jump distance, r ,  
and the correlation factor, Eq. 7.52. then takes the form 

(8.3) 

Because each interstitial site has four nearest-neighbors, the jump rate. r. is given 
by 4r ' ,  where I" has the form of Eq. 7.25.3 If a is the lattice constant for the b.c.c. 
unit cell in b.c.c. Fe, then r = a12 and Eq. 8.3 yields 

(8.4) 

,'The quantity r', introduced in Section 7.1.1, is the jump rate of an atom from one specified site 
to a specified neighboring site. r is the total jump rate of the atom in the material. If the atom 
is diffusing among equivalent sites in a crystal where each site has z equivalent nearest-neighbors, 
then r = zr'. 
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where the weakly temperature-dependent terms have been collected into D,”. Be- 
cause D; is relatively temperature independent, the Arrhenius form of Eq. 8.4 
indicates a thermally activated process. The enthalpy of migration, H m ,  is the 
activation energy, E ,  for the interstitial diffusion. For C in Fe, 0; = 0.004 cm2 s-l 
and Hm= 80.1 kJ mol-’ [lo]. This experimental value of D; is consistent with the 
value predicted by Eq. 8.4 for a = 2.9 x m, I/ = 1013 s-l, and S” = lk/atom. 

The relationship between jump rate and diffusivity in Eq. 8.3 can be obtained by 
an alternate method that considers the local concentration gradient and the number 
of site-pairs that can contribute to flux across a crystal plane. A concentration 
gradient of C along the y-axis in Fig. 8.8b results in a flux of C atoms from three 
distinguishable types of interstitial sites in the cy plane (labeled 1, 2, and 3 in 
Fig. 8.8). The sites are assumed to be occupied at random with small relative 
populations of C atoms that can migrate between nearest-neighbor interstitial sites. 
If c’ is the number of C atoms in the cy plane per unit area, the carbon concentration 
on each type of site is c’ /3 .  Carbon atoms on the types 1 and 3 sites jump from 
plane Q to plane at the rate ( c 1 / 3 ) I ” .  The jump rate from type-2 sites in plane 
Q to plane p is zero. The contribution to  the flux from all three site types is 

If c is the number of C atoms per unit volume, c = 2c’/a, and therefore 

ar’c  
3 

Ja+P = - 

The reverse flux can be obtained by using a first-order expansion of the concentra- 
tion in the p plane, so that 

Therefore, the net flux is 

Comparison of Eq. 8.8 with the Fick’s law expression, 

Droduces 

(8.9) 

(8.10) 

The total jump frequency for a given C atom is r = 4r’, and therefore 

a2r  r2r 
24 6 

DI=-=- (8.11) 

which is identical to Eq. 8.3.  The same result would have been obtained with the 
cy and /3 planes chosen at any arbitrary inclination in the Fe crystal because DI is 
isotropic in all cubic crystals (see Exercise 4.6). 
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Self-Diffusion by the Vacancy Mechanism in the F.C.C. Structure. Each site on an 
f.c.c. lattice has 12 nearest-neighbors, and if vacancies occupy sites randomly and 
have a jump frequency rv, 

rv = 1217; (8.12) 

where I'b is given by Eq. 7.25, 

(8.13) 

If the fraction of sites randomly occupied by the vacancies is X V ,  the jump rate of 
the host atoms must be 

rA = xvrv (8.14) 

Using Eq. 7.52, the self-diffusivity is 

(8.15) 

where r = a/&' is the nearest-neighbor jump distance in an f.c.c. crystal. The 
diffusion of the vacancies is uncorrelated4 and the vacancy diffusivity is 

(8.16) 

which is related to the self-diffusivity by 

*D = X v D v f  (8.17) 

If the vacancies are in thermal equilibrium, XV = XEq, where, according to Eq. 3.65, 

(8.18) 

where 5'6 and H b  are the vacancy vibrational entropy and enthalpy of formation, 
re~pectively.~ Using Eqs. 8.13 and 8.15 

*D = fa2v ,(SF+SC)/~,-(HF+HG)/(~T) 
(8.19) 

- - *Doe-E/("T) where *DO fa2v e ( S F + S $ ) / k  

and the activation energy is given by 

E = H ; + H ~  (8.20) 

Equation 8.19 contains the correlation factor, f ,  which in this case is not unity 
since the self-diffusion of tracer atoms by the vacancy mechanism involves corre- 
lation. Correlation is present because the jumping sequence of each tracer atom 
produced by atom-vacancy exchanges is not a random walk. This may be seen by 

4The diffusion of vacancies is uncorrelated for the same reasons given above for diffusion of the 
interstitial atoms. After each jump, a vacancy will have the possibility of jumping into any one 
of its 12 nearest-neighbor sites with equal probability. 
5Because Gfv is the free energy to form a vacancy exclusive of the configurational mixing entropy 

(see Section 3.4.1), the only entropy included in Sf in the relation Gfv = Hf -TSf is the thermal 
vibrational entropy. 
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considering a tracer atom immediately after a jump. The vacancy with which it 
just exchanged will be one of its 12 nearest-neighbors. For its next jump, the tracer 
atom can either jump back into the vacancy with which it has just exchanged, jump 
into another vacancy which happens to be present in another nearest-neighbor site, 
or wait for another vacancy to arrive at  a nearest-neighbor site into which it jumps. 
Because the first possibility is most probable, the atom jumping is nonrandom. The 
second jump is correlated with respect to the first because the first jump creates a 
situation (i.e., the existence of a nearest-neighbor vacancy) that biases the second 
jump . 

A rough estimate for f can be obtained based on the number of nearest-neighbors 
and the probability that a tracer atom which has just jumped and vacated a site will 
return to the vacant site on the vacancy's next jump. A vacancy jumps randomly 
into its nearest-neighbor sites, and the probability that the return will occur is l / z .  
This event will then occur on average once during every z jumps of an atom. For 
each return jump, two atom jumps are effectively eliminated by cancellation, and 
the overall number of tracer-atom jumps that contribute to  diffusion is reduced by 
the fraction 2/25. According to Eq. 8.3, *D is proportional to the product rf, and 
since the number of effective jumps is reduced by 2/2, f can be assigned the value 
f M 1 - 2/25 = 0.83 for f.c.c. crystals. More accurate calculations (see below) show 
that f = 0.78. 

To find a more accurate value of f ,  Eq. 7.49 is applied [4, 11-13]. If all displace- 
ments are of equal length, 

(8.21) 

The quantity (cosOi,i+j) can be evaluated with the aid of the law of cosines from 
spherical trigonometry: 

(8.22) 

where a is the angle between the two planes defined by the successive jump vectors 
r', and <+I and the successive jump vectors r',+1 and r'i+z. For cubic crystals, 
contributions from angle a will be canceled by those from angle (180' - a )  on the 
average. Therefore, the last term in Eq. 8.22 containing cosa will average to zero: 

(cos 6 ' i , i+z )  = (cos &,i+l cos Q i + l , i + Z )  (8.23) 

The average cosine of the angle between successive jumps must be the same for all 
pairs of successive jumps.6 Therefore, 

(cos 6'i,i+z) = (cos6'i,i+l cos 6'i+1,i+2) + (sin6'i,i+l sin 6'i+l,i+2 cos a )  

( c o s ~ ~ , ~ + ~ )  = ( C O S B ~ , ~ + ~ ) ( C ~ S ~ ~ + ~ . ~ + ~ )  = ( c ~ s ~ ) ~  (8.24) 

where cos 6' denotes the angle between successive jumps. By induction, 

3 

(8.25) 
(COS ei,i+3) = (COS ei,i+2) (COS ei+2,i+3) = (COS e) 
(COS ei,i+j) = (COS e ) j  

6The immediate surroundings after each jump must be the same (excepting a change of orientation 
of the vacancy-atom pair); consisting of the atom with a nearest-neighbor vacancy next t o  it. The 
average of what happens to  produce the next jump must be the same for all pairs of jumps (in 
their respective orientations). 
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Putting Eq. 8.25 into Eq. 8.21 yields 

(8.26) 

As N, becomes large, the term j/N, in Eq. 8.26 can be neglected and the finite 
sum becomes an infinite sum, 

This infinite sum is known as 

and therefore 

(8.27) 

(8.28) 

(8.29) 

Equation 8.29 is exact, and the accuracy of the determination of f then depends 
on the accuracy with which (cos8) can be determined. 

Equation 8.29 can be used to  obtain another approximation for f by employing 
an estimated value of (cos8). To estimate this quantity, consider an atom that 
has just exchanged with a vacancy; there is a probability l / z  that the vacancy’s 
next exchange will be with the same atom and, therefore, the probability that 
cos8 = -1 is l / z  or (cos8) = - l /z .  If the vacancy separates from the particular 
atom, that particular atom cannot migrate until it obtains another (or the same) 
vacancy as a neighbor; the contribution to (cos 8) from these displacements will be 
small compared to - l /z ,  and therefore Eq. 8.29 can be written 

1 - l / z  2 - 1  

l + l / z  z + 1  
- f x -  - - (8.30) 

and f = 0.85 for f.c.c. crystals, which is close to the previous estimate. 
An accurate determination of f can be obtained by considering all contributing 

vacancy trajectories to determine (cos8) by use of Eq. 8.29 [13]. For f.c.c., the 
accurate value o f f  is found to  be 0.78; thus, correlations affect the diffusivity value 
by about 22% in Eq. 7.52.7 Correlations can have a considerably larger effect on 
the diffusivity for substitutional solute atoms by the vacancy mechanism. 

For the vacancy self-diffusion mechanism in many metals, experimental values of 
*Do are approximately 0.1-1.0 cm2 s-l, which correspond to physically reasonable 
values of the quantities in *Do according to Eq. 8.19: f x 1, a x 3.5 x lo-’’ m, 
v x 1013 s-l, and (S& + SF) x 2 k .  In metals, as in many classes of materials, the 

7A calculation of f in a two-dimensional lattice that takes into account multiple return vacancy 
trajectories appears in Exercise 8.8. 
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activation energy for vacancy self-diffusion, E in Eq. 8.20, scales with the melting 
temperature because the crystal binding energy correlates with both melting tem- 
perature and vacancy formation energy. Activation energies are typically 0.5-6 eV 
(1 eV = 96.46 kJ mol-l) and *Do is often nearly the same for materials with the 
same crystal structure and bonding [4]. 

Vacancy formation and migration energies, such as H; and H F ,  have been 
obtained by independent experiments. For example, to obtain H,, equilibrium 
vacancy concentrations can be measured from simultaneous thermal expansion and 
lattice expansion during quasi-equilibrium heating [14] and by positron annihila- 
tion [15]. The vacancy migration rate can be determined by measuring the decay of 
a supersaturated population of quenched-in vacancies to their equilibrium popula- 
tion in order to measure H F  [16]. The results of these independent determinations 
are generally consistent with the measured values of the substitutional diffusivity 
activation energies inferred from Eq. 8.19 [4]. 

In Section 3.1.1, self-diffusion was analyzed by studying the diffusion of radioac- 
tive tracer atoms, which were isotopes of the inert host atoms, thereby eliminating 
any chemical differences. Possible effects of a small difference between the masses 
of the two species were not considered. However, this difference has been found 
to have a small effect, which is known as the isotope effect. Differences in atomic 
masses result in differences of atomic vibrational frequencies, and as a result, the 
heavier isotope generally diffuses more slowly than the lighter. This effect can-if 
migration is approximated as a single-particle process-be predicted from the mass 
differences and Eq. 7.14. If ml and m2 are the atomic masses of two isotopes of 
the same component, Eqs. 7.13 and 7.52 predict the jump-rate ratio, 

f 

Jump rate and diffusivity scale inversely with the square root of atomic mass. How- 
ever, if migration involves many-body effects and collective motion, the assumptions 
leading to  Eq. 8.31 are no longer valid and this model must be discarded. 

Diffusion of Solute Atoms by Vacancy Mechanism in Close-Packed Structure. Diffu- 
sion of substitutional solutes in dilute solution by the vacancy mechanism is more 
complex than self-diffusion because the vacancies may interact with the solute atoms 
and no longer be randomly distributed. If the vacancies are attracted to the solute 
atoms, any resulting association will strongly affect the solute-atom diffusivity. 

The effect is demonstrated in a simple manner in two dimensions in Fig. 8.10, 
which shows an isolated solute atom with a vacancy occupying a nearest-neighbor 
site [4]. Three jump frequencies are considered: the intrinsic host-vacancy jump 
rate, the solute-vacancy jump rate, and the jump rate for a vacancy 
and a host atom that also has a neighboring solute, When there is an 
attractive interaction between a solute atom and the vacancy (a  negative binding 
energy), is decreased because of the increase in activation energy of the jump 
due to  the binding energy between the vacancy and the solute atom. The activation 
energies for the remaining two types of exchange are not influenced by the binding 
energy, and two extremes can be considered: 



a 2 ATOMIC MODELS FOR DIFFUSIVITIES 175 

Figure 8.10: A solute atoiri (darker shading) with a nearest-neighbor vacancy iii a close- 
packed at,oniic plnric. 'I'hc vacancy itlid its three different nearest-neighbor types exchange 
places with differiiig j i u r i p  freqiiencies. 

Case A is an example of strong correlation. Since the jump rate rlfsSv is relatively 
small, the vacancy remains bound to the solute atom for relatively long periods 
and the solute atom and bound vacancy exchange positions repeatedly at the rate 
rkSv, which is relatively high in comparison to rhos. However, eventually the 
vacancy will exchange with a host atom that is a nearest-neighbor of the solute atom 
(at the rate and a new mode of oscillation of the solute atom is established 
with the bound vacancy in a new nearest-neighbor site. This allows the solute atom 
to occupy a new site outside the first oscillating mode. If this occurs repeatedly, 
the solute atom can occupy new sites and execute long-range migration by a sort 
of tumbling motion of the oscillating mode's axis. The effective jump frequency of 
the solute atom during the period when the vacancy is bound to the solute atom 
is then and the self-diffusivity of the solute atom during the time that the 
vacancy is bound to it can be written as 

*Di = CYArLos (8.32) 

where CYA is a constant that  includes various geometrical factors. An approximate 
expression for the diffusivity over a much longer period, including many H S V  
jumps, may now be obtained by using a simple nearest-neighbor model for the 
binding of a vacancy to a solute atom. According to Boltzmann statistics, the 
probability of finding a bound vacancy in a nearest-neighbor site to a solute atom 
at equilibrium is 

$(bound) = e -GG/ (kT)Xeq  V (  free) (8.33) 

where Gb, is the binding energy (negative when attractive) of the vacancy to the 
solute atom and Xbq(free) is the fraction of free vacancies in the bulk crystal. 
The number of bound vacancies (per unit volume) in a system where the solute 
concentration is cs  is therefore 12csp7( bound), and since 12p7 (bound) << 1, the 
probability of finding more than one vacancy bound to a solute atom at any time 
is very small. The fraction of solute atoms with a bound vacancy is then approx- 
imately 12p"vqbound). Over a long period of time, the fraction of time that any 
solute atom has a vacancy bound to it is then also given by 12p7(bound). The 
effective jump rate of the solute during this long time period is therefore lower than 
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the jump rate when a bound vacancy is present by the factor 12py(bound), and 
putting this result into Eq. 8.32 and using Eqs. 3.63 and 8.33, the solute diffusivity 
over a long period of time, including many H f V  jumps, is 

(8.34) 

The self-diffusivity of solute atoms is then proportional to the rate at which bound 
vacancies circulate around them rather than the rate at which they exchange with 
vacancies. 

In Case B, vacancies are again bound to  solute atoms for relatively long periods 
of time. However, a bound vacancy will spend most of its time circling around a 
stationary solute atom by making a large number of V O S  jumps, although it will 
occasionally make an S S V  jump, allowing the solute atom to occupy a new site. 
Repetition of this process leads to  long-range migration of the solute atom. Using 
an analysis similar to the above, the solute self-diffusivity is then 

(8.35) 

In contrast to Case A, the solute self-diffusivity is now proportional to the rate at 
which solute atoms exchange with vacancies. 

If the binding energy was negligible and all the frequencies in Fig. 8.10 were 
equal, the solute atom self-diffusivity would be the same as that of the host atoms. 

Additional features of solute-atom diffusion can be studied using this three- 
frequency model. These, as well as models in three dimensions, are described by 
Shewmon [4]. 

DifFusion of Self-Interstitial Imperfections by the lnterstitialcy Mechanism in the F. C. C. 
Structure. For f.c.c. copper, self-interstitials have the (100) split-dumbbell configu- 
ration shown in Fig. 8.5d and migrate by the interstitialcy mechanism illustrated in 
Fig. 8.6. The jumping is uncorrelated,8 (f = l), and a / f i  is the nearest-neighbor 
distance, so 

These defects will always be present at thermal equilibrium, but their concentra- 
tions will be very small because of their high energy of formation. They can also 
be created by nonequilibrium processes such as irradiation [3]. 

Self-Diffusion by the lnterstitialcy Mechanism. If their formation energy is not too 
large, the equilibrium population of self-interstitials may be large enough to con- 
tribute to  the self-diffusivity. In this case, the self-diffusivity is similar to that for 
self-diffusion via the vacancy mechanism (Eq. 8.19) with the vacancy formation 
and migration energies replaced by corresponding self-interstitial quantities. The 

8After each jump the (100) dumbbell has an equal probability of making any of eight different 
jumps. Its next jump is therefore made at random. 
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correlation factor f-similar to  self-diffusion by the vacancy mechanism-is less 
than unity because the atom jumps produced by the interstitialcy mechanism are 
correlated. 

For example, the (100) split-dumbbell configuration of the self-interstitial defect 
in Cu has a formation energy that is considerably larger than the vacancy formation 
energy [3]. However, the relatively small population of equilibrium self-interstitials 
may contribute significantly to the self-diffusivity because the activation energy 
for interstitial migration is considerably lower than that for vacancy migration (as 
described in Section 8.1.3). 

8.2.2 Ionic Solids 

Diffusion in ionically bonded solids is more complicated than in metals because site 
defects are generally electrically charged. Electric neutrality requires that point de- 
fects form as neutral complexes of charged site defects. Therefore, diffusion always 
involves more than one charged speciesg The point-defect population depends sen- 
sitively on stoichiometry; for example, the high-temperature oxide semiconductors 
have diffusivities and conductivities that  are strongly regulated by the stoichiom- 
etry. The introduction of extrinsic aliovalent solute atoms can be used to fix the 
low-temperature population of point defects. 

Intrinsic Crystal Self- DifFusion. A simple example of intrinsic self-diffusion in an 
ionic material is pure stoichiometric KC1, illustrated in Fig. 8 . 1 1 ~ .  As in many al- 
kali halides, the predominant point defects are cation and anion vacancy complexes 
(Schottky defects), and therefore self-diffusion takes place by a vacancy mechanism. 
For stoichiometric KC1, the anion and cation vacancies are created in equal num- 
bers because of the electroneutrality condition. These vacancies can be created 

Figure 8.11: (a) Rocksalt st,riictiire of KCI and AgHr with (100) planes delineated. 
(b) Schottky defect on t~ (100) plaiie in KC1 coriiposed of anion vacancy arid cittion va.caricy 
( c )  Freiikel defect on a. (100) plaiie in AgHr composed of  cation self-iriterstitirtl and cation 
vacancy. 

'For general discussions, see Kingery et al. [17] or Chiang et, al. [ls]. 
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by removing K+ and C1- ions from the bulk and placing them at an interface or 
dislocation, or on a surface ledge as illustrated in Fig. 8.12. A vacancy on a K+ 
cation site will have an effective negative electronic charge and a vacancy on a C1- 
site will have a corresponding effective positive charge. This defect creation is a 
reaction written in Kroger-Vink notation as 

KG + Cl& = V& + Vb1 + KZ + Cl& 

or > (8.37) 

null = Vl, + V& 

In the Kroger-Vink notation used here, the subscript indicates the type of site the 
species occupies and the superscript indicates the excess effective charge associated 
with the species in that site [17]. A positive unit of charge (equal in magnitude to 
the electron charge) is indicated by a dot ( 0 )  superscript, a corresponding negative 
charge by a prime (') superscript, and zero charge (a neutral situation) by a times 
( x )  superscript. 

The equilibrium constant, Keq, for Eq. 8.37 is related to the free energy of 
formation, G$, of the Schottky pair 

G i  = -kTlnKeq (8.38) 

or 
(8.39) 

where the a's are the activities of the anion and cation vacancies. For dilute con- 
centrations of the vacancies, activities are equal to their site fractions by Raoult's 
law, 

[VL] [v:,] = Keq = e -Gfs / (kT)  (8.40) 

where the square brackets indicate a site fraction. Equation 8.40 is a general mass- 
action law for the combined anion and cation vacancy site fractions. Furthermore, 
electrical neutrality requires that 

Combining Eqs. 8.40 and 8.41, 

(8.41) 

(8.42) 

The vacancy populations enter the expressions for the self-diffusivity of the K+ 
cations and C1- anions. Starting with Eq. 7.52 and using the method that led to 
Eq. 8.19 for vacancy self-diffusion in a metal, 

(8.43) 

Figure 8.12: 
crystal sites to  ledges a t  the surface. 

Creation of Schottky defect by transfer of anion and cation from regular 



8 2. ATOMIC MODELS FOR DlFFUSlVlTlES 179 

where g is a geometrical factor and the correlation factor, f ,  has a value slightly 
less than unity. The activation energy for the self-diffusion is therefore 

E = HFV + H i 1 2  (8.44) 

A similar expression applies to C1 self-diffusion on the anion sublattice. 
Self-diffusion of Ag cations in the silver halides involves Frenkel defects (equal 

numbers of vacancies and interstitials as seen in Fig. 8.11b). In a manner sim- 
ilar to  the Schottky defects, their equilibrium population density appears in the 
diffusivity. Both types of sites in the Frenkel complex-vacancy and interstitial- 
may contribute to the diffusion. However, for AgBr, experimental data indicate 
that cation diffusion by the interstitialcy mechanism is dominant [4]. The cation 
Frenkel pair formation reaction is 

The activity of Ag;, is unity and, therefore, 

The electrical neutrality condition constrains the two site fractions: 

(8.45) 

(8.46) 

(8.47) 

The activation energy for self-diffusivity of the Ag cations by the interstitialcy 
mechanisms is the sum of one-half the Frenkel defect formation enthalpy and the 
activation enthalpy for migration, 

E = H F + -  H i  
2 

(8.48) 

Extrinsic Crystal Self-Diffusion. Charged point defects can be induced to form in an 
ionic solid by the addition of substitutional cations or anions with charges that differ 
from those in the host crystal. Electrical neutrality demands that each addition 
results in the formation of defects of opposite charge that can contribute to the 
diffusivity or electronic conductivity. The addition of aliovalent solute (impurity) 
atoms to an initially pure ionic solid therefore creates extrinsic defects.'O 

For example, the self-diffusivity of K in KC1 depends on the population of both 
extrinsic and intrinsic cation-site vacancies. Extrinsic cation-site vacancies can be 
created by incorporation of Ca++ by doping KC1 with CaCl2 and can be considered 
a two-step process. First, two cation vacancies and two anion vacancies form as 
illustrated in Fig. 8.12.'' Second, the single Ca++ cation and two C1 anions from 
CaC12 are inserted into the cation and anion vacancies, respectively; electric neu- 
trality requires that each substitutional divalent cation impurity in KC1 be balanced 

10Eztrinsic has the same meaning as in doped semiconductors. 
llThis process involves creation of additional sites in the crystal. Cation and anion sites must be 
created in the same proportion as the ratio of cation to anion sites in the host crystal-in this 
case, 1:l. These defects can also be formed at point-defect sources such as dislocations and grain 
boundaries (see Sections 11.4 and 13.4). 
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by the formation of a cation vacancy. The cationic and anionic vacancy populations 
are related to the site fraction of the extrinsic Ca++ impurity, 

[Cakl+ [Vt,l = [v’,] (8.49) 

The mass-action relationship in Eq. 8.40 for the product of the cation and anion 
vacancy site fractions combined with Eq. 8.49 yields 

(8.50) 

The last term on the right-hand side of Eq. 8.50 is the square of the cation vacancy 
site fraction in pure (intrinsic) KC1. Solving the quadratic equation for the cation 
vacancy site fraction yields 

(8.51) 

There are two limiting cases for the behavior of [V’,] according to Eq. 8.51: 

Intrinsic: [V’,]pure >> [Cak], then [V’,] = [V’,]pure 

Extrinsic: [V’,]pure << [Cak], then [V’,] = [Cak] 

The intrinsic case applies at small doping levels or at high temperatures where the 
thermal equilibrium site fraction of the intrinsic cation vacancy population exceeds 
that due to  the aliovalent solute atoms. In this case, the effect of the added solute 
atoms is negligible. The activation energy for cation self-diffusion is therefore the 
same as in the pure material and is given by Eq. 8.44. 

The extrinsic case applies at low temperatures or large doping levels. The site 
fraction of cation vacancies is equal to the solute-atom site-fraction and is therefore 
temperature independent. In the extrinsic regime, no thermal defect formation is 
necessary for cation self-diffusion and the activation energy consists only of the 
activation energy for cation vacancy migration. 

The expected Arrhenius plot for cation self-diffusion in KC1 doped with Ca++ 
is shown in Fig. 8.13. The two-part curve reflects the intrinsic behavior at high 
temperatures and extrinsic behavior at low temperatures. 

range 

1 IT 

Figure 8.13: 
doped with Ca++. The intrinsic and extrinsic ranges have different activation energies. 

Arrhenius plot for self-diffusivity on the cation sublattice, *DK, in KC1 
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Crystal Self- D i f h i o n  in Nonstoichiometric Materials. Nonstoichiometry of semicon- 
ductor oxides can be induced by the material's environment. For example, materials 
such as FeO (illustrated in Fig. 8.14), N O ,  and COO can be made metal-deficient 
(or 0-rich) in oxidizing environments and Ti02 and ZrOz can be made 0-deficient 
under reducing conditions. These induced stoichiometric variations cause large 
changes in point-defect concentrations and therefore affect diffusivities and electri- 
cal conductivities. 

In pure FeO, the point defects are primarily Schottky defects that  satisfy mass- 
action and equilibrium relationships similar to  those given in Eqs. 8.39 and 8.42. 
When FeO is oxidized through the reaction 

X 
FeO + - 0 2  = FeOl+, (8.52) 

2 

each 0 atom takes two electrons from two Fe++ ions, as illustrated in Fig. 8 . 1 4 ~ ~  
according t o  the reactions 

(8.53) 

corresponding to  the combined reaction, 

(8.54) 
1 
2 

2Fe++ + - 0 2  = 2Fe"' + 0-- 

Electrical neutrality requires that a cation vacancy be created for every 0 atom 
added, as in Fig. 8.14b; this, combined with site conservation, becomes 

(8.55) 
1 
2 

2Fege + - 0 2  = 2Febe + 0; + V:e 

t e  

Fe+++ 

I o= y o= 1 o= ) 

Fe+++ 

Figure 8.14: Addition of R ncwtral 0 atom to FeO to produce 0-rich (metal-deficient) 
oxide. (a) An 0 atom receives two electrons from Fe" ions in the hulk material. (b) The 
final structure contains defects in the forni of t,wo Fc+++ ions and a cation (Fe++) vacancy. 
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which can be written in terms of holes, h,  in the valence band created by the loss 
of an electron from an Fe++ ion producing an Fe+ft ion, 

1 
- 0 2  2 = 0; + Vge + 2h;e (8.56) 

hFe = FeFe - Fege 

Equation 8.56 predicts a relationship between the cation vacancy site fraction 
and the oxygen gas pressure. The equilibrium constant for this reaction is important 
for oxygen-sensing materials: 

(8.57) 

For the regime in which the dominant charged defects are the oxidation-induced 
cation vacancies and their associated holes, the electrical neutrality condition is 

[ G e l  = 2 [ G e l  (8.58) 

Therefore, inserting Eq. 8.58 into Eq. 8.57 and solving for [Vke] yields 

(8.59) 

The cation self-diffusivity due to the vacancy mechanism varies as the one-sixth 
power of the oxygen pressure at constant temperature and the activation energy is 

(8.60) 

The dominance of oxidation-induced vacancies creates an additional behavior 
regime. The effect of this additional regime on diffusivity behavior is illustrated 
in Fig. 8.15. Other types of environmental effects create defects through other 
mechanisms and may lead to other behavior regimes. 

1 IT 

Slope a Hcv + Hfi2 \ 

Figure 8.15: Arrhenius plot for self-diffusivity on the cation sublattice, *DFc, in FeO 
made O-rich by exposure to oxygen gas at a pressure Poz or doped with an aliovalent 
impurity. Three regimes of behavior are possible. each with a different activation energy. 



8.3: DIFFUSIONAL ANELASTICITY (INTERNAL FRICTION) 183 

8.3 DIFFUSIONAL ANELASTICITY (INTERNAL FRICTION) ‘ 

In this section, pedagogical models for the time dependence of mechanical response 
are developed. Elastic stress and strain are rank-two tensors, and the compliance (or 
stiffness) are rank-four material property tensors that connect them. In this section, 
a simple spring and dashpot analog is used to  model the mechanical response of 
anelastic materials. Scalar forces in the spring and dashpot model become analogs 
for a more complex stress tensor in materials. To enforce this analogy, we use the 
terms stress and strain below, but we do not treat them as tensors. 

For an ideally elastic material, the stress is linearly related to the strain by 

u = C& (8.61) 

(where the constant C represents the elastic stiffness), and conversely, the strain is 
linearly related to the stress by 

& = Su (8.62) 

(where the constant S = 1/C represents the compliance). For each level of stress, 
such a material responds immediately with a unique value of the strain. How- 
ever, in many real materials, stress-induced diffusional processes cause additional 
time-dependent anelastic strains and nonlinear behavior. This anelastic behavior 
degrades the mechanical work performed by the stresses into heat so that the ma- 
terial exhibits internal friction, which can damp out mechanical oscillations in a 
material. 

Anelasticity therefore affects the mechanical properties of materials. As seen 
below, its study yields unique information about a number of kinetic processes in 
materials, such as diffusion coefficients, especially at  relatively low temperatures. 

8.3.1 

Anelastic behavior can be produced by the stress-induced diffusional jumping of 
anisotropic point defects. An example of such a process is described in Exercise 8.5, 
in which an f.c.c. metal contains a concentration of self-interstitial point defects hav- 
ing the (100) split-dumbbell configuration (see Fig. 8.5d). Each defect produces a 
tetragonal distortion of the crystal, elongating it preferentially along its dumbbell 
axis. The three types of sites in the crystal in which the interstitials can lie with 
their axes along [loo], [ O l O ] ,  or [ O O l ]  exist in equal numbers and will be occupied 
equally in the absence of any stress. However, if the crystal is suddenly stressed uni- 
axially along [loo], an excess of dumbbells will jump to sites where they are aligned 
along [loo], because the crystal is elongated along the direction of the applied stress 
and the applied stress performs work. This principle applies to loading along the 
other cube directions as well. (Note that this is a good example of LeChatelier’s 
principle.) When the stress is released suddenly, the defects repopulate the sites in 
equal numbers and the crystal regains its original shape. The relaxation time for 
this re-population is 

(8.63) 

where r is the total jump frequency of a dumbbell (see Exercise 8.5). This process 
therefore causes the crystal to elongate or to contract in response to the applied 

Anelasticity due to Reorientation of Anisotropic Point Defects 

2 r = -  
317 



184 CHAPTER 8. DIFFUSION IN CRYSTALS 

stress at a rate dependent upon the rate at which the dumbbells jump between the 
different types of sites. 

The overall response of the crystal to  such a stress cycle is shown in Fig. 8.16. 
When the stress uo is applied suddenly, the crystal instantaneously undergoes an 
ideally elastic strain following Eq. 8.62. As the stress is maintained, the crystal un- 
dergoes further time-dependent strain due to the re-population of the interstitials. 
When the stress is released, the ideally elastic strain is recovered instantaneously 
and the remaining anelastic strain will be recovered in a time-dependent fashion as 
the interstitials regain their random distribution. 

Stress oo 
removed Stress t applied 

Time, t 

Figure 8.16: 
applied suddenly at t = 0, held constant for a period of time, and then suddenly removed. 

Strain vs. time for an anelastic solid during a stress cycle in which stress is 

General Formulation of Anelastic Behavior. Anelastic behavior where the strain is 
a function of both stress and time may be described by generalizing Eq. 8.62 and 
expressing the compliance in the more general form 

(8.64) 

The initial value of the compliance, corresponding to 

S(0) = su (8.65) 

is the unrelaxed compliance,  which corresponds to ideal elastic behavior because 
there is no time for point-defect re-population. The value of S ( t )  at long times, 
corresponding to 

s(m) = SR (8.66) 

is the relaxed compliance,  since it includes the maximum possible additional strain 
due to the stress-induced re-population of the defects. Clearly, SR > Su. 

Suppose now that the crystal is subjected to a periodic applied stress of ampli- 
tude uo corresponding to 

g = uoeiWt (8.67) 

The resulting strain is also periodic with the same angular frequency but generally 
lags behind the stress because time is required for the growth (or decay) of the 
anelastic strain contributed by the point-defect re-population during each cycle. 
The strain may therefore be written 

& = &oei(wt--4) (8.68) 
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where q5 is the phase angle by which the strain lags behind the stress. Note that 
4 = 0 at  both very high and very low frequencies. At very high frequencies, the 
cycling is so rapid that the point defects have insufficient time to repopulate and 
therefore make no contribution to the strain. At very low frequencies, there is 
sufficient time for the defects to re-populate (relax) at  every value of the stress, 
and the stress and strain are therefore again in phase. To proceed with the more 
general intermediate case, it is convenient to write the expression for the strain, 

E = E l e ' w t  - i E 2 e i W t  (8.69) 

In this formulation, the first term on the right-hand side is the component of E that 
is in phase with the stress, and the second term is the component that lags behind 
the stress by 90". Also, 

- E 2  = t a n 4  (8.70) 
E l  

The compliance (again the ratio of strain over stress) is then 

E l  . E 2  
- 1- - _  - ( ~ 1  - 2 ~ 2 )  eiWt 

S ( W )  = 
uo eiWt u o  g o  

(8.71) 

Because the strain lags behind the stress, the stress-strain curve for each cycle 
consists of a hysteresis loop, as in Fig. 8.17, and an amount of mechanical work, 
given by the area enclosed by the hysteresis loop, 

A W =  ode (8.72) 

will be dissipated (converted to heat) during each cycle. To determine AW, only 
the part of the strain that is out of phase with the stress must be considered. The 
stress and strain in Eq. 8.72 can then be represented by 

f 

u = uo coswt and E = ~2 cos(wt - 7r/2) (8.73) 

and 
2 W / T  

AW = -O ,E~L (8.74) 

Figure 8.17: 
subjected to an oscillating stress. 

Hysteresis loop shown by the stress-strain curve of an anelastic solid 
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The energy dissipated can be compared with the maximum elastic strain energy, 
W ,  which is stored in the material during the stress cycle. Because the elastic strain 
is proportional to  the applied stress, W is equal to just half of the product of the 
maximum stress and strain (i.e., W = oo&1/2), and therefore 

E2 
- = 27r- 
AW 
W El 

(8.75) 

AW/W can be measured with a torsion pendulum, in which a specimen in the 
form of a wire containing the point defects is made the active element and strained 
periodically in torsion as in Fig. 8.18. If the pendulum is put into free torsional 
oscillation, its amplitude will slowly decay (damp out), due to the dissipation of 
energy. As shown in Exercise 8.20, the maximum potential energy (the elastic 
energy, W )  stored in the pendulum is proportional to the square of the amplitude 
of its oscillation, A. The amplitude of the oscillations therefore decreases according 
to 

where N is the number of the oscillation and it is realistically assumed that AW << 
W. The logarithmic decay of the amplitude is the logarithmic decrement, designated 
by 6.  Therefore, 

(8.77) 

Measurements of 6 yield direct information about the magnitude of the energy dis- 
sipation and the phase angle. $ measures the fractional energy loss per cycle due to 
the anelasticity and is often termed the internal friction. According to the discus- 
sion above, 6 will be a function of the frequency, w; should approach zero at  both 
low and high frequencies; and will have a maximum at some intermediate frequency. 
The maximum occurs at a frequency that is the reciprocal of the relaxation time 
for the re-population of the point defects. 

Specimen k 

Figure 8.18: 
to an oscillating stress. 

Torsion pendulum in which the specimen is in the form of a wire subjected 

Analog Model for Standard Anelastic Solid. To find the dependence of 6 on fre- 
quency, a model that relates the stress and strain and their time derivatives must 
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be constructed. Figure 8.19’s analog model for a standard anelastic solid serves 
this purpose; it consists of two linear springs, S1 and S2, and a dashpot, D ,  which 
is a plunger immersed in a viscous fluid. The dashpot changes length at a rate 
proportional to the force exerted on it. This model gives a good account of the 
anelastic behavior illustrated in Fig. 8.16. When a force, F ,  is first applied, S2 
elongates instantaneously. At the same time, in the upper section of the model, F 
is fully supported by D and the force on S1 is zero. However, with increasing time, 
D extends and the force is gradually transferred to S1, which extends under its 
influence. Eventually, the force is fully transferred, as both S1 and S2 experience 
the full force while D experiences nothing. At this point, the model reaches its 
fullest extension. The extension remains constant until F is suddenly removed. S2 
then contracts instantaneously and S1 gradually relaxes by forcing D back to its 
original extension and the model recovers its original state. S2 therefore accounts 
for the ideal elasticity of the solid, and the combination of S1 and D accounts for 
the anelasticity. 

The linear spring element S1 will undergo an extension Axsl according to 

Axsl = aslFs1 (8.78) 

where Fsl is the force on S1 and as1 is a constant. Similarly for S2, 

Also, for the dashpot, 

(8.80) 

where AXD is the extension of D, FD is the force on D ,  and a D  is a constant. In 
addit ion, 

A X S ~  = A X D  (8.81) 

F = F.92 (8.82)  

F 

t 

F 

(8.83) 

Figure 8.19: Analog model for a standard anelastic solid. 
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Finally, the stress, 0,  and strain, E ,  may be expressed 

and 

(8.85) 
1 

a,  
o = - F  

where a,  and a,  are constants. By combining Eqs. 8.78-8.85, the following equa- 
tion, which contains three independent constants (bracketed) corresponding to the 
three elements in the model, can be obtained: 

Equation 8.86 may be solved for the time period in Fig. 8.16 during which the stress 
is held constant at uo. Under this condition, it reduces to 

(8.87) 

Equation 8.87’s general solution can be written 

The constant of integration, A, can be evaluated by recalling that at t = 0 only S2 
is extended. The strain is then 

~ ( 0 )  = U ~ A X S ~  = aEas2Fs2 = u , u ~ ~ F  = ~ , ~ s 2 ~ , u ,  (8.89) 

and therefore from Eq. 8.88, A = a,a,asl and 

(8.90) 

Examining the forms of ~ ( 0 )  and ~ ( m )  and comparing the results with Eqs. 8.64- 
8.66 shows that a,a,asz = Su and a,a,asl = SR - Su. Also, the anelastic 
relaxation occurs exponentially, in agreement with the results in Exercise 8.5, and 
the relaxation time corresponds to r = U S ~ / U D .  Equation 8.90 then takes the 
simpler form 

(8.91) 

) E ( t )  = a,auas2a, + a,a,as10, (1 - e-aDt’a= 

E ( t )  = suuo + (SR - SrJ)ao(l- e+) 

and Eq. 8.86 takes the form 

(8.92) 

Frequency Dependence of  the Logarithmic Decrement. The frequency dependence 
of S can now be found. Putting Eqs. 8.67 and 8.69 into Eq. 8.92 and equating the 
real and imaginary parts yields two equations which can be solved for ~1 and ~2 in 
the forms 

1 sR + - w2r2 
E l  = ffo (su + (8.93) 
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Therefore, 

Because ( S R  - Su) << Su in the majority of cases, 

(8.94) 

(8.95) 

(8.96) 

The decrement 6(w) forms a Debye peak, as shown in Fig. 8.20. 
The maximum damping (anelasticity) occurs when the applied angular frequency 

is tuned to  the relaxation time of the anelastic process so that w r  = 1. Also, S(w) 
approaches zero at  both high and low frequencies, as anticipated. 

0 In cot 

Figure 8.20: 
exhibits a Debye peak at l n w  = 0 (or w = l / ~ ) .  

Curve of the decrement, 6(w) ,  according to Eq. 8.96, vs. l nu r .  The curve 

8.3.2 Determination of Diffusivities 

The preceding analysis provides a powerful method for determining the diffusivities 
of species that produce an anelastic relaxation, such as the split-dumbbell inter- 
stitial point defects. A torsional pendulum can be used to find the frequency, wp, 
corresponding to the Debye peak. The relaxation time is then calculated using 
the relation r = l / w p ,  and the diffusivity is obtained from the known relation- 
ships among the relaxation time, the jump frequency, and the diffusivity. For the 
split-dumbbell interstitials, the relaxation time is related to the jump frequency by 
Eq. 8.63, and the expression for the diffusivity (i.e., D = l?a2/12), is derived in 
Exercise 8.6. Therefore, D = a2/18r.  This method has been used to determine 
the diffusivities of a wide variety of interstitial species, particularly at  low tem- 
peratures, where the jump frequency is low but still measurable through use of a 
torsion pendulum. A particularly important example is the determination of the 
diffusivity of C in b.c.c. Fe, which is taken up in Exercise 8.22. 
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EXERCISES 

8.1 It has sometimes been claimed that the observation of a Kirkendall effect 
implies that  the diffusion occurred by a vacancy mechanism. However, a 
Kirkendall effect can be produced just as well by the interstitialcy mechanism. 
Explain why this is so. 

Solution. Substitutional atoms o f  type 1 may diffuse more rapidly than atoms of type 
2 if they diffuse independently by the interstitialcy mechanism in Fig. 8.4. To sustain the 
unequal fluxes, interstitial-atom defects can be created at  climbing dislocations acting 
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as interstitial sources in the region richer in 1 and destroyed at  dislocations acting as 
interstitial sinks in the region poorer in 1. This will cause the region richer in 1 t o  
contract and the other region t o  expand, thereby producing a Kirkendall efFect. 

8.2 For copper self-diffusion by the vacancy mechanism, demonstrate that Eq. 7.14 
predicts that the pre-exponential “attempt” frequency factor is on the order 
of 1013 ss l .  Use a harmonic one-particle model for the configuration illus- 
trated in Fig. 8.3. For Cu, Young’s modulus is E = 12 x lo1’ MPa, the lattice 
constant is a = 0.36 nm, the atomic weight is 63.5 g, and the structure is f.c.c. 
(12 nearest-neighbors). 

0 Assume a simple ball-and-spring model in which the atoms are replaced 
by balls of mass m, which are coupled by nearest-neighbor bonds rep- 
resented by linear springs having a restoring force spring constant, s. 
Make reasonable approximations to estimate the restoring force experi- 
enced by the atom as it vibrates along its jump path. Remember that in 
the one-particle model the environment of the jumping particle remains 
fixed. 

Solution. A value of the spring constant, S, can be obtained by applying a tensile 
stress, 0, t o  the ball and spring model along [loo], finding the elastic strain, E ,  resulting 
from the stretching o f  the springs, and then using the relation 

u = EE (8.97) 

Each atom in a (200) plane has four nearest-neighbors lying in an adjacent (200) plane. 
The springs connecting it t o  these nearest-neighbors lie a t  45” with respect t o  [loo]. 
Because there are 2/a2  atoms per unit area in a (200) plane, the force stretching each 
spring along the spring axis due t o  the applied stress is 

a2u 

4 4  
FS = - 

The extension o f  each spring is then 

Fs ALs  = - S 

and the strain along [loo] is 
2 f i A L s  

& =  
a 

(8.98) 

(8.99) 

(8.100) 

Therefore, using Eqs. 8.97, 8.98, 8.100, and 8.99, 

E = - = - -  2 Fs = l s  (8.101) 

and S = a E / 2  = 2.2 x lo3 MPa. The restoring force experienced by an atom vibrating 
in the direction o f  a nearest-neighbor vacancy (e.g., atom A in Fig. 8.3) in the one- 
particle model can be estimated. Atom A is in a cage o f  11 nearest-neighbors. These 
include atoms 1, 2 ,  3, and 4 in the window in the ( l i 0 )  plane on one side, and four 
atoms (including atoms 5 and 6) in a similar window configuration in the (1 TO) plane on 
the back side o f  atom A,  atom 9 in the same ( 1 i O )  plane as atom A along with another 
atom symmetrically disposed on the other side o f  A in the direction [ O l l ] ,  and a final 
atom behind A along [ O l i ] .  Making the one-particle assumption that the environment 
of the jumping particle is fixed, simple geometry shows that i f  the A atom moves toward 

E a A L s  a 
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the vacancy by the distance AL, eight springs will change their lengths by AL/2 t o  first 
order when 6L << a, and one spring will stretch by AL. When the forces induced by 
these changes in spring length are resolved along [ O i l ] ,  the total restoring force on A 
is found t o  be 3 s  AL: the total effective linear restoring-force constant is then p = 3 s .  
Putt ing this value into Eq. 7.14 yields v M 0.4 x 1013 s-'. 

8.3 The self-diffusivity in an f.c.c. crystal for diffusion by a vacancy mechanism 
can be written 

*D = gfa2v  ,(s~+s:)/k,-(H~+H:)/(kT) 

where g = 1. Find the value of g for self-diffusion in a b.c.c. crystal. 

Solution. The diffusion of the atoms will be correlated because o f  the vacancy ex- 
change mechanism and, therefore, using Eq. 7.52, 

(8.102) 
r r 2  

D = - f  
6 

But  
r = x;qr (8.103) 

where X;q and Tv are the equilibrium atom fraction of vacancies and the vacancy jump 
rate, respectively. Also, r2  = (3/4)a2 and r v  = 8r;, so that 

*D = X;.Pr;a2f (8.104) 

Using Eqs. 8.13 and 8.18, 

*D = f a Z v  , ( s g + s : ) / k e - ( H g + H : ) / ( k T )  (8.105) 

and therefore g = 1. 

8.4 An interstitial C atom will generally diffuse in b.c.c. Fe by jumping almost 
exclusively between nearest-neighbor interstitial sites such as sites 1 and 2 
in Fig. 8.8b. However, very occasionally it may jump between next-nearest- 
neighbor sites such as 1 and 3. Find an expression for the overall diffusivity 
of the C atoms, 4, as a result of both nearest-neighbor and next-nearest- 
neighbor jumps. 

Solution. The diffusion is uncorrelated and therefore 

Let and r& be the frequencies for type 1 + 2 (A-type) and type 1 -+ 3 (B-type) 
jumps, respectively, in Fig. 8.8b. Then, because there are four nearest-neighbors for 
A-type jumps and eight next-nearest-neighbors for B-type jumps, the frequencies for 
A-type and B-type jumps are = 4 r a  and FB = 8FL, respectively. The mean-square 
displacement during t ime 7 is then 

(8.107) 

and 

Therefore, 

(8.109) 
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The quantities u 2 r ~ / 2 4  and U 2 r B / 1 2  may be regarded as the hypothetical difFusivities 
o f  the C atoms if they are allowed t o  make only A- type and B-type jumps, respectively, 
and therefore Eq. 8.109 may be written 

01 = DIA + DIB (8.110) 

where DIA and DIB are the two hypothetical diffusivities. In general, DIB << DIA. 

8.5 As discussed in Section 8.3.1, the (100) split-dumbbell self-interstitial in the 
f.c.c. structure can exist with its axis along [loo], [ O l O ] ,  or [ O O l ] .  Under stress, 
certain of these orientation states are preferentially populated due to the 
tetragonality of the defect as a center of dilation. When the stress is suddenly 
released, the defects repopulate the available states until the populations in 
the three states become equal. Show that the relaxation time for this re- 
population is 

r) 
L 

' T = -  
3 r  

(8.11 1) 

where r is the total jump frequency of a dumbbell. 

Derive the differential equation that describes the rate at which [loo] 
dumbbells convert to [ O l O ]  and [ O O l ]  dumbbells, and then solve the equa- 
tion. 

Solution. According t o  Fig. 8.6, a [loo] dumbbell can jump into a neighboring site 
in eight different ways, four with [OlO]  orientations and four with [OOl ]  orientations. 
Therefore, 

-- - -~r/cllOOl + 4r/c[0101 + 4r/cioo11 (8.112) 

where I?' is the jump rate into a specific adjacent site, and the CIS are the concentra- 
tions in the three orientations. However, the total concentration, ctot, is constant, and 
therefore 

Ctot = c[lool + c[olol + c[ooll (8.113) 

Combining Eqs. 8.112 and 8.113 yields 

dc[100] 

dt 

Integrating and applying the condition that  c[lool (t = m) = ctot/3, 

Because the total jump rate is r = 8r', the relaxation t ime is 

1 2 
'T=12r'=F 

(8.114) 

(8.115) 

(8.116) 

8.6 It is possible to express the diffusivity of the split-dumbbell self-interstitial in 
an f.c.c. crystal (illustrated in Fig. 8.6) in terms of its total jump frequency, I?, 
and the lattice constant of the crystal, a. Show that the following approaches 
lead to the same result. 

Approach 1: Start with Eq. 8.3. 
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Approach 2: Start by determining the net flux between two adjacent (002) 
planes when the gradient of the interstitial concentration is normal to 
these planes. 

Solution. 

Approach 1: As seen in Fig. 8.6, the jump distance for the dumbbell is equal t o  the 
displacement o f  its center of mass, a / d .  Every neighboring site t o  the dumbbell 
is equally probable for the next jump, so f = 1. Thus, 

Approach 2: Alternatively, we can analyze diffusion arising from a gradient of inter- 
stitial concentration along [002] in Fig. 8.6. Consider the jumping of interstitials 
between two adjacent (002) planes. If there are c’ interstitials per unit area with 
centers of mass on plane A ,  one-third will have their axes along [loo], one-third 
along [ O l O ] ,  and one-third along [OOl ] .  Each [ O O l ]  interstitial on plane A has four 
sites on an adjacent (002) plane (i.e., plane B )  in which t o  jump. Each [loo] inter- 
stitial and [OlO]  interstitial has two sites in which t o  jump. The total concentration 
o f  interstitials per unit volume associated with plane A is c = c’ / (a /2)  = 2c’/a 
and the flux from plane A t o  plane B is 

Expanding c t o  first order, the flux from plane B t o  plane A is 

and the net flux is 

2 2 / a c  -a r - 
3 dz 

Therefore, 01 = (2 /3)a2r ’ .  However, the total jump rate is r = 8r’ and 

in agreement with the results of Approach 1 

8.7 Consider the diffusion of particles along x in a dilute system where no fields 
are present and there is only a concentration gradient. Under these conditions, 
the potential energy of the system will vary as shown in Fig. 8.21a when a 
diffusing particle jumps from a site in a plane at x = xo into an equivalent 
site in an adjacent plane at  x = xo + a. Suppose now that a conservative field 
is imposed that interacts with the diffusing particles so that the potential 
energy varies with the position of the jumping particle as shown in Fig. 8.21 b. 
AU is the increase in the potential energy when a particle advances by one 
planar spacing and is given by 

d$ AU = a- 
ds 

(8.117) 
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Figure 8.21: 
field that interacts with jumping particles. 

Barrier to  atom jumping. (a) No field present. (b) After imposition of a 

where 1c, is the potential associated with the imposed field. Obtain an expres- 
sion for the net flux of particles between planes and show that it will have 
the form of Eq. 3.48 with the electrical potential, 4,  replaced by $. 

Assume that the barrier to  jumping is modified by the field as indicated 
by Fig. 8.21b and that the quantity AU/2 << kT. 

Solution. The net forward flux along z between planes can be written as 

where A is a constant. Expanding exponentials which involve the powers *AU/(ZkT) 
t o  first order and neglecting higher-order terms yields 

Finally, identifying aAexp[-Uo/(kT)] with D and using Eq. 8.117, 

dc DcdlC, 
dx kT dx 

J = -D- - _ _  

(8.119) 

(8.120) 

8.8 Calculate the correlation factor for tracer self-diffusion by the vacancy mech- 
anism in the two-dimensional close-packed lattice illustrated in Fig. 8.22. The 
tracer atom at site 7 has just exchanged with the vacancy, which is now at 
site 6. Following Shewmon [4], let p k  be the probability that the tracer will 
make its next jump to its kth nearest-neighbor (i.e., a 7 3 k jump). tlk is the 
angle between the initial 6 + 7 jump and the 7 + k jump. The average of 
the cosines of the angles between successive tracer jumps is then 

z 

(cos 6 )  = p k  COS e k  (8.12 1) 
k=  1 

and f is given by Eq. 8.29. The quantity p k  can be expressed in the form 

(8.122) 
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where Pi = ( l / ~ ) ~  is the probability that the vacancy on its ith jump will 
make a k -+ 7 jump (thereby producing a 7 -+ k tracer jump) for the first 
time. n i k  is the number of different paths that will allow the vacancy to 
accomplish this, and z = 6 is the number of nearest-neighbors. 

Calculate p k ,  (cos e) ,  and f if all vacancy trajectories longer than four jumps 
are neglected. 

Figure 8.22: 
exchanged with the vacancy at 6. 

Two-dimensional close-packed lattice. The tracer atom at 7 has just 

Solution. First evaluate the n,k in Eq. 8.122. Consider k = 6 first. For i = 1, the 
only possibility is a direct 6 -+ 7 jump. Therefore, 7216 = 1. For i = 2, no possible 
paths exist, so 7226 = 0. For i = 3, there are five paths, so 7236 = 5. For i = 4, there 
are eight paths, so 7246 = 8. 

Similar inspections produce the results shown in Table 8.1 for k = 5 , 4 ,  and 3. Note 
that by symmetry the results will be the same for k = 1 and k = 5 and for k = 2 and 
k = 4, respectively. Putt ing these results into Eq. 8.122, 

Table 8.1: Values of n i k  in Eq. 8.122 

(8.123) 

6 1  0 5 8 
5 0  1 1 11 
4 0  0 1 2 
3 0  0 0 2 
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Substituting these values into Eq. 8.121 yields 

(cosej = 0.1960 (-1) + 0.0409 

= -0.2293 

8.9 

Finally, 

(8.124) 

When all relevant trajectories including those beyond i = 4 are taken into account, 
the true value of f is 0.560 [13]. The truncation at i = 4 therefore causes f t o  be 
overestimated by about 12%. 

Consider the diffusion of a randomly walking diffusant in the h.c.p. struc- 
ture, which is composed of close-packed basal planes stacked in the sequence 
ABABA..  . . The lattice constants are a and c. The probability of a first- 
nearest-neighbor jump within a basal plane (jump distance = a )  is p ,  and the 
probability of a jump between basal planes (jump distance = d m )  
is 1 - p .  If axes 5 1  and x2 are located in a basal plane, derive the following 
expressions for the diffusivities Dll and 0 3 3 :  

(8.125) 

(8.126) 

where N, is the total number of jumps in time, 7 .  Note that we have em- 
ployed a principal coordinate system in which the diffusivity tensor is given 
by Eq. 4.66. 
Solution. We will determine the Di, by the general method used t o  obtain Eq. 8.11. 
According t o  Eq. 4.66, the diffusion is isotropic in directions perpendicular t o  23.  We 
shall therefore determine the net flux, Pet, parallel t o  21 across the C D  plane illustrated 
in Fig. 8.23. 

Here, ni is the concentration on plane i, I?; is the jump frequency from one site t o  a 
single neighboring site in the basal plane, and is the jump frequency from a site in 

Figure 8.23: 
X's lie in the B plane. 

View of h.c.p. structure looking along -23. Open circles lie in the A plane; 
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a basal plane t o  a single neighboring site in an adjacent basal plane. Therefore, 

0. 
o ( ~ 2  - n3)  + &(nz - T Z ~ )  + -r;(nl - 7 ~ ~ )  (8.129) pet = J (+)  - J(t) = -a' 3 

2 2 

Making the usual Taylor expansions for the concentration differences yields 

Now 

(8.131) 

where ro is the total jump frequency for jumping in the basal plane and I?, is the total 
jump frequency for jumping between basal planes. Using Eqs. 8.130 and 8.131, 

(8.132) 

The difFusivity 0 3 3  is obtained by analyzing the net flux parallel t o  2 3  passing between 
two adjacent basal planes, A and B.  In this case, 

(8.133) Jnet = J(*) - J ( C )  = 3 -TZACr, / 3  - -TZBCrL = 'Crk(TZA - n B )  
2 2 2 

Using a Taylor expansion t o  evaluate ( T Z A  - T Z B )  and employing Eq. 8.131, 

(8.134) 

Show that the results obtained in Exercise 8.9 (i.e., Eqs. 8.125 and 8.126), 
can be obtained in a simpler way by using Eq. 7.53 in one dimension if ( R 2 )  is 
taken as the mean value of the squares of the jump vector components along 
the chosen direction. 

Solution. For difFusion along axis 21 in Fig. 8.23, Eq. 7.53 is written 

where ( r f )  is the mean square of the jump vector components along axis 1: 

Putt ing Eq. 8.136 into Eq. 8.135 and using the relation r = N T / r ,  

Using the same method for diffusion along 2 3  yields 

and 

(8.135) 

(8.136) 

(8.137) 

(8.138) 

(8.139) 
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8.11 

8.12 

8.13 

Exercise 7.4 demonstrated that the mean-square displacement during random 
three-dimensional diffusion in a primitive orthorhombic crystal is equal to 
the sum of the mean-square displacements achieved during one-dimensional 
diffusion along each of the three coordinate axes. 

Demonstrate this result for the diffusion of a randomly walking diffusant in 
an h.c.p. crystal using the information and results in Exercises 8.9 and 8.10. 

Solution. Using the same procedure as in Exercise 7.4, 

and the mean-square displacement is then 

= 20117 + 2Dll.r + 2 0 3 3 7  

But  according t o  Eq. 7.31, 

Because ( r ' )  = a 2 p  + (1 - p)(a2/3) + (1 - p)c2/4, 

(R') = N(T') (8.142) 

Substituting Eqs. 8.125 and 8.126 into Eq. 8.143 yields the relation 

( R 2 )  = 20117 + 20117 + 20337 (8.144) 

which is consistent with Eq. 8.141. 

Exercise 7.5 shows explicitly for a random walker on a primitive-cubic lattice 
that the mean values of the cosOi,i+j terms in Eq. 7.49 sum to zero and, 
therefore, that f = 1. Use Eq. 8.29 to demonstrate the same result. 

Solution. First evaluate (cosQ). Possible values of cosQ are 1, -1,O,O,O,  and 0, all 
of which occur with equal probability. Therefore, (COSQ) = 0 and 

1 - (COSQ) 

1 + (cos 0) 
f =  = 1  (8.145) 

Using Eq. 7.52, calculate an expression for self-diffusivity by the vacancy 
mechanism in a primitive cubic lattice. Suppose that the back-jump probabil- 
i t y  (i.e., an atom returns to the site from which it jumped previously) is p .  
Consider first-neighbor jumps only. 

Evaluate the case p = 0 and compare it to an uncorrelated random walk. 

Solution. There are six first-neighbor sites in the primitive cubic lattice, and the first- 
neighbor jump distance, T ,  is equal t o  the lattice constant, a.  Once an atom has jumped 
into a given site, the probability that it will next jump into any o f  i t s  nearest-neighbor 
sites (with the exception of the site from which it just jumped) is (1 - p)/5. Therefore, 

U " " 
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and using Eq. 8.29, 

(8.147) 1 + (case) - 3(i - p )  
1 - (case) 2 + 3p f =  - 

The self-diffusivity is then 

* r(2) ra2 1 - p  D = -  f = -  
2 2+3p 

(8.148) 

In the random case when p = 1/6, f = 1. In the most correlated case when p = 1, 
f = 0. When p = 0 and the atom cannot jump backward t o  erase i t s  previous jump, 
f = 3/2 and diffusion is enhanced relative t o  the random, uncorrelated case. 

8.14 A computer simulation of diffusion via the vacancy mechanism is performed 
on a square lattice of screen pixels with a spacing of a = 0.5 mm. The 
computer performs the calculations so that the vacancy jumps at a constant 
rate of r = ~ O O O S - ~ .  The simulation cell is a square of edge length 5 cm 
containing 10,000 pixels. There is just one vacancy in the simulation cell: and 
as it moves by nearest-neighbor jumps, it remains within the cell (by using 
periodic boundary conditions or reflection at  the borders). 

(a) Estimate the vacancy diffusion coeficient in this simulation if the va- 
cancy moves by a random walk. 

(b) One tracer atom, represented by a specially marked pixel, is initially 
located at  the center of the simulation cell. The vacancy is introduced 
in the cell at  a random location and then moves by a random walk. 
Estimate the value of the tracer diffusion coeficient in this simulation. 

( c )  Estimate the average time for the tracer atom to move from the center 
of the cell to  the cell border. 

Solution. 

(a) Diffusion o f  a vacancy in a lattice is  uncorrelated, so f = 1. The vacancy diffusivity 
DV for this two-dimensional diffusion is 

= 6.25 x m2 s-' 
rr' r r 2  1000 s-' 0.5' mm2 D v  = -f = - = 
4 4 4 

(b) Self-diffusion of a tracer by vacancy exchange is correlated, so in this square lattice 
we have f E (2 - l ) / ( z  + 1) % 0.6. The tracer self-diffusivity *D is 

= 6.25 x rn's-' x x 0.6 = 3.8 x lo-' m's-' 

(c) A very simple estimate can be made by using the relation (R') = 4 *Dt and taking 
R E 2.5 cm. This gives 

= 4.1 x 104 
(R') = (2.5 cm)' 

t E -  
4*D 4 x 3.8 x lo-' rn2 s-l 

which is probably an overestimate. The time required is the average time for the 
tracer atom t o  first hit the wall. Also, depending on where along the wall the 
tracer first hits, the path will be somewhat longer because o f  the square shape of 
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the simulation cell. Nevertheless, this method gives an estimate. A more accurate 
value could be determined most easily by doing a computer simulation and keeping 
statistics on the times for the tracer t o  "hit the wall." 

8.15 Schottky defects form at equilibrium in stoichiometric ZrO2. Show that the 
equilibrium site fraction of anion vacancies is given by 

Solution. First write the Schottky reaction: 

I,,, 

null = V,, + 2Vg0 (8.149) 

The corresponding mass-action equilibrium equation for this reaction is 

(8.150) 

where Gfs is the free energy of formation o f  a Schottky defect, which in this case consists 
o f  a cation vacancy and two anion vacancies. Then, charge neutrality requires that 

2[v;:'] = [VO"] (8.151) 

Substituting Eq. 8.151 into Eq. 8.150 yields 

8.16 Schottky defects are the predominant equilibrium point defects in stoichio- 
metric zirconia ZrO2 (see Exercise 8.15). Suppose that the soluble oxide 
Ta2O5 is added to ZrO2. Assume that cation vacancies form without the 
formation of any interstitial defects. 

(a) Find an expression for the equilibrium cation vacancy site fraction that 

(b) Discuss how the self-diffusion of the cations will be affected by the ad- 

will form. 

dition of Ta2O5. 

Solution. 

(a) When two units of Tan05 are added t o  ZrOz, four Ta ions will be put into four 
existing Zr sites. The four displaced Zr ions will be put into four new normal Zr 
cation sites. The ten incoming 0 ions will be put into new normal 0 sites, and 
one Zr ion will be removed from its existing site and placed in a new normal Zr 
site, thereby creating a cation vacancy. This process preserves electrical neutrality 
and may be expressed 

2Ta205 '3 100; + 4Ta;, + VLy (8.153) 

In addition t o  this reaction, V&" and VG* defects will be produced by the Schottky 
reaction (Eq. 8.149), and the mass-action equilibrium in Eq. 8.150 will hold. The 
condition for electrical neutrality may be obtained by realizing that the introduction 
o f  1 unit of Ta;, produces 1 /4  unit of VLy'. Also, for every unit o f  VGo formed, 
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1/2 unit of VLf’ is produced. Therefore, the charge-balanced site fraction of V i r  
must be 

(8.154) [Vd:”] = 4 [Ta&] + 5 [Vi?] 
1 1 

Combining Eq. 8.154 and Eq. 8.150 yields 

(8.155) 

(b) The self-diffusivity on the cation sublattice will be proportional to the cation va- 
cancy site fraction, [VA:’]. At high temperatures, the numbers of anion and 
cation vacancies produced by the Schottky-pair reaction will be much larger than 
the number of Tai, defects, so that 

[VL;’] = 1 [VG’] >> [Tai,] 
2 

Therefore, from Eq. 8.155, 

(8.156) 

At low temperatures, the site fraction of cation vacancies due to  Schottky-pair 
formation will be negligible and their site fraction will therefore be fixed a t  the 
level 

[V&”] = 4 [Tal,] 

An Arrhenius plot of the cation self-diffusivity will then possess two linear regions. 
In the high-temperature intrinsic regime, the slope will be -(Hsf/3 + H ” ) / k ;  in 
the low-temperature extrinsic regime, the slope will be simply H”/k ,  where H“ 
is the migration enthalpy of a cation vacancy. 

1 

8.17 ZrOn can be made 0 deficient in a sufficiently reducing atmosphere. 

Show that the oxygen anion vacancy site fraction increases with a de- 
crease in the oxygen pressure in the atmosphere according to 

Show that the self-diffusivity on the anion (oxygen) sublattice, *Do, 
increases with decreasing oxygen pressure (at constant temperature) ac- 
cording to 

1 - 
PA;, 

varies with temperature (at constant oxygen pressure) according to 

e - ( A G 1 3 + G r ) I ( w  

where AG is the free-energy change due to the reduction reaction and GP is 
the free energy of migration of an oxygen anion vacancy. 
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Solution. 

(a) The reduction reaction involves removing an 02- anion from the structure and 
transferring two electrons from it t o  two Zr4+ cations. This makes two Zr3+ 
cations, a neutral 0 atom, and a cation vacancy Vt;. Therefore, the reaction can 
be written 

2Zr,Xr + 0; = 2Zrkr + V r  + - 0 2  
1 
2 

and for this reaction, 

The neutrality condition is 
[Zrk,] = 2 [Vy] 

Therefore, combining these equations, 

(b) Because *Do is proportional t o  Vt;, 

*DO o: , - A G / ( a k T )  

a t  constant T. Because *Do is proportional t o  Vt; and also t o  the Boltzmann 
factor exp[-GT /( kT)] , 

8.18 Consider an oxygen-deficient oxide M02-z containing a low concentration 
of solute A;, due to the addition of the soluble oxide AO. Oxygen diffusion 
occurs by a vacancy mechanism. Assume that all oxygen vacancies are doubly 
ionized. 

(a) Write the reduction reaction for reducing MOzPz and a corresponding 

(b) Write a defect reaction for the incorporation of the solute A into MOa. 

( c )  Write the charge neutrality condition for the impure, nonstoichiometric 

(d) How would Po, qualitatively affect the self-diffusivity of oxygen on the 

equation for its equilibrium constant, Keq. 

oxide. 

anion sublattice, *Dol in the intrinsic and extrinsic regimes? 

Solution. 

(a) The reduction occurs by removing one 0 ion and transferring two electrons from 
it t o  two M ions, creating two [Mh]  defects and one [V$*] defect and one free 0 
atom. This reaction may be written 

(8.157) 
1 
2 

2MG + 0; = 2Mh + VG* + - 0 2  

A t  equilibrium, 
[ M ~ I ~ [ V $ * ] P ; ~ ~  = Keq = e - A G / ( k T )  (8.158) 
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(b) When A 0  is added, A is added at  a new M site and 0 goes t o  a new 0 site. This 
creates one A& defect. To maintain electrical neutrality, an 0 ion is removed 
from an 0 site and placed in a new 0 site, thereby creating a V$* defect. The 
reaction may be written as 

A 0  = A; + V:* + 0: (8.159) 

(c) Overall charge neutrality requires that 

1 
(8.160) 

(d) The mass-action law given by Eq. 8.158 will hold and, therefore, putting the 

[VG*] = 5 [ M L ]  + [A:] 

neutrality condition given by Eq. 8.160 into Eq. 8.158, 

(8.161) 

A t  high temperatures, [V;"] is entirely due t o  the reduction process and [V,"] >> 
[A&]. Therefore, in this intrinsic regime, 

(8.162) 

Because *Do is proportional t o  [VG*], *Do cx  PO,-^/^. A t  low temperatures, the 
contribution of the reduction process t o  [V,"] is essentially negligible and [Vz*] 
becomes constant a t  the value 

[VG*] = [A;] 

which is determined by the amount of solute A 0  that has been added. In this 
extrinsic regime, *Do is therefore independent of Poz.  

8.19 The relationship between the intrinsic diffusivity, D1 , of charged interstitial 
ions in an ionic solid and the ionic electrical conductivity, p, due to the motion 
of these ions in the absence of a significant concentration gradient is given by 
Eq. 3.50; that is, 

Suppose that an ionic solid contains charged cation vacancies such as NaCl 
containing Na' vacancies. Find a relationship, comparable to Eq. 3.50, be- 
tween the cation tracer self-diffusion coefficient, *Dcation, and the electrical 
conductivity, p, due to  voltage-induced motion of the cations. 

Solution. In this case, the charged cation vacancies, possessing a diffusivity DVtion, 
will respond t o  the voltage just  as the charged interstitials did in Section 3.2.1. The 
relationship between DVtion and p will then be given by the same type of relation as 
Eq. 3.50; that is, 

DVtion cv q$ 
(8.163) 

where cv is the cation vacancy concentration and qv the charge carried by the vacancy. 
On the other hand, the cation tracer self-diffusivity, *Dcation , will be related t o  the 
cation vacancy concentration by a relationship similar t o  Eq. 8.17: 

'= kT 

(8.164) *Dcation = ~ ~ ~ c $ t i o n f  
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where X V  is the fraction o f  cation sites occupied by the vacancies and f is the correlation 
factor for the operative vacancy exchange mechanism. Combining Eqs. 8.163 and 8.164 
and setting ccation equal t o  the number o f  cation sites per unit volume, 

(8.165) 

Note that independent measurements of p and *Pation will yield information about f ,  
because the other factors in Eq. 8.165 are known. 

8.20 Show that the maximum potential energy stored in a torsion pendulum is 
proportional to the square of the amplitude of its oscillation. 

Solution. The restoring torque for a torsion pendulum is -k0,  where 0 is the angle o f  
rotation (see Fig. 8.18) and k is the torsion constant. The equation of motion [19] is 
then 

d20 rc _ -  - --0 
dt2 I (8.166) 

where I is the moment o f  inertia. Equation 8.166’s solution is 

0 = Omax cos(wt + @) (8.167) 

The stored energy is a maximum when 0 = Omax and is therefore 

(8.168) 

8.21 Figure 8.17 shows a hysteresis loop for an anelastic solid subjected to an 
oscillating stress. If the amplitude of the stress is go, find the shape of the 
hysteresis loop: 

(a) When w r  << 1 

(b) When W I T  >> 1 

( c )  When WT = 1 

Specify the direction in which the loop is traversed with increasing time, the 
width of the loop at  r~ = 0, and the slope of the dashed line in Fig. 8.17. 
Express your answer in terms of oo, SR, and SU. 
Solution. By using Eqs. 8.67-8.69 and constructing the diagram for E in the complex 
plane, 

(8.169) E 2  E2 E l  t a n 4  = - sin@ = - C O S ~  = - 
E l  €0 €0 

Also, using the real parts of u and E yields 

u = u o  coswt 
(8.170) 

E = E~ cos(wt - 4) = E~ (cos wt cos @ + sin w t  sin 4) 

When u = uo ,  coswt = 1 and sinwt = 0. Therefore, E = E~ cos@ = E I  and the slope 
of the dashed line is u o / ~ l .  When u = 0, coswt = 0, and sinwt = 1, E = E~ sin@ = ~ 2 .  

Also, when u = 0, coswt = 0, and sinwt = -1, E = - E ~  sin4 = - 4 2 .  

(a) When w t  << 1, use o f  Eqs. 8.93 and 8.94 shows that 

€1 = S R ~ ~  and €2 = 0 (8.171) 
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The hysteresis loop will therefore appear as a line o f  negligible width and slope 
1/SR as in Fig. 8.24a. Negligible internal friction therefore occurs. 

U U U 

Figure 8.24: Frequency dependence of anelastic behavior. (a) w~ << 1. (b) W T  >> 1. 
( c )  W T  = 1. 

(b) When w t  >> 1, 
E I  = Suu0 and €2 = O  (8.172) 

The hysteresis loop will therefore appear again as a line of negligible width but 
with a larger slope, as in Fig. 8.246. Negligible internal friction occurs. 

( c )  When w t  = 1, 

(8.173) 

The hysteresis loop will therefore appear as in Fig. 8 . 2 4 ~ .  The slope of the dashed 
line is 

(8.174) 

SR - S U  and E Z  = ~ u ,  
SR + S U  

= 2uo 

1 - u o  

E l  ( S R f S U ) / 2  
_ -  

and the width of the loop a t  u = 0 is 

2 E Z  = (SR - s U ) U o  (8.175) 

Also, because the strain lags behind the stress, the direction of traversal of the 
loop must be as indicated. In this situation, maximum internal friction occurs. 

8.22 Describe in detail how to determine the diffusivity of C in b.c.c. Fe using a 
torsion pendulum. Include all of the necessary equations. 

See Section 8.3.1 and Fig. 8.8, where C atoms in sites 1, 2, and 3 expand 
the crystal preferentially along z, y, and z ,  respectively. 

Solution. Using a torsion pendulum, find the anelastic relaxation time, T ,  by measuring 
the frequency o f  the Debye peak, up,  and applying the relation W ~ T  = 1. Having T ,  the 
relationship between T and the C atom jump frequency r is found by using the procedure 
t o  find this relationship for the split-dumbbell interstitial point defects in Exercise 8.5. 
Assume the stress cycle shown in Fig. 8.16 and consider the anelastic relaxation that 
occurs just after the stress is removed. A C atom in a type 1 site can jump into two 
possible nearest-neighbor type 2 sites or two possible type 3 sites. Therefore, 

- dcl = -4r/cl + 2r’c2 + 2r /c3  
dt 

(8.176) 

Because c1 + c2 + c3 = ctot = constant, 

(8.177) 
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which may be integrated t o  obtain 

8.23 

[ c;] [ c;] -6r’t c i ( t )  - - = ~ ( 0 )  - - = e  (8.178) 

The relaxation time is then T = 1/(6l?),  and because the total jump frequency is 
r = 4l?, T = 2/(3r) .  According t o  Eq. 7.52, DZ = r r 2 / 6  because f = 1, and because 
r = a / 2 ,  DI  = ra2/24. Substituting for r, 

(8.179) 

Finally, insert the experimentally determined value o f  T into Eq. 8.179 t o  obtain D I  

Under equilibrium conditions in a stressed b.c.c. Fe crystal, interstitial C 
atoms are generally unequally distributed among the three types of sites iden- 
tified in Fig. 8.8b. This occurs because the C atoms in sites 1, 2, and 3 in 
Fig. 8.8b expand the crystal preferentially along the 2, y, and z directions, 
respectively. These directions are oriented differently in the stress field, and 
the C atoms in the various types of sites therefore have different interaction 
energies with the stress field. In the absence of applied stress, this effect does 
not exist and all sites are populated equally. In Exercise 8.22 it was shown 
that when the stress on an equilibrated specimen is suddenly released, the re- 
laxation time for the nonuniformly distributed C atoms to achieve a random 
distribution, T ,  is T = 2/(3r) ,  where r is the total jump frequency of a C 
atom in the unstressed crystal. 

Show that when stress is suddenly applied to an unstressed crystal, the relax- 
ation time for the randomly distributed C atoms to assume the nonrandom 
distribution characteristic of the stressed state is again T = 2/(3r) .  

Assume the energy-level system for the specimen shown in Fig. 8.25. 
Write the kinetic equations for the rates of change of the concentrations 
of the interstitials in the various types of sites and solve them subject 
to the appropriate initial and final conditions. Assume that the barri- 
ers to the jumping interstitials shown in Fig. 8.25 are distorted by the 
differences in the site energies (indicated in Fig. 8.21). 

Figure 8.25: 
atom in sites 1, 2, or 3 illustrated in Fig. 8.8. 

Energy-level diagram for a stressed b.c.c. specimen containing an interstitial 

Solution. Let c1, c2, and c3 be the concentrations of interstitials occupying sites of 
types 1, 2, and 3, respectively. Also, c1 +c2 +c3 = ctot = constant. Since an interstitial 
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in a given type of site can jump into two sites of each other type, 

dci 
dt 
dc2 
dt 

- = - 2 ( r L  + rL3 + r L )  c1 + 2 (rL1 - r L )  c2 + 2r’3+1~t0t 

- = - 2 (rL1 + rL3 + rL2) c2 + 2 ( r L  - r;,2) c1 + 2r$-2~to t  
(8.180) 

If the barrier t o  the jump o f  an interstitial between two sites of differing energy is 
deformed as indicated in Fig. 8.21, the information given in Fig. 8.25 may be used t o  
derive expressions for the various jump rates that appear in the coefficients of Eq. 8.180. 
Neglecting small differences in the entropies o f  activation in the presence and absence 
of stress, and expanding Boltzmann factors of the form exp[-U,,,/(kT)] t o  first order 
so that  exp[-U,-,/(kT)] = 1 + U t - J / ( k T ) ,  

r;-2 = r’ (1 - w) 
= r/ (1 - w) 

r;+l = r’ (1 + W-J 
rLl  = r’ (1 + w) r;,3 = r’ (1 - h) = r’ (1 + - h) r;,, = r’ (1 - + *) 2 k T  2 k T  2 k T  

(8.181) 
where I?’ is the jump rate between any two adjacent sites in the absence of stress. Equa- 
tion 8.180 is a pair o f  simultaneous linear first-order equations with constant coefFicients. 
The initial and final conditions are 

c1 (m) = ci‘ c2(m) = c;q (8.182) 

where el(..) and c2(m) are the final equilibrium concentrations reached at  long times 
in the presence of the applied stress. In view of the symmetry of Eqs. 8.180, we try 

Ctot 
Cl(0) = c2(0) = - 3 

Cl(t) = (f - ‘p> e - k ‘ t  + .;‘ c2(t) = (f - c;~) e-“lt + c‘lq (8.183) 

which satisfy the conditions in Eq. 8.182. Direct substitution shows that Eqs. 8.183 
indeed satisfy Eqs. 8.180 when higher-order terms involving products of the small quan- 
tities Ut- j / (kT)  are neglected and 

k‘ = 6r’ 

c‘lq = - I+-+-) Ul-2 u1-3 

3 ( 3kT 3kT (8.184) 

1-- 2u1+2 3kT + 3kT 

This shows that relaxation t o  the equilibrium distribution occurs exponentially with a 
relaxation t ime T = 1/(6r’). Since = 4r’, where r is the total jump frequency in the 
unstressed crystal, 7 = 2 / ( 3 r ) .  
Finally, the equilibrium concentrations obtained in Eqs. 8.184 from the kinetic equations 
agree with those obtained using equilibrium statistical mechanics. In the three-level 
system in Fig. 8.25, the occupation probability for level 1 is 

Since c1 = ctotpl, the result for CI is the same as that given by Eq. 8.184. Similar 
agreement is obtained for c2. 



CHAPTER 9 

DIFFUSION ALONG CRYSTAL 
IMPERFECTIONS 

Experiments demonstrate that along crystal imperfections such as dislocations, in- 
ternal interfaces, and free surfaces, diffusion rates can be orders of magnitude faster 
than in crystals containing only point defects. These line and planar defects pro- 
vide short-circuit diffusion paths, analogous to high-conductivity paths in electrical 
systems. Short-circuit diffusion paths can provide the dominant contribution to 
diffusion in a crystalline material under conditions described in this chapter. 

9.1 THE DIFFUSION SPECTRUM IN IMPERFECT CRYSTALS 

Rapid diffusion along line and planar crystal imperfections occurs in a thin region 
centered on the defect core. For a dislocation, the region is cylindrical, roughly two 
interatomic distances in diameter, and includes the “bad material” in the dislocation 
core.’ For a grain boundary, the region is a thin slab, roughly two interatomic 
distances thick, including the bad material in the grain boundary core. For a free 
surface, this region is the first few atomic layers of the material at the surface. These 
regions are very thin in comparison to  the usual diffusional transport distances. To 
model the diffusion due to these imperfections, we replace them by thin slabs or 
cylinders of effective thickness, 6, possessing effective diffusivities which are much 
larger than the diffusivity in the adjoining crystalline material. Table 9.1 lists the 

Bad material is disordered material in which the regular atomic structure characteristic of the 
crystalline state no longer exists. Good bulk material is free of line or planar imperfections. 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 209 
Copyright @ 2005 John Wiley & Sons, Inc. 
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Table 9.1: Notation for Short-circuit Diffusivities 

D D  (undissoc) diffusivity along an undissociated dislocation core (i.e., a cylin- 
der, or a “pipe” of diameter, 6) 

D D  (dissoc) diffusivity along a dissociated dislocation core (i.e., a cylinder, 
or a “pipe” of diameter, 6) 

DB diffusivity along a grain boundary (i.e., a slab of thickness, 6) 

DS 

D X L  

diffusivity along a free surface (i.e., a slab of thickness, 6) 

diffusivity in a bulk crystal free of line or planar imperfections 

D L  diffusivity in a liquid 

notation to be used to describe the diffusivities in various regions of crystalline 
materials containing line and planar imperfections. 

Figure 9.1 presents self-diffusivity data for *DD (dissoc), *DD (undissoc), *DB, 
*Ds, *DxL,  and *DL, for f.c.c. metals on a single Arrhenius plot. With the excep- 
tion of the surface diffusion data, the data are represented by ideal straight-line 
Arrhenius plots, which would be realistic if the various activation energies were 
constants (independent of temperature). However, the data are not sufficiently 
accurate or extensive to rule out some possible curvature, at  least for the grain 
boundary and dislocation curves, as discussed in Section 9.2.3. 

Dislocations, grain boundaries, and surfaces can possess widely differing struc- 
tures, and these structural variations affect their diffusivities to significant degrees. 
If the defective core region is less dense or “looser” than defect-free material, or 
if a defect possesses structurally “open” channels in its core structure, transport 
will generally be more rapid along the defect, particularly in the open directions. 
Some grain boundary structures can be represented by dislocation arrays, and their 
boundary diffusivity can be modeled in terms of transport along the grain-boundary 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Reduced temperature, T,,, lT 

Figure 9.1: Master Arrhenius plot of *DxL, *DD(dissoc), *D”(undissoc), *DB, *Ds, 
and *DL characteristic of f.c.c. metals. Data for various f.c.c. metals have been normalized 
by using a reduced reciprocal temperature scale, (l/T)/(l/Tm) = T,/T. All diffusivities 
were derived from experimental data by assuming that all 6 = 0.5 nm. From Gjostein [I]. 
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dislocation cores. General grain boundary structures cannot support discrete local- 
ized dislocations but, nevertheless, still act as short-circuit diffusion paths. 

Short-circuit diffusion along grain boundaries has been studied extensively via 
experiments and modeling. Because diffusion along dislocations and crystal sur- 
faces is comparatively less well characterized, particular attention is paid to grain- 
boundary transport in this chapter. However, briefer discussions of diffusion along 
dislocations and free surfaces are also presented. 

To describe the effects of grain-boundary structure on boundary diffusion, it is 
necessary to review briefly some important aspects of boundary structure. Addi- 
tional details appear in Appendix B. It takes a minimum of five geometric pa- 
rameters to define a crystalline interface. Three describe the crystal/crystal mis- 
orientation: e.g., two to specify the axis about which one crystal is rotated with 
respect to the other, and one for the rotation angle. The remaining two parameters 
define the inclination of the plane along which the crystals abut at the interface.2 
If the interface is a free surface, just two parameters are required to specify the 
surface's inclination (unit normal). Crystal symmetries determine special values of 
the parameters at which the interfacial energies take on extreme values. Depending 
on the specific nature of a system with interfaces, some of the parameters may be 
constrained and others free to vary as the system seeks a lower-energy state. 

Small-angle grain boundaries have crystal misorientations less than about 15" 
and consist of regular arrays of discrete dislocations (Le., where the cores are sep- 
arated by regions of defect-free material). As the crystal misorientation across the 
boundary increases beyond about 15", the dislocation spacing becomes so small 
that the cores overlap and the boundary becomes a continuous slab of bad mate- 
rial; these are called large-angle boundaries. Large-angle boundaries can be further 
classified into singular boundaries, vicinal boundaries, and general b~undar i e s .~  

An interface is regarded as singular with respect to a degree of freedom if it is 
at a local minimum in energy with respect to changes in that degree of freedom. It 
is therefore stable against changes in that degree of freedom. 

A vicinal interface is an interface that deviates from being singular by a rela- 
tively small variation of one or more of its geometric parameters from their singular- 
interface values. A vicinal interface can therefore minimize its energy by adopting 
a fit-misfit structure consisting of patches of the nearby minimum-energy singular 
interface delineated by arrays of discrete interfacial dislocations or steps as illus- 
trated in Figs. B.4 and B.9. These line defects serve to accommodate the relatively 
small deviations of the vicinal interfaces from the singular interfaces. 

A general interface is not energy-minimized with respect to any of its degrees 
of freedom, and is far from any singular-interface values of the parameters that set 
its degrees of freedom. Such an interface cannot reduce its energy by adopting a 
fit-misfit structure (as in the vicinal case) and therefore cannot support localized 
dislocations or steps. Two examples serve to clarify these distinctions: 

Example 1 The tilt grain boundary in Fig. B.4a is singular with respect to its 
tilt angle.4 The boundary in Fig. B.4c is vicinal to the singular boundary 

2Additional variables may be required, such as three that specify a relative translation of one 
crystal with respect to the other. 
3Similar terminology is used for classification of free-surface structure. 
4See Appendix B for descriptions of tilt, twist, and mixed grain boundaries. 
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with respect to its tilt angle. It consists of patches of the singular boundary 
delineated by dislocations that accommodate the change in tilt angle. 

Example 2 A surface corresponding to  the patch of light-colored atoms in Fig. B. l  
is singular with respect to its inclination about an axis parallel to the surface 
steps in the figure. The stepped surface in Fig. B. l  is vicinal to such a flat 
surface and consists of patches of the flat surface delineated by steps that 
accommodate the change in surface inclination. 

Because the structure of general large-angle grain boundaries is usually less reg- 
ular and rigid than that of singular or vicinal boundaries, its activation energies 
for diffusion are typically lower and the diffusivities correspondingly higher. The 
diffusion rate along small-angle grain boundaries is generally lower than along large- 
angle grain boundaries and, indeed, approaches D x L  as the crystal misorientation 
approaches zero. This is due to  two factors: first, the diffusion rate along the 
bad material in dislocation cores is about the same as, or lower than, that along 
large-angle grain boundary cores (see Fig. 9.1); second, because small-angle grain 
boundaries consist of periodic arrays of lattice dislocations at  discrete spacings that 
approach infinity as the crystal misorientation approaches zero, the density of fast- 
diffusion paths is smaller in small-angle boundaries than in large-angle boundaries. 

Figure 9.2 presents diffusivity data for a series of tilt boundaries as a function 
of the misorientation tilt angle. 

The structures of these boundaries vary considerably as the misorientation changes. 
In the central part of the plot, the minima occur at  crystal misorientations (values of 
Q) corresponding to singular and vicinal boundaries. The ends of the plot (where the 
crystal misorientation approaches zero) correspond to small-angle boundaries, and 
the diffusivities are correspondingly low. The regions centered around the maxima 
in Fig. 9.2 correspond to general grain boundaries. Polycrystalline materials not 
subjected to special processing conditions possess mainly general boundaries; the 
grain-boundary data in Fig. 9.1 are for general boundaries that have fairly similar 
diffusivities and can therefore be described reasonably well by average normalized 
values. 
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Figure 9.2: Grain-boundary diffusivity of Zn along the tilt axes of (1101 symmetric tilt 
grain boundaries in A1 as a function of tilt angle, 8. From Interfaces in Cvystall ine Materials by 

A.P. Sutton and R.W. Balluffi (1995). Reprinted by permission o f  Oxford University Press. Data from I. Herbeuval 

and M. Biscondi [2]. 
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The wide range of diffusivity magnitudes evident in the diffusivity spectrum 
in Fig. 9.1 may be expected intuitively; as the atomic environment for jumping 
becomes progressively less free, the jump rates, r, decrease accordingly in the 
sequence rS > rB x rD(undissoc) > rD(dissoc) > rXL.  The activation energies 
for these diffusion processes consistently follow the reverse behavior, 

E S  < E B  FZ ED(undissoc) < ED(dissoc) < E x L  (9.1) 

The diffusivity in free surfaces is larger than that in general grain boundaries, which 
is about the same as that in undissociated dislocations. Furthermore, the diffusivity 
in undissociated dislocations is greater than that in dissociated dislocations, which 
is greater than that in the c r y ~ t a l : ~  

*Ds > *DB M *DD(undissoc) > *DD(dissoc) > *DxL ( 9 4  

Free-surface and grain-boundary diffusivities in metals at  0.5Tm are seven to 
eight orders of magnitude larger than crystal diffusivities. Provided that defects 
are present at  sufficiently high densities, significant amounts of mass transport can 
occur in crystals at 0.5Tm via surface and grain-boundary diffusion even though the 
cross-sectional area through which the diffusional flux occurs is relatively very small. 
As the temperature is lowered further, the ratio of diffusivities becomes larger and 
short-circuit diffusion assumes even greater importance. Generally, similar behavior 
is found in ionically bonded crystals, as shown in Fig. 9.3. 
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Figure 9.3: Self-diffusivities of 0 and Ni on their respective sublattices in a NiO sin le 
crystal free of significant line imperfections and along grain boundaries in a polycrystal. &e 
grain-boundary diffusivities of both Ni and 0 in the oxide semiconductor NiO are very much 
greater than corresponding crystal diffusivities. From Atkinson [3]. 

There are many situations, particularly at  low temperatures, where short-circuit 
diffusion along grain boundaries and free surfaces is the dominant mode of diffu- 
sional transport and therefore controls important kinetic phenomena in materials; 

5We discuss diffusion along dislocations and free surfaces in Sections 9.3 and 9.4. 
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several examples are discussed in Sections 9.2 and 9.4. Similar conclusions hold for 
dislocation diffusional short-circuiting, although to a lesser degree because of the 
relatively small cross sections of the high-diffusivity pipes. 

9.2 DIFFUSION ALONG GRAIN BOUNDARIES 

9.2.1 

In a polycrystal containing a network of grain boundaries, atoms may migrate in 
both the grain interiors and the grain boundary slabs [4]. They may jump into or out 
of boundaries during the time available, and spend various lengths of time jumping 
in the grains and along the boundaries. Widely different situations may occur, 
depending upon such variables as the grain size, the temperature, the diffusion 
time, and whether the boundary network is stationary or moving. For example, 
as the grain size is reduced and more boundaries become available, the overall 
diffusion will be enhanced due to the relatively fast diffusion along the boundaries. 
At elevated temperatures where the ratio of the boundary diffusivity to the crystal 
diffusivity is lower than at  low temperatures (Fig. 9.1), the importance of the 
boundary diffusion will be diminished. At very long diffusion times, the distance 
each atom diffuses will be relatively large, and each atom will be able to sample a 
number of grains and grain boundaries. If the boundaries are moving, an atom in 
a grain may be overrun by a moving boundary and be able to diffuse rapidly in the 
boundary before being deposited back into crystalline material behind the moving 
boundary. 

Consider first the relatively simple case where the boundaries are stationary and 
each diffusing atom is able to diffuse both in the grains and along at least several 
grain boundaries during the diffusion time available. This will occur whenever the 
diffusion distance in the grains during the diffusion time t is significantly larger 
than the grain size [i.e., approximately when the condition *DXLt > s2 (where s is 
the grain size) is satisfied]. For each atom, the fraction of time spent diffusing in 
grain boundaries is then equal to the ratio of the number of atomic sites that exist 
in the grain boundaries over the total number of atomic sites in the specimen [5]. 
This fraction is q x 36/s: for each atom, the mean-square displacement due to 
diffusion along grain boundaries is then *DBqt, and the mean-square displacement 
in the grains is *DxL(l  - q)t .  The total mean-square displacement is then the sum 
of these quantities, which can be written 

Regimes of Grain-Boundary Short-circuit Diffusion in a Polycrystal 

(*D)t =* D x L ( l  - q)t +*DBqt (9.3) 

and because q << 1, 

(*D) = *DxL + (36/s)*DB *DLt > s2 (9.4) 

The quantity (*D) is the average effective diffusivity, which describes the overall dif- 
fusion in the system. The diffusion in the system therefore behaves macroscopically 
as if bulk diffusion were occurring in a homogeneous material possessing a uniform 
diffusivity given by Eq. 9.4. The situation is illustrated schematically in Fig. 9.4a, 
and experimental data for diffusion of this type are shown in Fig. 9.5. This diffu- 
sion regime is called the multiple-boundary daffusion regime since the diffusion field 
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B regime 

(b)  boundary region 

C regime 

(c) core only 

Figure 9.4: The A. B, and C regimes for self-diffusion in polycrystal with stationary 
grain boundaries according to  Harrison [6]. The tracer atoms are diffusing into the semi- 
infinite specimen from the surface located along the top of each figure. Regions of relatively 
high tracer concentration are shaded. (a) Regime A: the diffusion length in the grains is 
considerably longer than the average grain size. (b) Regime B: the diffusion length in the 
grains is significant but smaller than the grain size. ( c )  Regime C: the diffusion length in 
the grains is negligible, but significant diffusion occurs along the grain boundaries. In all 
figures, preferential penetration within the grain boundaries is too narrow to be depicted. 

overlaps multiple boundaries. Note that in Fig. 9.4a, fast grain-boundary diffusion 
will cause preferential diffusion to occur along the narrow grain-boundary cores 
beyond the main diffusion front, but the number of atoms will be relatively small 
and this effect cannot be depicted. 
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Figure 9.5: Values of the average self-diffusivity. (*D). in single- and polycrystalline 
silver. At lower temperatures. pain-boundary diffusion makes significant contributions to  
the overall measured average di usivity in the polycrystal. From Turnbull [7]. 
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At the opposite extreme when essentially no diffusion occurs in the grains but 
significant diffusion still occurs along the boundaries, the overall diffusion will con- 
sist of only diffusion penetration along the boundaries, as illustrated in Fig. 9 . 4 ~ .  
This will tend to  occur at  low temperatures or short times under the conditions 
*DXLt < X2 and *DBt > X2, where X is the interatomic distance. 

Many intermediate cases may also occur in which diffusion takes place in both 
the boundaries and in the grains but where the diffusion length in the grains is 
smaller than the grain size, as in Fig. 9.4b. The conditions for this type of dif- 
fusion are X2 <* DXLt  < s2 and *DBt > X2. The latter two regimes are called 
isolated-boundary diffusion regimes, since in both cases there is no overlap of the 
diffusion fields associated with the individual boundary segments, as in the multiple- 
boundary regime. The three types of regimes just described are often termed the 
A, B, and C regimes, as indicated in Fig. 9.4, corresponding to Harrison’s original 
designation [6]. 

When the boundaries move during the diffusion, as they might during grain 
growth or recrystallization, the situation is considerably altered. If w is the aver- 
age boundary velocity, the boundaries will be essentially stationary when w t  < A, 
and the regimes described above will again pertain. However, when the condi- 
tion [ v ‘ m  + wt] > s is satisfied, the multiple-boundary diffusion regime will 
hold, and Eq. 9.4 will apply even if is negligible, since in such a case the 
boundaries visit the atoms rather than vice versa. Conversely, when the condition 
[m + wt] < s is satisfied, the isolated-boundary diffusion regime will exist. 

The various regimes of possible diffusion behavior can be represented graphically 
in an approximate manner, as shown in Fig. 9.6 [8]. The axes are taken to be 
log(*DXLt) and log(wt): logarithmic scales have been used to show the details near 
the origin because s/X is typically lo3 or more. The stationary-boundary regimes 

Crystal diffusion 
ahead of grain 

4’ diffusion ahead of 
grain boundaries 

log V t  --+ 

Figure 9.6: The regimes of diffusion behavior in a pol cr stal in which diffusion may 
occur both in the rains and along the grain boundaries and txe ioundaries may be stationary 
or moving. X is t f e  interatomic spacin and s is the grain size. On the left side. where th. 
boundaries are essentially stationary. garrison’s A. B, and C regimes are shown. S.I.XL = 
Stationary boundaries, Isolated boundary diffusion, and crystal (XL)  diffusion penetration 
into adjacent grains. S . I .  N X L  E Stationary boundaries, Isolated boundary diffusion. 
and No  crystal (XL) diffusion penetration into adjacent grains. M . I + X L  G Moving 
boundaries, Isolated boundary diffusion. CI ystal (XL)  diffusion ahead of boundaries. M.1. 
NXL E Moving boundaries. Isolated boundary diffusion, No  crystal (XL)  diffusion ahead 
of boundaries. S 0 M . M  = Stationary Or  Moving boundaries, Multiple boundary diffusion. 
From Cahn and Balluffi [8] 
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(vt < A) are shown on the left and include Harrison's A, B, and C regimes. The 
isolated-boundary regimes are enclosed in a region that includes the origin and 
extends out along the vertical and horizontal axes to distances where *DXLt  = s2 
and vt  = s ,  respectively. Beyond the isolated-boundary regimes the multiple- 
boundary regime holds sway in all locations. 

The isolated-boundary regime for moving boundaries in Fig. 9.6 is subdivided 
into two regimes, depending on whether the crystal diffusion is fast enough so that 
the atoms are able to diffuse out into the grains ahead of the advancing boundaries. 
To analyze this, consider a boundary segment between two grains moving with 
velocity u as in Fig. 9 . 7 ~ .  

Atoms are diffusing into the boundary laterally from its edges and can diffuse 
out through its front face into the forward grain. At the same time, atoms will be 
deposited in the backward grain in the wake of the boundary. In the quasi-steady 
state in a coordinate system fixed to the moving boundary, the diffusion flux in the 
forward grain is J = -*DXL(dc/dx) - wc and the diffusion equation is 

with the solution 
dc 
dx 

* D ~ ~ -  + wc = A 

where A is a constant. At a large distance in front of the boundary, dcldx + 0 and 
c + 0 and therefore A = 0. Finally, upon integration, 

(9.7) 
= c~ e - v x / * D x L  

where cG is the concentration maintained at  the boundary. The resulting concen- 
tration profile is shown in Fig. 9.7b. According to Eq. 9.7, the concentration in 
front of the boundary will be negligible when *DxL/v  < A. Therefore, the curve 
separating the regimes indicated by M.I.XL and M.I.NXL in Fig. 9.6 should 
follow the straight-line relationship *DXLt  = Xvt, as indicated. 

The diagram in Fig. 9.6 is highly approximate, but it is useful for visualizing 
the various regimes that might be expected during diffusion in a polycrystal. With 
increasing time, the point representing the system will start at  the origin and move 

*DxLIv 
X 

0 X 

Figure 9.7: (a) Grain boundary moving with constant velocity w. Tracer atoms are 
diffusing rapidly transversely into the boundary slab from its edges, are also diffusing 
normally out of the boundary into the grain ahead of the boundary. and are being deposited 
in the grain behind the boundary. Diffusion is in a steady state in a coordinate system moving 
with the boundary. (b) Tracer concentration in the vicinity of the boundary according to 
Eq. 9.7. 



218 CHAPTER 9 DIFFUSION ALONG CRYSTAL IMPERFECTIONS 

progressively away from it. If diffused long enough it will inevitably reach the 
multiple-boundary regime, regardless of whether the boundaries are stationary or 
moving. 

9.2.2 

A Regime: Since diffusion in this regime is macroscopically similar to diffusion in 
a homogeneous material possessing an effective bulk diffusivity (Eq. 9.4). it may be 
analyzed by the methods described in Chapters 4 and 5.  
B Regime: In this regime, the diffusant diffuses along a boundary while simulta- 
neously leaking out by diffusing into the adjoining grains. Analysis of this type of 
diffusion is therefore considerably more complex than for diffusion in the A and C 
regimes since it involves solving for the coupled diffusion fields in the grain bound- 
ary and in the adjoining grains. This problem has been solved to different degrees 
of accuracy for several boundary conditions [9]. Solutions are generally obtained 
that contain the lumped grain-boundary diffusion parameter p = 6*DB and the 
crystal diffusivity *DxL.  The analyses can then be applied to experimental results 
to obtain values of p when *DxL is known. 

Fisher has produced a relatively simple solution for a specimen geometry that 
is convenient for experimentalists and which has been widely used in the study of 
boundary self-diffusion by making several approximations which are justified over 
a range of conditions [9, lo].  The geometry is shown in Fig. 9.8; it is assumed that 
the specimen is semi-infinite in the y direction and that the boundary is station- 
ary. The boundary condition at the surface corresponds to constant unit tracer 
concentration, and the initial condition specifies zero tracer concentration within 
the specimen. Rapid diffusion then occurs down the boundary slab along y. while 
tracer atoms simultaneously leak into the grains transversely along z by means of 
crystal diffusion. The diffusion equation in the boundary slab then has the form 

Analysis of Diffusion in the A, B, and C Regimes 

Free surface at y = 0, 
where cB(0.A = 1 c 4  

Figure 9.8: Isolated-boundary (Type-B) self-diffusion associated with a stationary grain 
boundary. (a) Grain boundary of width 6 extending downward from the free surface at  
y = 0. The surface feeds tracer atoms into the grain boundary and maintains the diffusant 
concentration a t  the grain boundary's intersection with the surface a t  the value cB(y = 
0, t )  = 1. Diffusant penetrates the boundary along y and simultaneously diffuses transversely 
into the grain interiors along 2. (b) Diffusant distribution as a function of scaled transverse 
distance. 1c1,  from the boundary at  scaled depth, y l ,  from the surface. Penetration distance 
in grains is assumed large relative to  6. 
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where 5 1 ,  y1, and t l  are reduced dimensionless variables defined by x1 = 216, 
y1 = ( y / 6 ) J w ,  and t l  = t*DXL/d2. In the process of solving this equa- 
tion, Fisher found that the combination of relatively fast diffusion along the grain 
boundary and slower leakage into the grains causes the concentration in the bound- 
ary slab to quickly “saturate” so that the concentration in the adjoining grains 
at  the time t l  is essentially the same as the concentration that would have been 
there if the concentration distribution which existed in the boundary at t l  had been 
maintained constant there since the start of the diffusion at  t l  = 0. Also, since the 
diffusion along the boundary is rapid compared to the transverse diffusion in the 
grains, gradients along y in the grains are much smaller than gradients along x 
in the grains and can therefore be neglected. The transverse concentration profile 
along X I  in the grains at  constant y1 is therefore, to a good approximation, an 
error-function type of solution (Eq. 5.23) of the form 

Also, the rapid saturation found in the boundary slab produces a quasi-steady-state 
condition along the boundary: dcB/dtl  in Eq. 9.8 can then be set equal to zero so 
that 

(9.10) d2CB(Yl, t l )  O =  
aY: x1=0 

The solution to Eq. 9.10 must satisfy the boundary condition cB(O, t l )  = 1 and is 
therefore 

(9.11) 

Putting this result into Eq. 9.9 in order to find cxL(xl,  y1, t l ) ,  

The results above and the approximations made to obtain them have been shown 
to be valid when the dimensionless parameter p = d*DB(*DXL)-3/2t-1/2 2 20 [9]. 
When this condition is not satisfied, more rigorous but complex analysis is required. 

Experimentalists have frequently used Eq. 9.12 to determine values of the lumped 
grain boundary diffusion parameter p = 6*DB. The specimen is diffused for the time 
t and is sectioned by removing thin slices parallel to the surface of thickness Ay. 
The tracer content of each slice, AN, is then measured and plotted logarithmically 
against y. From Eq. 9.12 the resulting curve should have the slope 

~ * D X L  1/4 1 112 
(9.13) 

d In A N  
~ _ _ _ _  

dY = [ Tt ] [MI 
and p = 6*DB can then be determined when *DxL is known. 

Further analyses of B-regime diffusion, including diffusion under different bound- 
ary conditions, are described by Kaur and Gust [9]. 

When solute atoms rather than tracer isotope atoms diffuse in the B regime, 
further analysis is necessary. Solute atoms may be expected to segregate in the 
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grain boundary, and the concentration in the boundary slab cf(y1, t l )  will then 
differ from the concentration in the grains in the direct vicinity of the boundary slab 
cFL(0, y1, t l ) .  Assuming local equilibrium between these concentrations and that 
a simple McLean-type segregation isotherm typical of a dilute solution applies [4], 
the two concentrations will be related by 

(9.14) 

where k is a constant equilibrium segregation ratio. When Eq. 9.14 is substituted 
into Eq. 9.9, 

(9.15) 

When Eq. 9.15 is used instead of Eq. 9.9 and the same procedure is used that 
produced Eq. 9.13 for self-diffusion, it is found (see Exercise 9.3) that 

(9.16) 

holds for the solute diffusion, where D2XL and DF are the solute diffusivities in 
the crystal and the boundary, respectively. The lumped grain-boundary diffusion 
parameter kSDf can be determined experimentally as before from a plot of In AN 
vs. yl  but it now contains the segregation ratio I c .  Values of SDf can therefore be 
obtained only when independent information about k is available. Further analysis 
is required if the simple McLean isotherm does not apply and k is concentration- 
dependent. 
C Regime: In this regime, diffusion occurs only in the thin grain-boundary slabs. 
Since the number of diffusing atoms within the slabs is exceedingly small, the 
experimental measurement of boundary concentration profiles is difficult. Recourse 
has therefore been made to  accumulation methods where the number of atoms which 
have diffused along a grain boundary are collected in a form that can readily be 
measured. For example, solute atoms have been deposited on one surface of a thin- 
film specimen possessing a columnar grain structure and then diffused through the 
film along the grain boundaries so that they accumulated on the reverse surface [ll, 
121. The diffusion was carried out at low temperatures where no crystal diffusion 
occurred, and where, according to Fig. 9.1, the diffusion along the surfaces was 
much more rapid than the diffusion along the grain boundaries. Diffusion through 
the film specimen was therefore controlled by the rate of grain-boundary diffusion. 
Measurement of the rate of accumulation of the solute on the reverse surface then 
allowed the measurement of the lumped parameter SO? as detailed in Exercise 9.4. 



9.2: GRAIN BOUNDARIES 221 

9.2.3 

The mechanisms by which fast grain-boundary diffusion occurs are not well estab- 
lished at  present. There is extensive evidence that a net diffusional transport of 
atoms can be induced along grain boundaries, ruling out the ring mechanism and 
implicating defect-mediated mechanisms as responsible for grain-boundary diffu- 
sion [13]. Due to the small amount of material present in the grain boundary, it 
has not been possible, so far, to gain critical information about defect-mediated 
processes using experimental techniques. Recourse has been made to computer 
simulations which indicate that vacancy and interstitial point defects can exist in 
the boundary core as localized bona fide point defects (see the review by Sutton and 
Balluffi [4]). Calculations also show that their formation and migration energies are 
often lower than in the bulk crystal. Figure 9.9 shows the calculated trajectory of 
a vacancy in the core of a large-angle tilt grain boundary in b.c.c. Fe. Calculations 
showed that vacancies were more numerous and jump faster in the grain boundary 
than in the crystal, indicating a vacancy mechanism for diffusion in this particular 
boundary. However, there is an infinite number of different types of boundaries, 
and computer simulations for other types of boundaries indicate that the dominant 
mechanism in some cases may involve interstitial defects [4, 121. 

During defect-mediated grain-boundary diffusion, an atom diffusing in the core 
will move between the various types of sites in the core. Because various types of 
jumps have different activation energies, the overall diffusion rate is not controlled 
by a single activation energy. Arrhenius plots for grain-boundary diffusion therefore 
should exhibit at  least some curvature. However, when the available data are of only 
moderate accuracy and exist over only limited temperature ranges, such curvature 
may be difficult to detect. This has been the case so far with grain-boundary 
diffusion data, and the straight-line representation of the data in the Arrhenius 

Mechanism of Fast Grain-Boundary Diffusion 

Boundary 
midplane 

[ooi] 

Figure 9.9: Calculated atom jumps in the core of a C5 symmetric (001) tilt boundary in 
b.c.c. Fe. A pair-potential-molecular-dynamics model was employed. For purposes of clarity. 
the scales used in the figure are [I301 : [310] : [OOT] = 1 : 1 : 5 .  All jumps occurred in the 
fast-diffusing core region. Along the bottom, a vacancy was inserted at B. and subse uently 
executed the series of jumps shown. The tra'ectory was essentially parallel to the t j t  axis. 
Near the center of the figure, an atom in a b site jumped into an interstitial site at I .  At 
the top an atom jumped between B ,  I and B' sites. From Balluffi et al. [14]. 
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plot in Fig. 9.3 must be regarded as an approximation that yields an effective 
activation energy, E B ,  for the temperature range of the data. Some evidence for 
curvature of Arrhenius plots for grain-boundary diffusion has been reviewed [4]. 

9.3 DIFFUSION ALONG DISLOCATIONS 

As with grain boundaries, dislocation-diffusion rates vary with dislocation struc- 
ture, and there is some evidence that the rate is larger along a dislocation in the 
edge orientation than in the screw orientation [15]. In general, dislocations in close- 
packed metals relax by dissociating into partial dislocations connected by ribbons 
of stacking fault as in Fig. 9.10 [16]. The degree of dissociation is controlled by 
the stacking fault energy. Dislocations in A1 are essentially nondissociated because 
of its high stacking fault energy, whereas dislocations in Ag are highly dissociated 
because of its low stacking fault energy. The data in Fig. 9.1 (averaged over the 
available dislocation orientations) indicate that the diffusion rate along dislocations 
in f.c.c. metals decreases as the degree of dislocation dissociation into partial dislo- 
cations increases. This effect of dissociation on the diffusion rate may be expected 
because the core material in the more relaxed partial dislocations is not as strongly 
perturbed and “loosened up’’ for fast diffusion, as in perfect dislocations. 

In Fig. 9.1, *DD for nondissociated dislocations is practically equal to *DB, which 
indicates that the diffusion processes in nondissociated dislocation cores and large- 
angle grain boundaries are probably quite similar. Evidence for this conclusion also 
comes from the observation that dislocations can support a net diffusional transport 
of atoms due to self-diffusion [15]. As with grain boundaries, this supports a defect- 
mediated mechanism. 

The overall self-diffusion in a dislocated crystal containing dislocations through- 
out its volume can be classified into the same general types of regimes as for a 
polycrystal containing grain boundaries (see Section 9.2.1). Again, the diffusion 
may be multiple or isolated, with or without diffusion in the lattice, and the dis- 
locations may be stationary or moving. However, the critical parameters include 
*DD rather than *DB and the dislocation density rather than the grain size. The 
multiple-diffusion regime for a dislocated crystal is analyzed in Exercise 9.1. 

Figure 9.11 shows a typical diffusion penetration curve for tracer self-diffusion 
into a dislocated single crystal from an instantaneous plane source at the sur- 
face [17]. In the region near the surface, diffusion through the crystal directly 
from the surface source is dominant. However, at  depths beyond the range at  

,Stacking fault 
ribbon 

Partial f 2 Partial 
dislocation 1 dislocation 2 

Figure 9.10: 
partial dislocations separated by a ribbon of stacking fault. 

Dissociated lattice dislocation in f.c.c. metal. The structure consists of two 
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Dislocation 
pipe diffusion C 

e 

Penetration depth -w 

Figure 9.11: Typical penetration curve for tracer self-diffusion from a free surface at 
tracer concentration csurf into a single crystal containing dislocations. Transport near the 
surface is dominated by diffusion in the bulk; at greater depths, dislocation pipe diffusion is 
the major transport path. 

which atoms can be delivered by crystal diffusion alone, long penetrating “tails” 
are present, due to fast diffusion down dislocations with some concurrent spreading 
into the adjacent lattice and no overlap of the diffusion fields of adjacent dislo- 
cations. This behavior corresponds to the dislocation version of the B regime in 
Fig. 9.4. 

9.4 DIFFUSION ALONG FREE SURFACES 

The general macroscopic features of fast diffusion along free surfaces have many 
of the same features as diffusion along grain boundaries because the fast-diffusion 
path is again a thin slab of high diffusivity, and a diffusing species can diffuse in 
both the surface slab and the crystal and enter or leave either region. For example, 
if a given species is diffusing rapidly along the surface, it may leak into the adjoining 
crystal just as during type-B kinetics for diffusion along grain boundaries. In fact, 
the mathematical treatments of this phenomenon in the two cases are similar. 

The structure of crystalline surfaces is described briefly in Sections 9.1 and 12.2.1 
and in Appendix B. All surfaces have a tendency to undergo a “roughening” tran- 
sition at elevated temperatures and so become general. Even though a considerable 
effort has been made, many aspects of the atomistic details of surface diffusion are 
still unknowns6 

For singular and vicinal surfaces at  relatively low temperatures, surface-defect- 
mediated mechanisms involving single jumps of adatoms and surface vacancies are 
p r e d ~ m i n a n t . ~  Calculations indicate that the formation energies of these defects 
are of roughly comparable magnitude and depend upon the surface inclination [i.e., 
(hkl ) ] .  Energies of migration on the surface have also been calculated, and in 
most cases, the adatom moves with more difficulty. Also, as might be expected, 
the diffusion on most surfaces is anisotropic because of their low two-dimensional 
symmetry. When the surface structure consists of parallel rows of closely spaced 
atoms, separated by somewhat larger inter-row distances, diffusion is usually easier 
parallel to the dense rows than across them. In some cases, it appears that the 

6 0 u r  discussion follows reviews by of Shewmon [18] and Bocquet et al. [19]. 
7Adatoms, surface vacancies, and other features of surface structure are depicted in Fig. 12.1 
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transverse diffusion occurs by a replacement mechanism in which an atom lying 
between dense rows diffuses across a row by replacing an atom in the row and 
pushing the displaced atom into the next valley between dense rows. Repetition of 
this process results in a mechanism that resembles the bulk interstitialcy mechanism 
described in Section 8.1.3. In addition, for vicinal surfaces, diffusion rates along 
and over ledges differs from those in the nearby singular regions. 

At more elevated temperatures, the diffusion mechanisms become more complex 
and jumps to more distant sites occur, as do collective jumps via multiple defects. 
At still higher temperatures, adatoms apparently become delocalized and spend 
significant fractions of their time in “flight” rather than in normal localized states. 
In many cases, the Arrhenius plot becomes curved at these temperatures (as in 
Fig. 9.1), due to the onset of these new mechanisms. Also, the diffusion becomes 
more isotropic and less dependent on the surface orientation. 

The mechanisms above allow rapid diffusional transport of atoms along the sur- 
face. We discuss the role of surface diffusion in the morphological evolution of 
surfaces and pores during sintering in Chapters 14 and 16, respectively. 
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EXERCISES 

9.1 In a Type-A regime, short-circuit grain-boundary self-diffusion can enhance 
the effective bulk self-diffusivity according to Eq. 9.4. A density of lattice 
dislocations distributed throughout a bulk single crystal can have a similar 
effect if the crystal diffusion distance for the diffusing atoms is large compared 
with the dislocation spacing. 

Derive an equation similar to  Eq. 9.4 for the effective bulk self-diffusivity, (*D), 
in the presence of fast dislocation diffusion. Assume that the dislocations are 
present at a density, p,  corresponding to the dislocation line length in a unit 
volume of material. 
Solution. During self-diffusion, the fraction of the time that a diffusing atom spends 
in dislocation cores is equal t o  the fraction o f  all available sites that are located in 
the dislocation cores. This fraction will be 7 = p7d2/4. The mean-square displace- 
ment due t o  self-diffusion along the dislocations is then *DDqt, while the corresponding 
displacement in the crystal is *DxL(l - 7)t .  Therefore, 

(*D)t = * D X L ( l  - 7)t  + *DD7t (9.17) 

and because 7 << 1, 

(9.18) 
p7rP (*D) = *DxL + - *DD 

4 

9.2 Exercise 9.1 yielded an expression, Eq. 9.18, for the enhancement of the ef- 
fective bulk self-diffusivity due to fast self-diffusion along dislocations present 
in the material at the density, p. Find a corresponding expression for the 
enhancement of the effective bulk self-diffusivity of solute atoms due to fast 
solute self-diffusion along dislocations. Assume that the solute atoms segre- 
gate to the dislocations according to simple McLean-type segregation where 
cf/cf" = k = constant, where cf is the solute concentration in the disloca- 
tion cores and cfL is the solute concentration in the crystal. 
Solution. Because the fraction of solute sites in the dislocations is small, the number 
of occupied solute-atom sites (per unit volume) in the crystal is c g L ,  and the number of 
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occupied sites in the dislocations is pd2kc?XL/4. The fraction of t ime that a diffusing 
solute atom spends in dislocation cores is then 17 = p7d2k/4. Therefore, following the 
same argument as in Exercise 9.1, 

(*Dz)t = *D,””(l - v)t  + *Dpqt  (9.19) 

and thus 

(*D2) = * D f L  + @ *Df (9.20) 
4 

9.3 For Type-B diffusion along a grain boundary, Eq. 9.9, which holds for self- 
diffusion, takes the form of Eq. 9.15 for solute diffusion when simple McLean- 
type segregation occurs with c f / c g L  = k. Show that this causes Eq. 9.13, 
which holds for self-diffusion, to take the form 

(9.21) 

for solute diffusion. 

Solution. As indicated in the text, Eq. 9.9 must have the form of Eq. 9.15 in order 
t o  satisfy the segregation condition k = cf/c?” at  the boundary slab. Equation 9.10 
then becomes 

Equation 9.11 becomes 

[ - (A) Y l ]  
B 

c2 ( y i , t i )  = exp (9.23) 

Equation 9.12 becomes 

cz X L  ( z l , y l , t l )  = -exp 1 [- (A)”* YI] [1 -er f  -$)I (9.24) 
k 

and, finally, Eq. 9.13 becomes 

(9.25) 

9.4 As described in Section 9.2.2, grain-boundary diffusion rates in the Type-C 
diffusion regime can be measured by the surface-accumulation method illus- 
trated in Fig. 9.12. Assume that the surface diffusion is much faster than the 
grain-boundary diffusion and that the rate at which atoms diffuse from the 
%ource” surface to the “accumulation” surface is controlled by the diffusion 
rate along the transverse boundaries. If the diffusant, designated component 
2, is initially present on the source surface and absent on the accumulation 
surface and the specimen is isothermally diffused, a quasi-steady rate of ac- 
cumulation of the diffusant is observed on the accumulation surface after a 
short initial transient. Derive a relationship between the rate of accumulation 
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and the parameter SDF that can be used to determine SDf experimentally. 
Assume that each grain is a square of side d in the plane of the surface. 

c Source surface 
Fil 
thi 

Accumulation surface 

Figure 9.12: 
diffusion. 

Transport of diffusant through a thin polycrystalline film by grain-boundary 

Solution. Because of the fast surface diffusion, the concentrations of the diffusant 
on both surfaces are essentially uniform over their areas. After the initial transient, the 
quasi-steady rate (per unit area of surface) a t  which the diffusant diffuses along the 
transverse boundaries between the two surfaces is 

Here, d is the average grain size of the columnar grains, JB is the diffusional flux 
along the grain boundaries, dcB/dx = [cB(0) - c B ( I ) ]  / I ,  where cB(0) and cB(I) are 
the diffusant concentrations in the boundaries at  the source surface and accumulation 
surface, respectively, and I is the specimen thickness. In the early stages, c B ( I )  = 0 
and, therefore, t o  a good approximation, 

B Id dN 
6D2 = - - 

2cB(0) d t  (9.27) 

All quantities on the right-hand side of Eq. 9.27 are measurable, which allows the 
determination of bDf [12]. 

9.5 Using the result of Exercise 9.1 and data in Fig. 9.1, estimate the density of 
dissociated dislocations necessary to enhance the average bulk self-diffusivity 
by a factor of 2 at  Tm/2, where T, is the absolute melting temperature of the 
material. Note: typical dislocation densities in annealed f.c.c. metal crystals 
are in the range 106-108 cm-2. 

Solution. Equation 9.18 may be solved for p in the form 

(9.28) 

It is estimated from Fig. 9.1 that *DD(dissoc)/*DXL = 3 x lo6 at Tm/T = 2.0. Also, 
6 % 6 x lo-* cm-*. Using these values and (*D)/*DxL = 2 in Eq. 9.28, 

p E 10' cmP2 

Therefore, it appears that the dislocations could make a significant contribution t o  
diffusion under many common conditions. 
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9.6 The asymmetric small-angle tilt boundary in Fig. B.5a consists of an array 
of parallel edge dislocations running parallel to the tilt axis. During diffusion 
they will act as fast diffusion “pipes.” Show that fast self-diffusion along this 
boundary parallel to the tilt axis can be described by an overall boundary 
diffusivity, 

e (9.29) 
lr 

4 
where b is the magnitude of the Burgers vector and 6’ is the tilt angle. 

sin 4 + cos 4 
b *DB(para) = - *DD6 

Use 
*DD >> *DL (9.30) 

Solution. As usual, take the boundary as a slab that is 6 thick. In considering diffusion 
along the t i l t  axis, any contribution of the crystal regions in the slab can be neglected 
and only the contributions of the dislocation pipes are included because *DD >> *DxL. 
The flux through a unit cross-sectional area of the boundary slab is then 

(9.31) 

where the first bracketed term is the flux along a single pipe and the second is the 
number o f  pipes per unit area of the boundary slab. The desired expression is obtained 
by equating this result with J = - *DB(para) &/ax and solving for *DB. 

9.7 Self-diffusion along the boundary in Exercise 9.6 is highly anisotropic because 
diffusion along the tilt axis (parallel to the dislocations) is much greater than 
diffusion transverse to it (i.e., perpendicular to the dislocations but still in 
the boundary plane). Find an expression for the anisotropy factor, 

*D (para) 
*D (transv) 

(9.32) 

where *DB (transv) is the boundary diffusivity in the transverse direction. 

Solution. The transverse diffusion rate is controlled by the relatively slow crystal 
diffusion rate because the diffusing atoms must traverse the patches of perfect crystal 
between the dislocation pipes. Therefore, when the dislocations are discretely spaced, 
a good approximation is the simple result 

*DB (para) - *DB (para) - 
*DB(transv) *DxL 

(9.33) 



CHAPTER 10 

DIFFUSION IN NONCRYSTALLINE 
M AT E R I A LS 

Noncrystalline materials exist in many different forms. A huge variety of atomic 
and molecular structures, ranging from liquids to simple monatomic amorphous 
structures to network glasses to dense long-chain polymers, are often complex and 
difficult to describe. Diffusion in such materials occurs by a correspondingly wide 
variety of mechanisms, and is, in general, considerably more difficult to analyze 
quantitatively than is diffusion in crystals. 

The understanding of diffusion in many noncrystalline materials has lagged be- 
hind the understanding of diffusion in crystalline material, and a unified treatment 
of diffusion in noncrystalline materials is impossible because of its wide range of 
mechanisms and phenomena. In many cases: basic mechanisms are still controver- 
sial or even unknown. We therefore focus on selected cases, although some of the 
models discussed are still under development and not yet firmly established. 

10.1 FREE-VOLUME MODEL FOR SELF-DIFFUSION IN LIQUIDS 

Self-diffusion in simple monatomic liquids at  temperatures well above their glass- 
transition temperatures may be interpreted in a simple manner.' Within such 
liquids, regions with free volume appear due to displacement fluctuations. Occa- 
sionally, the fluctuations are large enough to permit diffusive displacements. 

'This section closely follows Cohen and Turnbull's original derivation [l]. The original paper 
should be consulted for further details. 

Kinetics of Materials. By Robert W. Balluffi, Samuel M.  Allen, and W. Craig Carter. 229 
Copyright @ 2005 John Wiley & Sons, Inc. 
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The hard-sphere model for the liquid serves as a reasonably good approximation 
for the atomic interactions [2]. Here, the potential energy between any pair of 
approaching particles is assumed to be constant until they touch, at  which point it 
becomes infinite. On average, the particles in the liquid maintain a volume larger 
than that which they would have if they all touched; the resulting volume difference 
is the free volume. Each particle effectively traverses a small confined volume within 
which the interatomic potentials are essentially flat [3]. The average velocity of a 
particle in the region of flat potential inside the confining volume is the same as 
the velocity of a gas particle. Most .of the time a particular particle is confined 
to a particular region. However, there will occasionally be a fluctuation in local 
density that opens a space large enough to permit a considerable displacement of the 
particle. If another particle jumps into that space before the displaced first particle 
returns, a diffusive-type jump will have occurred. Diffusion therefore occurs as a 
result of the redistribution of the free volume that occurs at  essentially constant 
energy because of the flatness of the interatomic potentials. 

According to the kinetic theory of gases, the self-diffusivity of a hard-sphere 
gas is given by *DG = (2/5)(u)L, where (u) is the average velocity and L is the 
mean free path [4]. Because the mean free path of a confined particle in the liquid is 
about equal to the diameter of its confining volume, the contribution of the confined 
particle to  the self-diffusivity of the liquid may be written 

’ 

*D(V) = Cgeom a(V) (u) (10.1) 

where u ( V )  is the diameter of the confining volume, V is the free volume associ- 
ated with the particle, (u) is the average velocity of the particle, and C,,,, is a 
geometrical constant.It is reasonable to assume that the diffusivity is very small, 
*D(V) = 0, unless the local free volume V exceeds a critical volume, Vcrit. There- 
fore, the overall diffusivity may be expressed 

(10.2) 

where p(V) dV is the free volume’s probability that it lies between V and V + dV. 
To determine this probability distribution, consider a system containing n/ particles 
and divide the total range of possible free volumes for a particle into bins indexed 
by i. Let Ni(V,) be the number of particles with free volume V,. If Vfree is the total 
free volume, the condition 

Vfree = NiV, (10.3) 
i 

must hold. The factor y accounts for all free-volume overlap between adjacent 
particles. y lies between zero and one because of the physical limits of complete 
and no overlap; its value is probably closer to one. The total number of particles, 
N .  is 

(10.4) 
i 

The entropy associated with the number of ways that the free volume can be 
distributed at  constant energy is 

(10.5) 
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for bin populations given by Ni. The equilibrium probability distribution in Eq. 10.2 
is the continuum limit of the bin populations Ni that maximize Sconf subject to 
constraints, Eqs. 10.3 and 10.4. Introducing Lagrange multipliers p and X for the 
total free volume and fixed-number constraints, the extremal conditions are 

which, using Stirling's formula Ni! x Ni In Ni and the limit of Ni >> 1, reduces to 

Ni = e--X/ke-fi7V%/k (10.7) 

The constraints Eqs. 10.3 and 10.4 determine the Lagrange multipliers. With 
Eq. 10.7, 

(10.8) 

and 

The average free volume per particle is (afree) = Vfree/N = k / p .  Therefore, com- 
parison of the average free volume to its definition from a probability distribution, 

shows that the probability distribution p(V) must be proportional to y exp[-ypV/k] 
= y exp[-yV/(Rfree)]. The proportionality factor can be determined by setting the 
sum of probabilities equal to one, and 

(10.11) 

The probability distribution, Eq. 10.11, can be used in Eq. 10.2 as an estimate 
for evaluating *DL. Above the critical free volume Vcrit, *D(V) is probably nearly 
constant; therefore, 

(10.12) 
*D(vcrit) e - y ~ C P ' t / ( ~ f r e e )  = c geom U(vcrit)(u) e- y ~ c r i t  /(afree) 

Equation 10.12 matches diffusivities measured in simple liquids if the character- 
istic "cage" diameter, u(Vcrit), is approximately the particle diameter and yVcrit is 
approximated by the particle volume [l]. *DL is not thermally activated-it does 
not exhibit Arrhenius behavior as does, for example, the diffusivity in crystals, 
because (u) 0; T1/*and (afree) increases approximately linearly with T [4]. Less 
approximate models for diffusion in liquids have been reviewed by Frohberg [ 5 ] .  
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10.2 DIFFUSION IN AMORPHOUS METALS 

Amorphous metallic alloys (metallic glasses) can be produced by rapid cooling 
(quenching) from the liquid phase. If the initially stable liquid avoids solidification 
by crystallization by being quenched rapidly below its ordinary melting tempera- 
ture, T,, it first becomes a supercooled liquid, and then, a t  a still lower tempera- 
ture, it undergoes a glass transition to an amorphous glassy state as in Fig. 10.1. 
Occurring over a range of temperatures that is dependent upon the cooling rate, 
the glass transition is characterized by an abrupt change in the rate at  which the 
volume and other physical properties change with decreasing temperature. The 
glass transition temperature, T,, which occurs a t  a given cooling rate, is obtained 
from the intersection of the extrapolated cooling curves from well above and well 
below the transition. Because the glass transition occurs at  a higher temperature 
during rapid cooling than during slow cooling, less free volume remains in glasses 
formed at  low temperatures. Below the glass transition temperature, the combined 
effects of the low temperature and the loss of free volume cause the initially liquid 
material to lose its characteristic fluidity and become relatively rigid and unable to 
reorganize itself quickly as the temperature is decreased further (i.e., it becomes a 
frozen-in glass). 

Temperature 

Figure 10.1: Volume of metallic glass during fast and relatively slow cooling from the 
liquid phase. T,, is the melting teinperature; Tq is the glass-transition temperature (shown 
for both fast and relatively slow cooling). 

10.2.1 Self-Diffusion 

If a rapidly cooled metallic glass is reheated and annealed isothermally at  a tem- 
perature below T,, the excess free volume that is frozen-in will anneal out as the 
system attempts to  relax and equilibrate without crystallizing. The free volume 
is mobile and is presumably annihilated when it encounters regions of higher than 
average atomic density [6, 71. The self-diffusivity that is measured during such 
annealing decreases initially. However, it eventually reaches an asymptotic value 
and becomes time independent, as in Fig. 10.2. The asymptotic value of the dif- 
fusivity is then that of the relaxed glassy state in which the supersaturated excess 
volume has annealed out. This dense structure is,randomly packed, and the atoms 
are arranged with the highest density compatible with their hard-sphere radii and 
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- h h 613 K 4  

Figure 10.2: Self-diffusion coefficient of 5gFe in amorphous Fe40Ni40B20 during 
isothermal annealing below T, after rapid quenching from liquid state as in Fig. 10.1. Arrows 
indicate different time scales used at each temperature. Reprinted from "Tracer Diffusion of Fe- 

59 in Amorphous FemNimBm,"  J. Horvath and H. Mehrer, 1986, Crys ta l  Latt ice Defec ts  and Amorphous 
Mater ia l s ,  Taylor and Francis, http://www.tandf.co.uk/journals/ [8]. 

lack of translational symmetry. Locally, the atoms form various polyhedral units in 
definite ratios with neither microcrystallites nor large holes present. Even though 
relaxed, this structure is still metastable with respect to the crystalline state. 

Extensive measurements show that self-diffusivities in the relaxed glassy state 
are time independent and closely exhibit Arrhenius behavior (i.e., ln*D, vs. 1/T 
plots appear as essentially straight lines) [8-111. The diffusion therefore is ther- 
mally activated (in contrast to self-diffusion in the liquid above Tg as described in 
Section 10.1). 

The mechanism by which the self-diffusion in the relaxed state occurs is not 
firmly established at  present. However, there are reasons to believe that for certain 
atoms in glassy systems, self-diffusion occurs by a direct collective mechanism and 
is not aided by point defects in thermal equilibrium as in the vacancy mechanism 
for self-diffusion in crystals (Section 8.2.1) .2  These reasons include: 

0 Sudden changes in temperature during diffusion cause instantaneous changes 
in the diffusivity [9, 121. This result is unexpected if diffusion occurs by a 
point-defect mechanism because significant time is required to obtain the new 
equilibrium defect concentrations corresponding to the temperature changes. 

0 The activation volume for diffusion, as measured by the pressure dependence 
of the diffusivity, is zero to within experimental accuracy [13, 141. This is 
unexpected for defect-mediated diffusion, as in such cases, the activation vol- 
ume for diffusion should consist of the sum of the volume of formation of the 
defect and the activation volume for the defect migration, and this is usually 
measurable. 

0 Computer simulations of the diffusion process in relaxed F e Z r  glasses re- 
veal diffusion which takes place directly via thermally activated displacement 

2The ring mechanism in Section 8.1.1 is an example of a direct mechanism. 
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chains like that in Fig. 10.3 [7, 9, 151. These chains do not start at localized 

Figure 10.3: 
displacement chains. 

hlechanism of diffusion in amorphous glasses by thermally activated 

point defects but in regions where the initial density deviations are small. Fur- 
thermore, when the displacement sequences are completed, any large-density 
deviations disperse gradually and do not leave behind localized point defects. 
The entire displacement process, from beginning to end, involves a relatively 
large number of atoms and, therefore, is of a collective nature. Such a direct 
collective diffusion process, which is spread over a considerable volume and 
involves relatively little ion-core overlap and repulsion, presumably occurs 
with relatively little volume change, in agreement with the small activation 
volume cited above. 

0 The observation that the self-diffusion exhibits Arrhenius behavior is consis- 
tent with a direct collective mechanism because the thermally activated dis- 
placement chains are spread over a considerable number of atomic distances. 
Irregularities in the disordered glassy structure are therefore averaged in the 
activated state, and all activation energies for displacements are then closely 
the same. 

0 No isotope effect is observed (see Eq. 8.31) during self-diffusion in relaxed 
glasses [16, 171. In tracer self-diffusion studies of crystalline materials, where 
the atomic displacements that lead to vacancy migration and diffusion are 
highly localized, the harmonic model for the isotope effect is justified. How- 
ever, if the migration process involves a relatively large number of atoms 
and is highly collective, this estimate of the effective attempt frequency is 
no longer valid. Instead, it is expected that two isotopes diffuse at close to 
the same rates because the mass difference of the two isotopes hardly affects 
their jump frequencies when relatively large numbers of atoms are strongly 
involved in the activated state. 

Further discussion of self-diffusion in relaxed metallic glasses and other disor- 
dered systems may be found in key articles [7, 10, 14, 18, 191. 

10.2.2 Diffusion of Small Interstitial Solute Atoms 

Small solute atoms in the interstices between the larger host atoms in a relaxed 
metallic glass diffuse by the direct interstitial mechanism (see Section 8.1.4). The 
host atoms can be regarded as immobile. A classic example is the diffusion of H 
solute atoms in glassy Pd80Si20. For this system, a simplified model that retains the 
essential physics of a thermally activated diffusion process in disordered systems is 
used to interpret experimental measurements [20-221. 
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W 

Because many different types of interstitial sites exist in the disordered glassy 
structure, the energy of the system varies as an interstitial atom jumps between 
the sites. The trace of the energy during successive jumps has the general form 
illustrated in Fig. 10.4a, where, for simplicity, the energy at each saddle point is 
assumed to be the same [20, 22, 231. This approximation has the realistic feature 
that a diffusing interstitial encounters sites of varying energy and jump barriers of 
various heights. 

The following quantities will be of use in describing the interstitial self-diffusion 
and intrinsic chemical diffusion: 

W 

N = total number of interstitial sites 

p = fraction of all interstitial sites that are occupied 

*p = fraction of all sites that are tracer-interstitial occupied 

p i  = fraction of all sites that are type k sites (Fig. 10.4a) 

pk = fraction of all sites that are occupied type k sites 

*pk = fraction of all sites that are tracer-occupied type k sites 

p ( k )  = fraction of type k sites that are occupied 

E" 

The occupation probability at  the various sites should follow Fermi-Dirac statis- 
tics because each site can accommodate only one interstitial. Therefore, 

(10.13) 

where Gk is the energy corresponding to occupation of the type k site and p is the 
chemical potential of the interstitials [24]. The fraction of all interstitial sites that 
are occupied is then 

(10.14) 

Figure 10.4: (a) The energy variation of an amorphous glass with the displacement 
of a diffusing interstitial atom as it jumps between successive interstitial sites. (b) A plot 
similar to (a) for interstitial jumping in a hypothetical material containing only sites of the 
reference state and having activation energies corresponding to E".  
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and the partial concentration, p k ,  can be written 

( 10.15) 

Also, 
c P k = P  ( 10.16) 

k 

A model for the tracer self-diffusivity of the interstitials is now developed for a 
system in which the total concentration of inert interstitials and chemically similar 
radioactive-tracer interstitials is constant throughout the specimen but there is a 
gradient in both concentrations. Since the inert and tracer interstitials are randomly 
intermixed in each local region, 

(10.17) *Pk - *P 
P k  P 
- -  - 

Therefore, with the use of Eq. 10.15, 

(10.18) 

In a typical tracer self-diffusion experiment, the tracer concentration probability, 
*p, depends upon position, whereas the total interstitial concentration probability, 
p ,  does not. 

An expression for the tracer self-diffusivity, of the interstitials, *D, can be de- 
rived by employing the same basic method applied to a crystalline material to 
obtain the self-diffusivity given by Eq. 8.19. This involves finding the net flux of 
tracer interstitials jumping through a unit cross-sectional area in the diffusion zone 
perpendicular to the concentration gradient. For a crystalline material, this flux is 
found by considering the jumping of atoms between well-defined adjacent atomic 
planes lying parallel to the unit cross section. This approach, however, cannot be 
applied to a glassy material because of the disorder that is present, and therefore 
the flux must be determined by a slightly modified method. Consider two thin slabs 
in the material, each of thickness Ax and having unit area, lying perpendicular to 
the concentration gradient along x. Slab 1 extends from zo - Ax to 20, and slab 2 
extends from xo to zo + Ax. Let I?;, be the jump rate of a tracer interstitial from 
an i site to an adjacent empty i site. According to Fig. 1 0 . 4 ~ ~  the activation energy 
for such a jump will be Go + Eo - Gk, so 

r/ kz - - ve-(Go+Eo-Gk) / (kT)  (10.19) 

The rate of k-to-i site jumping originating in slab 1 is proportional to the quantity 
(P/(Q))Ax *pk(pp - p z ) q Z .  In this expression, (a) is the average atomic volume 
in the glass, p is the ratio of interstitial sites to atoms, and @/(a)) is the number 
of interstitial sites per unit volume. (p," - p z )  is the probability that a site is an 
empty i site. Making the approximation that all jump distances in the disordered 
material are of the same magnitude and equal to Ax, the net number of jumps of 
all types crossing the x = zo plane per unit time in the x direction is 

(10.20) 
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where g is a purely geometrical constant and the double summation ensures that 
all types of different jumps between the various sites are included. The first term 
represents the jumps that originate in slab 1 and cross x = xo in the x direction, 
while the second term represents the jumps that originate in slab 2 and cross x = xo 
in the -x direction. During tracer self-diffusion, the total concentration of inert 
and tracer interstitial atoms is constant, so both p and (pg - pi) are independent 
of 2 .  Making the usual Taylor expansion to evaluate the small difference between 
the terms and using Eqs. 10.18 and 10.19, 

Using Eq. 10.16 and the fact that z i p ;  = 1, c i ( p g  -pi)  = 1 - p. Also, using 
this result and Eq. 10.15, 

Putting these results into Eq. 10.21 then yields 

Equation 10.23 can be put into the simpler form 

(10.24) 

where *D; = g (Az)' vexp[-E"/(kT)] is the self-diffusivity in a hypothetical ma- 
terial that contains only sites of the reference state with the energy Go, and in 
which jumps may occur between them with the activation energy E", as illustrated 
in Fig. 10.4b. Equation 10.24 is a Fick's-law equation with a tracer interstitial 
self-diffusivity corresponding to 

(10.25) 

Having this result, an expression can be obtained for the "intrinsic" chemical 
diffusivity, D I ,  which describes the diffusion arising from an inert-interstitial con- 
centration gradient. According to Eqs. 3.35 and 3.42, the flux in such a system 
is 

- 

Also, 
p = yo + IcTlnyp 

(10.26) 

(10.27) 

where the activity coefficient yis generally a function of concentration and therefore 
of position. Putting Eq. 10.27 into Eq. 10.26 leads to the Fick's-law-type expression 

( 10.28) 
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and, therefore, 

For tracer self-diffusion, a similar initial equation for the flux is 

(10.29) 

(10.30) 

However, in this system, the ideal free energy of mixing of the inert and tracer 
interstitials is the only component that varies with x. By taking the derivative of 
the free energy to obtain the chemical potential, the x-dependent component of 
the chemical potential of the tracer interstitials is simply kT ln(*p/p), and there- 
fore, because p is constant, (a*p/dx) = (kT/*p)(d*p/dx). Putting this result into 
Eq. 10.30, 

(10.31) 

which is a Fick’s-law-type expression with an interstitial tracer self-diffusivity given 

*DI =* MkT (10.32) 

Neglecting any small isotope effect, MI =*MI, and comparing Eqs. 10.29 and 10.32, 

bY 

(10.33) 

which is of the same form as Eq. 3.13. 
The model above has been compared to experimental results for the diffusion of 

H in glassy PdsoSizo by Kirchheim and coworkers [21, 221. DI increases strongly 
with increasing H concentration as seen in Fig. 10<5. By assuming that the energies 
of the interstitial sites follow a Gaussian distribution around a mean value, good 
agreement was obtained between the model and experiment. The increase of DI 

-1 1 
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Figure 10.5: Logarithm of the diffusivity of H in amorphous PdsoSizo as a function of 
the H concentration probability at different temperatures. Points are experimental data. 
The curves are the predictions of the model leading to Eq. 10.25. From Kirchheim [22]. 
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with p arises from the successive saturation of the lower-energy sites as the concen- 
tration is increased. This causes a progressive decrease of the activation energy and 
a corresponding increase in the diffusivity. For example, at  very low concentrations, 
essentially all of the interstitials become trapped at  the lowest-energy sites and they 
engage in long-range diffusion only with difficulty. Further aspects are discussed 
elsewhere [22]. 

Figure 10.6 plots the tracer diffusivity data for a number of solute species in 
glassy Ni80Zr50 as a function of their metallic radius. The diffusivity increases 
rapidly as the metallic radius decreases. The relatively rapid diffusion of the small 
atoms in this case may result from the fact that they diffuse by the interstitial 
mechanism [lo, 181. 
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Figure 10.6: Tracer diffusivities in glassy Ni80Zr50 of various solute atoms as a function 
of their size (as measured by their metallic radii) [25]. Reprinted, by permission, from H. Hahn and 

R.S. Averback. "Dependence of tracer diffusion on atomic size in amorphous Ni-Zr," Phys. Rev. B, Vol. 37, 

p. 6534. Copyright 01988 by the American Physical Society. 

10.3 SMALL ATOMS (OR MOLECULES) IN GLASSY POLYMERS 

Some small atoms and molecules, such as He, Ar, COz, and Nz, dissolve in glassy 
polymers from the gas phase. These particles then diffuse in the bulk polymer 
presumably by occupying interstices in the glassy structure and jumping between 
them by the direct interstitial mechanism. The solubilities increase with increasing 
partial pressure, and the behavior observed can be well explained on the basis of 
a model in which the dissolved species occupy interstitial sites, the site occupancy 
obeys Fermi-Dirac statistics, and the site energies are distributed about a mean 
value in the form of a Gaussian distribution [26, 271. The corresponding diffusivities 
of these species increase with increasing concentration, in a manner similar to the 
diffusion of small solute atoms in amorphous metals. This behavior can be explained 
by the same interstitial diffusion model. Here, the diffusing particles must again 
occupy progressively higher-energy sites as their concentration increases, causing 
the average activation energy for diffusion to decrease and the diffusivity to increase. 
The diffusion of small particles in glassy polymers therefore appears to be quite 
similar to that in glassy metals. 



240 CHAPTER 10. DIFFUSION IN NONCRYSTALLINE MATERIALS 

10.4 DIFFUSION OF ALKALI IONS I N  NETWORK OXIDE GLASSES 

The structure of a pure oxide network glass having stoichiometry G203, free of 
any alkali ions, is illustrated in Fig. 10.7a [28]. In this structure, cations are three- 
coordinated and the oxygen anions are two-coordinated. In three-dimensional silica 
glass, each glass-forming Si4+ cation is enclosed in a polyhedron of oxygen anions, 
and these polyhedra are arranged in a network lacking special symmetry and peri- 
odicity. The oxygen polyhedra share corners, not edges or faces, and each oxygen 
ion is covalently bonded to  no more than two cations. 

The oxide glass structure changes significantly when modzfyzng alkali ions are 
added, as  in Fig. 10.7b. where the G203 glass has been altered by adding a signifi- 
cant amount of the network modifier M 2 0 .  The structure accommodates the net- 
work modifier M+ ions by substitution of three one-coordinated modifier cations for 
one three-coordinated glass-forming ion. In three-dimensional silica glass, the ad- 
dition of Na ions (e.g., via Na2O) causes oxygen ions. previously covalently bonded 
to  two of the glass-forming Si4+ cations between which it formed a brzdge. to reduce 
this bonding so that they become bonded to  only one glass-forming cation. These 
oxygen ions, called nonbrzdgzng oxygens, possess an effective negative charge. The 
corresponding positively charged Na’ ions are then ionically bonded to the non- 
bridging oxygens, resulting in a partly covalent and partly ionic overall structure. 
Studies show that in silica glasses with low concentrations of NazO, the ionically 
bound material exists in the form of small isolated patches or lakes. As the concen- 
tration increases, these patches link and eventually form a network of continuous 
channels [29-321. Continuous percolation networks are present a t  and above a per- 
colation threshold of about 16 vol. % of modifier. 

Na’ ions are highly mobile compared to the glass-forming components and pos- 
sess a diffusivity which follows Arrhenius behavior [21, 26, 29, 31, 331. Furthermore, 
the activation energy for diffusion decreases markedly (and the diffusivity increases 
correspondingly) as the modifier concentration is increased, as in Fig. 10.8. The 

Figure 10.7: (a) Two-dimensional schematic of pure, oxide network glass of composition 
Gz03.  Small open circles are glass-forming cations G 3 + .  Large open circles represent oxygen 
anions. From Kingery et a1 [28] (b) Schematic of glass as modified by the addition of alkali hl+ 
cations (filled small circles). At high modifier-ion content, the modifier ions aggregate and 
form high-diffusivity “lakes” or channels in the glass. Adapted from Greaves [29] 
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Figure 10.8: Activation energy for diffusion of Na+ ions in sodium silicate glass of 
composition (Na20),(Si02)1-, as a function of Na+ ion concentration as measured by the 
fraction of NazO, 2 .  From Frischat [33]. 

mechanism for the diffusion of the Na’ ions is not thoroughly understood, but the 
results above can be explained with a model in which the Na’ ions diffuse in the 
modified random-network structure by a direct interstitial mechanism. 

To engage in long-range diffusion at  low concentrations, the Na’ ions must disso- 
ciate themselves from their ionic bonding with the nonbridging oxygens and diffuse 
through the interstices in the covalently bonded network glass regions. This gen- 
erally requires a relatively large activation energy. At higher concentrations above 
the percolation threshold, the Na’ ions diffuse relatively easily along the inter- 
stices in the ionically bonded percolation channels with a low activation energy. As 
the modifier concentration increases, the activation energy decreases progressively. 
Also, the correlation coefficient decreases as the modifier concentration increases, 
due to the increased degree of correlation arising from the restriction of the diffusion 
to the narrow channels [31]. 

10.5 DIFFUSION OF POLYMER CHAINS 

Polymer structure is characterized by long chains of molecules arranged in a wide 
variety of ways. Diffusion of these long chains occurs in two important and char- 
acteristic situations3 In the first, each chain is essentially isolated and embedded 
in a solvent melt made up of much smaller molecules, and the long chains diffuse 
by a type of Brownian motion. In the second situation, the long chains are in a 
dense entangled arrangement, much like cooked spaghetti, and a given chain can 
then only diffuse in the entangled structure by a snakelike process called reptation. 

10.5.1 Structure of Polymer Chains 

A polymer chain is typically composed of a large number of units (i.e., monomers) 
arranged in a chainlike configuration held together by covalent bonds. When the 
monomers are identical, it is termed a homopo lymer  chain.  The chain possesses con- 
siderable flexibility since the covalently bonded monomers can change their bonding 
angles with one another, allowing the chain to act as if were almost “freely jointed.” 
This flexibility allows a chain to adopt a huge number of possible configurations. 
An important parameter for describing the chain configuration is the mean-square 

3For detailed treatments of this topic, see de Gennes [34, 351 and Lodge et al. [36] 
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distance between the two ends of the chain ( h 2 ) .  This can be approximated using 
the freely jointed chain model, in which it is assumed that the direction of each bond 
between monomers is random. This model ignores the fact that covalent bonds tend 
to assume specific angles and also that it is physically impossible for the chain to 
bend sharply backward and overlap on itself (i.e.. it ignores the existence of an 
excluded volume that the flexible chain cannot enter). Nevertheless, the model is a 
reasonable first approximation under many conditions and retains much of the es- 
sential physics of the problem. If each monomer is of length b, a chain consisting of 
N monomers can be constructed by joining them together sequentially end to end. 
If the angles at  which they are added are at  random, the problem of determining 
the distance between the ends, ( h 2 ) ,  is identical to that of finding the mean-square 
displacement resulting from a random walk given by Eq. 7.47. Therefore, 

(h2)  = Nb2 (10.34) 

A typical freely jointed chain will therefore be quite compact since the root- 
mean-square value of its end-to-end length, m = f i b ,  will be small compared 
with its length if it were stretched out (i.e., Nb, when N is large). Figure 10.9 
shows a simulated molecule of polyethylene, (-CH2-CH2 -)N, which approximates 
a freely jointed configuration. 

The relationship m 0: N1/’ derived on the basis of the freely jointed model is 
often quite satisfactory despite the approximate nature of the model. Even though 
the excluded volume clearly exists, its effect can essentially be canceled out under 
many circumstances. When the chains are in dilute solution in a theta solvent. 
interactions between the solvent and the chain monomers favor compression of the 
chain so that the relation x N112 is nearly obeyed. On the other hand, in 
a “good solvent” where monomer-monomer and monomer-solvent interactions are 
closely the same, any interactions favoring compression are absent and the excluded 
volume then acts to reduce the degree of compactness of the chain and produce 
swelling. In these cases, the relation K N3I5 holds to a good approximation. 
In the case of homopolar polymer melts where the polymer chains are densely 
entangled, the excluded volume does not play an important role in determining 
the degree of swelling since each monomer is surrounded by similar monomers, and 
is unable to distinguish whether they belong to its own chain or another nearby 
chain. Even though the relationship m x N 1 / 2  will hold closely for a given 

Figure 10.9: 
N = 50. 

Conformation of polyethylene. (-CHz-CHz -)N. Degree of polymerization 
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type of chain of fixed N in different theta solvents and in its melt, the magnitudes 
of for the chain will differ. 

10.5.2 

From a hydrodynamical standpoint, a single isolated chain immersed in a liquid 
solvent consisting of relatively small molecules may be regarded as a porous sponge 
having a uniform density [35]. Vorticity cannot penetrate this sponge except over 
a certain screening length which is negligible for a long chain. As far as global 
properties (such as viscosity and sedimentation) are concerned, the coil possesses 
an effective radius, Rh, which is proportional to m. Using previous results, Rh 
is therefore 

Rh 0; N 3 / 5 b  (10.35) 

for a chain in a good solvent, and for a chain in a theta solvent is 

Diffusion of Isolated Polymer Chains in Dilute Solutions 

Rh 0; N 1 / 2 b  (10.36) 

Using this approximation, the diffusivity of the chain is the diffusivity of the effective 
sponge of radius, Rh, due to its classical Brownian motion in the solvent. The 
Brownian motion of the sponge is its irregular motion due to random collisions 
with surrounding solvent molecules that induce the sponge to follow a random 
walk. The diffusivity of a small particle due to  Brownian motion was determined in 
the early part of the twentieth century by Einstein, Smoluchowski, and Langevin. 
We follow here a more recent description which imagines that the particle (i.e., the 
sponge) is embedded in an effectively uniform medium having a viscosity 77 [37]. 
At the same time, the particle is subjected to random collisions with molecules in 
the surrounding medium. The model therefore has a continuum-molecular duality. 
The Newtonian force equation for all forces in the 2 direction is 

dX d2 X 
dt2  d t  -3- + F, m- = (10.37) 

where X is the instantaneous x-coordinate of the sponge’s position. The first term 
in Eq. 10.37 is the usual inertial term (rn is the effective mass of the chain). The 
second term is the frictional force exerted on the sponge by the viscous medium 
and is proportional to the velocity via the friction factor, F, as would be expected 
on the basis of Stokes’s law. The third term includes all forces associated with 
collisions with the surrounding molecules. Multiplying Eq. 10.37 by X yields 

But 

and 

d2 X dX 
r n x -  d t2  = - 3 X -  d t  + X F ,  

d2X 1 d d ( X 2 )  dX 
d t 2  

x-=-- ___ 
2 d t  [ d t  ] - (x) 
dX 1 d ( X 2 )  x- = -- 
d t  2 d t  

Putting these expressions into Eq. 10.38 then yields 

(10.38) 

(10.39) 

(10.40) 

+ X F ,  (10.41) 
m d d ( X 2 )  dX . F d ( X 2 )  
2 d t  [ d t  =-2dt 
_ _  ~ 
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Next, the mean values of these terms over a long period are introduced so that 

(10.42) 

Now, according to equipartition, 

Also. 

and 
(XF,) = 0 

because the F, forces are exerted randomly. Therefore, 

where 

Equation 10.47 has the solution 

mdu 3 
2 dt 2 
_ _  + -U = kT 

.=(V) 

(10.43) 

(10.44) 

(10.45) 

(10.46) 

(10.47) 

(10.48) 

where A is constant. The exponential term in Eq. 10.48 is negligible for all times 
of interest, and therefore 

dt 3 

By integrating Eq. 10.49, 
2kT 
3 

(x2)= -t 

(10.49) 

(10.50) 

Results for the mean-square displacement along y and z will be the same and, 
therefore, 

(10.51) (R2)  = ( X 2 )  + ( Y 2 )  + ( Z 2 )  = - t 6kT 
3 

Comparing this result with Eq. 7.52, the diffusivity of the isolated chain is 

( 10.52) 
k T  *D1= 7 

An expression for the friction factor, 3, can be obtained from Stokes's law, which 
gives the force, F, exerted by a viscous medium on a sphere of radius, R,  moving 
through it with a velocity, v, in the form [38] 

F = 6.irqRv (10.53) 
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where 7 is the viscosity. Therefore, 

(10.54) 
r 
V 

3 = - = 6 ~ 7 R  

Putting this result into Eq. 10.52 and setting R = Rh for the chain (sponge), 

(10.55) 

where Rh is given by Eq. 10.35 or 10.36. Therefore, *D1 for the chain varies in- 
versely with the viscosity and decreases as the chain length increases since it scales 
approximately as N - 1 / 2  or N - 3 / 5 .  Because the viscosity, 7 ,  is generally thermally 
activated, the diffusivity is similarly thermally activated. The determination of the 
proportionality constant implicit in Eq. 10.55 requires more detailed calculations. 

10.5.3 Diffusion of Densely Entangled Polymer Chains by Reptation 

In a polymer melt or a concentrated polymer solution, chains are densely packed 
and highly entangled. An unattached chain in such an entangled structure is able 
to  diffuse through a process called reptation, first proposed by de Gennes [39].* In 
the densely packed and entangled environment of a polymer melt, a given chain 
will be unable to move bodily in directions perpendicular to itself because of the 
resistance provided by its closely packed environment. On the other hand, it will 
be able to move in directions tangential to itself by a sliding type of motion much 
like the movement of a snake-hence, the term reptation. The freely jointed “head” 
at  the leading end of the chain can always find an optimum region of low density 
in the material in front of it to advance into, and the remainder of the chain can 
then follow along by an appropriate sliding motion. This type of motion is similar 
in many respects to the motion of a train along a curved track. The chain can 
move equally well in the reverse direction in the same manner since its “head” 
and “tail” are interchangeable. For conceptual purposes, the highly constricting 
and anisotropic environment just described can be represented by a fictitious rigid 
tube within which the chain can slide backward and forward. The sliding can be 
accomplished by the propagation along the chain length of localized dispiration 
defects [41], as in Fig. 10.10. The motion of the chain is then visualized essentially 
as a quasi one-dimensional Brownian motion in which the chain randomly walks 
forward and backward along its tube. 

As a result of this motion, the tube that initially surrounds the chain (i.e., 
the initial primitive tube), will be replaced progressively by a new tube, as in 
Fig. 10.10. By executing excursions in random directions, the ends of the chain 
iteratively change their surroundings. After a large number of excursions, the 
chain’s conformation eventually loses contact with its original primitive tube. At 
this loss of contact, the chain’s trailing end ceases to touch the original primitive 
tube (Fig. 10.10d) and a new primitive tube is defined. Thus, each successive 
primitive tube is connected to  its predecessor as in Fig. 10.11. 

An approximate expression for the chain’s self-diffusivity can be obtained using 
the theory of random walks. Let rrep be the average time required for the chain to 
move from one primitive tube to  its successor. During an interval T, ,~ ,  the chain’s 

4This discussion of reptation is a simplified version of other rigorous treatments [36, 401. 
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Figure 10.10: Stages in the elimination of the initial primitive tube associated with a 
reptating polymer chain. (a) Configuration of the initial chain (thin line) and its associated 
primitive tube (cylinder). The chain can diffuse along the tube by the propagation along its 
length of the small defects shown. (b) The chain has diffused toward the right by emerging 
from the end of the primitive tube on the right and creating a newly configured segment 
outside the primitive tube. ( c )  The chain has diffused toward the left by emerging from 
the end of the portion of the primitive tube that it occupied in (b) and creating a newly 
configured segment outside the primitive tube. The portion of the initial primitive tube 
that  it now occupies is indicated by the heavy lines. (d) The chain has diffused toward the 
right by emerging from the portion of the primitive tube that it occupied in (c) and creating 
a newly configured segment outside the primitive tube. The chain has almost completely 
escaped from the initial primitive tube and is almost completely enclosed in a new successor 
primitive tube (not shown). From Lodge et al  [36] 

center of mass will undergo a displacement that is approximately the mean length 
of a primitive tube, ( h 2 )  = Nb2 (Eq. 10.34). The relationship between rrep and the 
mean-square displacement for random walks (Eq. 7.53) provides a model for the 
chain’s self-diffusivity: 

(10.56) 

An estimate for rKep may be found by considering the Brownian motion of the chain. 
At the transition from one isolated primitive tube to its successor, the chain must 
have executed enough excursions to  travel the chain length Nb. If the distance 
associated with each excursion is u and the number of excursions is n, Eq. 7.47 
also establishes the estimate b f i  M Nb. Therefore, the number of excursions, n, is 
approximately n = N2b2/u2. If u is the “excursion” frequency, 

n N2b2 
r,,, x - x - 

v uu2 (10.57) 

Fi ure 10.11: Successive configurations of noncorrelated primitive tubes for a reptating 
pobmer chain, formed in the sequence 1 + 5 .  One end of each tube configuration must be 
in contact with its predecessor a t  points indicated by dots. From Lodge et a1 (361 
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It is reasonable that u will be smaller for long chains. Therefore, as an approxima- 
tion, let u = v o / N ,  where uo = constant. Therefore, 

N2b2 N3b2 
Trep % ~ = - 

vu2 u, u2 

and, putting Eq. 10.58 into Eq. 10.56, 

u0u2 * D  % - 
6N2 

(10.58) 

(10.59) 

The diffusivity scales as 1/N2 , decreasing rapidly with increasing chain length. 
A comparison of Eqs. 10.55 and 10.59 shows that the diffusivity of an isolated 

chain due to Brownian motion falls off more slowly with increasing chain size than 
the diffusivity of an entangled chain diffusing by the reptation mechanism. 

Bibliography 

1. M.H. Cohen and D. Turnbull. Molecular transport in liquids and glasses. J .  Chem. 
Phys., 31 (5): 1164-1 169, 1959. 

2. G.H. Vineyard. The theory and structure of liquids. In Liquid Metals and Solidifica- 

3. D. Turnbull and M.H. Cohen. Free-volume model of the amorphous phase glass tran- 

4. E.H. Kennard. Kinetic Theory of Gases. McGraw-Hill, New York, 1938. 

5. G. Frohberg. Diffusion in liquid metals between the glass transition and the evapora- 
tion temperature. Defect and Diffusion Forum, 143-147:869-874, 1997. 

6. M.H. Cohen and G.S. Grest. The nature of the glass transition. J .  Non-Cryst. Solids, 

7. W. Frank, U. Hamlescher, H. Kronmuller, P. Scharwaechter, and T. Schuler. Dif- 
fusion in amorphous metallic alloys-Experiments, molecular-dynamics simulations, 
interpretation. Phys. Scripta, T66:201-206, 1996. 

8. J. Horvath and H. Mehrer. Tracer diffusion of Fe-59 in amorphous Fe40Ni4oB20. 
Lattice Defects Amorphous Mater., 13(1):1-14, 1986. 

9. W. Frank, J. Horvath, and H. Kronmuller. Diffusion mechanisms in amorphous alloys. 
Mater. Sci. Eng., 97:415-418, 1988. 

10. H. Mehrer and W. Dorner. Diffusion in amorphous alloys. Defect and Diffusion Forum, 

11. W. Frank, A. Horner, P. Scharwaechter, and H. Kronmuller. Diffusion in amorphous 
metallic alloys. Muter. Sci. Eng. A ,  179:36-40, 1994. 

12. C.J. Rank. Evaluation of diffusion and relaxation in metallic glasses after short-term 
annealing in a mirror furnace. PhD thesis, Stuttgart University, 1992. In German. 

13. K.  Ratzke and F. Faupel. Pressure dependence of cobalt diffusion in amorphous 
Fe39Ni40B21. J .  Non-Cryst. Solids, 181(3):261-265, 1995. 

14. H. Mehrer and G. Rummel. Amorphous metallic alloys-diffusional aspects. In H. Jain 
and D. Gupta, editors, Diffusion i n  Amorphous Materials, pages 163-176, Warrendale, 
PA, 1994. The Minerals, Metals and Materials Society. 

15. A. Horner. Self-diffusion in metallic glasses: Approximation of the eflectiwe medium 
and molecular simulation. PhD thesis, Stuttgart University, 1993. In German. 

tion, pages 1-48, Cleveland, OH, 1958. American Society for M'etals. 

sition. J .  Chem. Phys., 34(1):120-125, 1961. 

61-62: 749-759, 1984. 

66-69~189-206, 1989. 



248 CHAPTER 10: DIFFUSION IN NONCRYSTALLINE MATERIALS 

16. K. Ratzke, P.W. Huppe, and F. Faupel. Transition from single-jump type to highly 
cooperative diffusion during structural relaxation of a metallic-glass. Phys. Rev. Lett., 
68(15):2347-2349, 1992. 

17. K. Ratzke, A. Heesemann, and F. Faupel. 
diffusion in Fe39Ni40B21 glass. J .  Phys. Condens. Matter, 7(39):7663-7668, 1995. 

The vanishing isotope effect of cobalt 

18. R.S. Averback. Defects and diffusion in amorphous alloys. Muter. Res. SOC. Bull., 
16(11):47-52, 1991. 

19. F. Faupel. Diffusion in noncrystalline metallic and organic media. Phys. Status Solidi. 

20. U. Stolz, R. Kirchheim, J.E. Sadoc, and M. Laridjani. Hydrogen in liquid-quenched 
J .  Less-Common Muter., 103( 1):81-90, 

21. R. Kirchheim and U. Stolz. Modeling tracer diffusion and mobility of interstitials in 

A ,  134(1):9-59, 1992. 

and vapor-quenched amorphous PdgoSizo. 
1984. 

disordered materials. J .  Non-Cryst. Solids, 70(3):323-341, 1985. 

Prog. Muter. Sci., 32(4):261-325, 1988. 

deformed and amorphous metals. 2. Acta Metall., 30(6):1069-1078, 1982. 

22. R. Kirchheim. Hydrogen solubility and diffusivity in defective and amorphous metals. 

23. R. Kirchheim. Solubility, diffusivity, and the trapping of hydrogen in dilute alloys, 

24. D.A. McQuarrie. Statistical Mechanics. HarperCollins, New York, 1976. 

25. H. Hahn and R.S. Averback. Dependence of tracer diffusion on atomic size in amor- 
phous Ni-Zr. Phys. Rev. B, 37(11):6533-6535, 1988. 

26. R. Kirchheim. Interstitial diffusion in glass. Defect and Diffusion Forum, 95-98:1159- 
1164, 1993. 

27. R. Kirchheim. Interstitial diffusion in glasses and the mixed alkali effect. In H. Jain 
and D. Gupta, editors, Diffusion in Amorphous Materials, pages 43-54, Warrendale, 
PA, 1994. The Minerals, Metals and Materials Society. 

28. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann. Introduction to Ceramics. John 
Wiley & Sons, New York, 1976. 

29. G.N. Greaves. EXAFS and the structure of glass. J .  Non-Cryst. Solids, 71(1-3):203- 

30. C. Huang and A.N. Cormack. The structure of sodium silicate glass. J .  Chem. Phys., 

217, 1985. 

93( 11):8180-8186, 1990. 

31. G.N. Greaves, S.J. Gurman, C.R.A. Catlow, A.V. Chadwick, S. Houdewalter, C.M.B. 
Henderson, and B.R. Dobson. A structural basis for ionic diffusion in oxide glasses. 
Phil. Mag. A ,  64(5):1059-1072, 1991. 

A structural model for interpretation of an anomaly 
in alkali aluminosilicate glasses at Al/alkali = 0.2-0.4. In H. Jain and D. Gupta, 
editors, Diffusion in Amorphous Materials, pages 137-151, Warrendale, PA, 1994. 
The Minerals, Metals and Materials Society. 

33. G.H. Frischat. Ionic Diffusion in Oxide Glasses. Trans Tech Publications, Bay Village, 
OH, 1975. 

32. Y. Cao and A.N. Cormack. 

34. P.G. de Gennes. Scaling Concepts in Polymer Physics. Cornell University Press, 

35. P.G. de Gennes. Introduction to Polymer Dynamics. Cambridge University Press, 

Ithaca, NY, 1979. 

Cambridge, 1990. 



10 5 DIFFUSION OF POLYMER CHAINS 249 

36. T.P. Lodge, N.A. Rotstein, and S. Prager. Dynamics of entagled polymer liquids: Do 
linear chains reptate? In I. Prigogine and S.A. Rice, editors, Advances in Chemical 
Physics, volume 79, pages 1-132, New York, 1990. John Wiley & Sons. 

37. J.F. Lee, F.W. Sears, and D.L. Turcotte. Statistical Themodynamics. Addison- 
Wesley, Reading, MA, 1963. 

38. K. Huang. Statistical Mechanics. John Wiley & Sons, New York, 1963. 

39. P.G. de Gennes. Reptation of a polymer chain in the presence of fixed obstacles. J .  

40. M. Doi and S.F. Edwards. 

Chem. Phys., 55(2):572-579, 1971. 

The Theory of Polymer Dynamics. Oxford University 
Press, Oxford, 1986. 

41. S.M. Allen and E.L. Thomas. The Structure of Materials. John Wiley & Sons, New 
York, 1999. 



PART II 

MOTION OF DISLOCATIONS 
AND INTERFACES 

A host of important kinetic processes in materials depends upon the motion of 
dislocations and various types of interfaces, and we now describe the basic features 
of the different types of motion that can occur. Different atomic mechanisms are 
involved-including jumping processes of the diffusive type described in Chapter 7, 
long-range diffusion of components in the system, and atomic shuffles (short-range 
displacements that produce local structural changes as the dislocation, or inter- 
face, moves). The situation is compounded further by the fact that dislocations 
and interfaces are themselves generally complex entities that can have a variety of 
structures, and therefore varying responses, to  the forces that drive their motion. 

We start with dislocations and describe both glissile (conservative) and climb 
(nonconservative) motion in Chapter 11. The motion of vapor/crystal interfaces 
and liquid/crystal interfaces is taken up in Chapter 12. Finally, the complex subject 
of the motion of crystal/crystal interfaces is treated in Chapter 13, including both 
glissile and nonconservative motion. 



CHAPTER 11 

MOTION OF DISLOCATIONS 

The motion of dislocations by glide and climb is fundamental to many important 
kinetic processes in materials. Gliding dislocations are responsible for plastic defor- 
mation of crystalline materials at relatively low temperatures, where any dislocation 
climb is negligible. They also play important roles in the motion of glissile interfaces 
during twinning and diffusionless martensitic phase transformations. Both gliding 
and climbing dislocations cause much of the deformation that occurs at higher tem- 
peratures where self-diffusion rates become significant, and significant climb is then 
possible. Climbing dislocations act as sources and sinks for point defects. This 
chapter establishes some of the basic kinetic features of both dislocation glide and 
climb. 

11.1 GLIDE A N D  CLIMB 

The general motion of a dislocation can always be broken down into two compo- 
nents: glide motion and climb motion. Glide is movement of the dislocation along 
its glide (slip) plane, which is defined as the plane that contains the dislocation line 
and its Burgers vector. Climb is motion normal to the glide plane. Glide motion is 
a conservative process in the sense that there is no need to deliver or remove atoms 
at the dislocation core during its motion. In contrast, the delivery or removal of 
atoms at the core is necessary for climb. This is illustrated for the simple case of the 
glide and climb of an edge dislocation in Fig. 11.1, The glide along IC in Fig. 11.1 a 
and b is accomplished by the local conservative shuffling of atoms at the disloca- 
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Figure 11.1: Glide and climb of edge dislocation in primitive cubic crystal (g = [boo]. 
( = [OOl]) [l]. (a) and (b) Glide from left to right. (c)-(f) Downward climb along -y. 
In (d), the lighter-shaded substitutional atom shown adjacent to the dislocation core in (c) 
has joined the extra half plane and created a vacancy. In (e), the vacancy has migrated 
away from the dislocation core by diffusion. In ( f ) ,  the vacancy has been annihilated at the 
surface step. This overall process is equivalent to removing an atom from the surface and 
transporting it to the dislocation at its core. A new site was created at the dislocation, which 
acted as a vacancy source. This site was subsequently annihilated at the surface. which acted 
as an atom source. 

tion core as it moves. The climb along -y, however, requires that the extra plane 
associated with the edge dislocation be extended in the -y direction. This requires 
a diffusive flux of atoms to the dislocation core, and when self-diffusion occurs by 
a vacancy mechanism, the corresponding creation of an equivalent number of new 
lattice sites in the form of vacancies. In this case, the dislocation acts as a sink for 
atoms and, equivalently, as a source for vacancies. Glide can therefore occur at  any 
temperature, whereas significant climb is possible only at  elevated temperatures 
where the required diffusion can 0ccur.l 

Defects such as dislocations can be sources or sinks for atoms or for vacancies. 
Whether such point entities are created or destroyed depends on the type of defect, 
its orientation, and the stresses acting on it. It is convenient to adopt a single term 
source, which describes a defect’s capability for creation and destruction of crystal 
sites and vacancies in the crystal. “Source” will generically indicate creation of 
point entities (i.e., “positive” source action) as well as destruction of point entities 
(i.e., “negative” source action). Thus, a climbing edge dislocation that destroys 
vacancies will be, equivalently, both a (positive) source of atoms and a (negative) 
source of vacancies. If the sense of climb is reversed, the dislocation would be a 
(negative) source of atoms. 

lProvided that the Peierls force is not too large (see Section 11.3.1). 
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11.2 DRIVING FORCES ON DISLOCATIONS 

Dislocations in crystals tend to move in response to forces exerted on them. In gen- 
eral, an effective driving force is exerted on a dislocation whenever a displacement 
of the dislocation causes a reduction in the energy of the system. Forces may arise 
in a variety of ways. 

11.2.1 Mechanical Force 

In general, a segment of dislocation in a crystal in which there is a stress field is 
subjected to  an effective force because the stress does an increment of work (per 
unit length), bW, when the dislocation is moved in a direction perpendicular to 
itself by the vector, 67. In this process, the material on one side of the area swept 
out by the dislocation during its motion is displaced relative to the material on the 
opposite side by the Burgers vector, b', of the dislocation. Work bW is generally done 
by the stress during this displacement. This results in a corresponding reduction 
in the potential energy of the system. The magnitude of the effective force on 
the dislocation (often termed the "mechanical" force) is then just f = bW/br. A 
detailed analysis of this force yields the Peach-Koehler equation: 

(11.1) 

where L is the mechanical force exerted on the dislocation (per unit length), u the 
stress tensor in the material at the dislocation, and ( the unit vector tangent to 
the dislocation along its positive direction [2]. Equation 11.1 is consistent with the 
convention that the Burgers vector of the dislocation is the closure failure (from 
start to finish) of a Burgers circuit taken in a crystal in a clockwise direction around 
the dislocation while looking along the dislocation in the positive direction.2 When 
written in full, Eq. 11.1 has the form 

where 

(11.2) 

(11.3) 

With this result, the mechanical force exerted on any straight dislocation by 
any stress field can be calculated. For example, if the edge dislocation (b' = [boo], 
( = [ O O l ] )  in Figure 11.1 is subjected to a shearing stress uxy, it experiences a force 
urging it to glide on its slip plane in the 2 direction. However, if the dislocation is 
subjected to the tensile stress, gxx, Eq. 11.1 shows that it will experience the force 
f,,  = - j b a x x  (i.e., a force urging it to climb in the -9 direction). 

In a more general stress field, the force (which is always perpendicular to the 
dislocation line) can have a component in the glide plane of the dislocation as well 
as a compor!ent normal to the glide plane. In such a case, the overall force will 
tend to  produce both glide and climb. However, if the temperature is low enough 
that no significant diffusion is possible, only glide will occur. 

2The Burgers circuit is constructed so that it will close if mapped step by step into a perfect 
reference crystal. See Hirth and Lothe [2]. 

.+ 
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11.2.2 Osmotic Force 

A dislocation is generally subjected to another type of force if nonequilibrium point 
defects are present (see Fig. 11.2). If the point defects are supersaturated vacancies, 
they can diffuse to the dislocation and be destroyed there by dislocation climb. A 
diffusion flux of excess vacancies to the dislocation is equivalent to an opposite flux 
of atoms taken from the extra plane associated with the edge dislocation. This 
causes the extra plane to shrink, the dislocation to climb in the f y  direction, and 
the dislocation to act as a vacancy sink. In this situation, an effective “osmotic” 
force is exerted on the dislocation in the f y  direction, since the destruction of the 
excess vacancies which occurs when the dislocation climbs a distance by causes the 
free energy of the system to decrease by 66. The osmotic force is then given by 

By evaluating 66 and b y  when SNv vacancies are destroyed, an expression for f;. 
can be obtained. The quantity 66 is just -pvGNv, where the chemical potential 
of the vacancies, pv, is given by Eq. 3.66. If a climbing edge dislocation destroys 
SNv vacancies per unit length, the climb distance will be by = (R /b )bNv .  The 
osmotic force is therefore 

f;. = - j  66lSy. 

(11.4) 

This result is easily generalized for mixed dislocations which are partly screw- 
type and partly edge-type, and also for cases having subsaturated vacancies. For a 
mixed dislocation, b must be replaced by the edge component of its Burgers vector 

Figure 11.2: Oblique view of edge dislocation climb due to destruction of excess 
vacancies. The extra plane associated with the edge dislocation is shaded. At A ,  a vacancy 
from the crystal is destroyed directly at a jog. At B ,  a vacancy from the crystal jumps 
into the core. At C, an attached vacancy is destroyed at a jog. At D ,  an attached vacancy 
diffuses along the core. 
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and the result (see Exercise 11.1) is 

where - -kT 
R 

B = b - In ($) 

(11.5) 

(11.6) 

If the vacancies are subsaturated, the dislocation tends to produce vacancies and 
therefore acts as a vacancy source. In that case, Eq. 11.5 will still hold, but pv will 
be negative and the climb force and climb direction will be reversed. Equation 11.5 
also holds for interstitial point defects, but the sign of 6 will be reversed. 

11.2.3 Curvature Force 

Still another force will be present if a dislocation is curved. In such cases, the 
dislocation can reduce the energy of the system by moving to decrease its length. 
An effective force therefore tends to induce this type of motion. Consider, for 
example, the simple case of a circular prismatic dislocation loop of radius, R. The 
energy of such a loop is 

W = R -  2(1  pb2 - u )  [In(:) - 11 (11.7) 

where R, is the usual cutoff radius (introduced to avoid any elastic singularity at 
the origin) [ 2 ] .  The energy of such a loop can be reduced by reducing its radius 
and therefore its length. Thus, a climb force, fl;, exists which is radial and in the 
direction to shrink the loop. A calculation of the reduction in the loop energy 
achieved when its radius shrinks by 6R shows that (dW/dR) 6R = 27rR fK 6R. The 
force is therefore 

(11.8) 

This result may be generalized. Any segment of an arbitrarily curved dislocation 
line will be subjected to a curvature force of similar magnitude because the stress 
fields of other segments of the dislocation line at some distance from the segment 
under consideration exert only minimal forces on it. For most curved dislocation 
geometries, the magnitude of the right-hand side of Eq. 11.8 is approximately equal 
to pb2 ( l / R ) .  Therefore, for a general dislocation with radius of curvature, R, 

(11.9) 

The quantity pb2 has the dimensions of a force (or, equivalently, energy per unit 
length) and is known as the line tension of the dislocation. Equation 11.9 can also 
be obtained by taking the line tension to be a force acting along the dislocation 
in a manner tending to decrease its length.3 This approximation is supported by 
detailed calculations for other forms of curved dislocations [2] .  

3This is explored further in Exercise 11.2. 
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The vector form of Eq. 11.9 is readily obtained. If r'is the position vector tracing 
out the dislocation line in space and ds is the increment of arc length traversed along 
the dislocation when r' increased by dr',4 

(11.10) 

where at  the point r' on the line, f i  is the principal normal, which is a unit vector 
perpendicular to ( and directed toward the concave side of the curved line, K is the 
curvature, and R is the radius of curvature. Therefore, 

(11.11) 

11.2.4 

The total driving force on a dislocation, f: is the sum of the forces previously 

Total Driving Force on a Dislocation 

considered and, therefore, 

$=flr+$+.L = ( I X  t) + 

11.3 DISLOCATION GLIDE 

d f  4 x B + pb2 - = x (2 - 4 + pb2 - (11.12) (' '> ds ds 

Of central interest is the rate at  which a dislocation is able to glide through a 
crystal under a given driving force. Many factors play potential roles in determining 
this rate. In perfect crystals, relativistic effects can come into play as dislocation 
velocities approach the speed of sound in the medium. At elevated temperatures, 
dissipative phonon effects can produce frictional drag forces opposing the motion. 
Also, the atom shuffling at  the core, which is necessary for the motion, may be 
difficult in certain types of crystals and thus inhibit glide. In imperfect crystals, 
any point, line, and planar defects and inclusions can serve as additional obstacles 
hindering dislocation glide. We begin by discussing glide in a perfect single crystal, 
which for the present is taken to be a linear elastic continuum. 

11.3.1 

Relativistic Effects. Consider the relatively simple case of a screw dislocation mov- 
ing along 5 at the constant velocity v' (see Fig. 11.3). The elastic displacements, 
u l ,  u2, and 213, around such a dislocation may be determined by solving the Navier 
equations of isotropic linear elasticity [3].5 For this screw dislocation, the only non- 
zero displacements are along z ,  and for the moving dislocation the Navier equations 

Glide in Perfect Single Crystals 

therefore reduce to 

(11.13) 

where p is the density of the medium, p is the shear modulus, and on the left is 
the inertial term due to the acceleration of mass caused by the moving dislocation. 

4See Appendix C for a brief survey of mathematical relations for curves and surfaces. 
5See standard references on dislocation mechanics [2, 4, 51. 



11 3 DISLOCATION GLIDE 259 

Y Y ‘  

i A 
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Figure 11.3: = [OOl ]  moving in the +z direction at 
a constant velocity v’. The origin of the primed (d, y’, z ’ )  coordinate system is fixed to the 
niovi ng dislocation. 

Screw dislocation with b’ = [OOb],  

Equation 11.13 is readily solved after making the changes of variable 

I - r-vt x -- 
yL E 7- 
Y’ = Y 
2‘ = z 
I - t-vx -- (11.14) 

where c = is the velocity of a transverse shear sound wave in the elastic 
medium. The origin of the ( X I ,  y‘, z’) coordinate system is fixed on the moving 
dislocation as in Fig. 11.3. These changes of variable transform Eq. 11.13 into 

d2u3 32213 - + + , = o  
dXl2 dy 

(11.15) 

because u g  is a not a function of tl in the moving coordinate system and du3/dt’ = 0. 
Equation 11.15 has the form of the Navier equation for a static screw dislocation 
and its solution6 has the form 

2.n 

Transforming this solution back to  x, y,  t space, 

b 
2i7 

uz(x, y ,  t) = - tan- 

(1 1.16) 

(11.17) 

The shear stress of the dislocation in cylindrical coordinates, g o z ,  may now be 
found by using the standard relations orz = p(au,/dx), uyz = p(du,/dy), and 
Ooz = oyz cose - ozz sine. The result is 

pb  YL (x; + yg)’” 
g o z  = - 

2.n x;+r;y; 

6Further discussion of this can be found in Hirth and Lothe [2]. 

(11.18) 
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where the distances 20 and yo (measured from the moving dislocation) have been 
introduced. Equation 11.18 indicates that the stress field is progressively contracted 
along the 20 axis and extended along the yo axis as the velocity of the dislocation is 
increased. This distortion is analogous to the Lorentz contraction and expansion of 
the electric field around a moving electron, and the quantity y~ plays a role similar 
to the Lorentz-Einstein term (1 - w2/c2)lI2 in the relativistic theory of the electron, 
where c is the velocity of light rather than of a transverse shear wave. In the limit 
when w + c and y~ -+ 0, the stress around the dislocation vanishes everywhere 
except along the y'-axis, where it becomes infinite. 

Another quantity of interest is the velocity dependence of the energy of the 
dislocation. The energy density in the material around the dislocation, w, is the 
sum of the elastic strain-energy density and the kinetic-energy density, 

w = 2w,, 2 + 2pLEyz + z p  (;;)2=;[(EE)2+(L!%)2+;(a,'l - 

(1 1.19) 
where the first two terms in each expression make up the elastic strain-energy 
density and the third term is the kinetic-energy density [3]. The total energy may 
then be found by integrating the energy density over the volume surrounding the 

(11.20) 

where W" is the elastic energy of the dislocation per unit length at rest [2, 4, 51, 

(1 1.21) 

Here, R, is again the usual cutoff radius a t  the core and R is the dimension of 
the crystal containing the dislocation. According to Eq. 11.20, the energy of the 
moving dislocation will approach infinity as its velocity approaches the speed of 
sound. Again, the relationship for the moving dislocation is similar to that for a 
relativistic particle as it approaches the speed of light. 

These results indicate that in the present linear elastic model, the limiting ve- 
locity for the screw dislocation will be the speed of sound as propagated by a 
shear wave. Even though the linear model will break down as the speed of sound 
is approached, it is customary to consider c as the limiting velocity and to take 
the relativistic behavior as a useful indication of the behavior of the dislocation as 
w + c. It is noted that according to Eq. 11.20, relativistic effects become important 
only when w approaches c rather closely. 

The behavior of an edge dislocation is more complicated since its displacement 
field produces both shear and normal stresses. The solution consists of the super- 
position of two terms, each of which behave relativistically with limiting velocities 
corresponding to the speed of transverse shear waves and longitudinal waves, re- 
spectively [a, 4, 51. The relative magnitudes of these terms depend upon w. 

Drag Effects. Dislocations gliding in real crystals encounter dissipative frictional 
forces which oppose their motion. These frictional forces generally limit the dislo- 
cation velocity to values well below the relativistic range. Such drag forces originate 
from a variety of sources and are difficult to  analyze quantitatively. 



11.3: DISLOCATION GLIDE 261 

Drag by Emission of Sound Waves. When a straight dislocation segment glides in 
a crystal, its core structure varies periodically with the periodicity of the crystal 
along the glide direction. The potential energy of the system, a function of the core 
structure, will therefore vary with this same periodicity as the dislocation glides. 
Because of this position dependence, there is a spatially periodic Peierls force that 
must be overcome to move a dislocation. Therefore, the force required to displace 
a dislocation continuously must exceed the Peierls force, indicated by the positions 
where the derivative of potential energy in Fig. 11.4 is maximal [2].’As the dislocb 
tion traverses the potential-energy maxima and minima, it alternately decelerates 
and accelerates and changes its structure periodically in a “pulsing” manner. These 
structural changes radiate energy in the form of sound waves (phonons). The energy 
required to produce this radiation must come from the work done by the applied 
force driving the dislocation. The net effect is the conversion of work into heat, and 
a frictional drag force is therefore exerted on the dislocation. 

I 
I b 

X 

Position of dislocation 

Figure 11.4: Variation of potential energy of crystal plus dislocation w a function of 
dislocation position. Periodicity of potential energy corresponds to periodicity of crystal 
structure. 

In a crystal, sound waves of a given polarization and direction of propagation 
are dispersive-their velocity is a decreasing function of their wavenumber, which 
produces a further drag force on a dislocation. The dispersion relation is 

(11.22) 

where w is the angular frequency, d is the distance between successive atomic planes 
in the direction of propagation, k = 27r/X is the wavenumber, and X is the wave- 
length.8 In the long-wavelength limit (A >> d) corresponding to an elastic wave 
in a homogeneous continuum, the phase velocity is c (as expected). However, at 
the shortest wavelength that the crystal can transmit (A = 2 4 ,  the phase veloc- 
ity is lower and, according to Eq. 11.22, is given by 2c/7r. The displacement field 
of the dislocation can now be broken down into Fourier components of different 
wavelengths. If the dislocation as a whole is forced to travel at a velocity lower 
than c but higher than 2c/7r, the short-wavelength components will be compelled 
to travel faster than their phase velocity and will behave as components of a su- 

‘However, dislocations will still move by thermally activated processes below the Peierls force. 
*For more about the dispersion relation, see a reference on solid-state physics, such as Kittel [6]. 
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personic dislocation. These components will radiate energy and therefore impose a 
viscous drag force on the dislocation (see Section 11.3.4). 

Drag by Scattering of Phonons and Electrons. A dislocation scatters phonons by 
two basic mechanisms. First, there are density changes in its displacement field 
which produce scattering. Second, the dislocation moves under the influence of an 
impinging sound wave and, as it oscillates, re-radiates a cylindrical wave. If the 
dislocation undergoes no net motion and is exposed to an isotropic flux of phonons 
it will experience no net force. However, if it is moving, the asymmetric phonon 
scattering will exert a net retarding force, since, in general, any entity that scatters 
plane waves experiences a force in the direction of propagation of the waves. If, in 
addition, free electrons are present, they will be scattered by an effective scattering 
potential produced by the displacement field of the dislocation. This produces a 
further retarding force on a moving dislocation. 

Peierls Force: Continuous vs. Discontinuous Motion. In some crystals (e.g., covalent 
crystals) the Peierls force may be so large that the driving force due to the applied 
stress will not be able to drive the dislocation forward. In such a case the dislocation 
will be rendered immobile. However, at elevated temperatures, the dislocation may 
be able to surmount the Peierls energy barrier by means of stress-aided thermal 
activation, as in Fig. 11.5. 
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Figure 11.5: Movement of dislocation across a Peierls energy barrier by thermally 
activated generation of double kinks. Dashed lines represent positions of energy minima 
shown in Fig. 11.4. 

In Fig. 11.5a, the dislocation is forced up against the side of a Peierls “hill” 
by an applied stress as in Fig. 11.4. With the aid of thermal activation, it then 
generates a double kink in which a short length of the dislocation moves over the 
Peierls hill into the next valley (Fig. 11.5b).9 The two kinks then glide apart 
transversely under the influence of the driving force (Fig. 1 1 . 5 ~ ) ~  and eventually, 
the entire dislocation advances one periodic spacing. By repeating this process, the 
dislocation will advance in a discontinuous manner with a waiting period between 
each advance, and the overall forward rate will be thermally activated. This is an 

9A kink is an offset of the dislocation in its glide plane; it differs fundamentally from a jog, an 
offset normal to  the glide plane. 
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example of discontinuous motion, which results when the driving force is not large 
enough to drive the dislocations forward continuously in purely mechanical fashion. 

Figure 11.6 illustrates the energy that must be supplied by thermal activation. 
The curve of ab vs. A shows the force that must be applied to the dislocation (per 
unit length) if it were forced to surmount the Peierls barrier in the manner just 
described in the absence of thermal activation. The quantity A is the area swept 
out by the double kink as it surmounts the barrier and is a measure of the forward 
motion of the double kink. A = 0 corresponds to the dislocation lying along an 
energy trough (minimum) as in Fig. 1 1 . 5 ~ .  A2 is the area swept out when maximum 
force must be supplied to drive the double kink. A4 is the area swept out when the 
saddle point has been reached and the barrier has been effectively surmounted. The 
area under the curve is then the total work that must be done by the applied stress 
to surmount the barrier in the absence of thermal activation. When the applied 
stress is a~ (and too small to force the barrier), the swept-out area is Al,  and the 
energy that must be supplied by thermal activation is then the shaded area shown 
in Fig. 11.6. The activation energy is then 

E = bh:(a - 0 A ) d A  

and the overall dislocation velocity will be of the form 

(11.23) 

where vo is proportional to an attempt frequency. The area A3 - A1 swept out 
during the activation event, is termed the activation area. Of particular interest from 
a kinetics standpoint is the result (Eq. 11.23) that the activation energy decreases 
as the applied stress increases: hence, the term stress-aided thermal activation. 

Ob t 

Figure 11.6: Curve of applied force, ab, vs. area swept out, A, when dislocation 
surmounts an obstacle to glide. 

11.3.2 

Real crystals can contain a large variety of different types of point, line, and pla- 
nar crystal defects and other entities, such as embedded particles, which interact 
with dislocations and can act as obstacles to glide. Solute atoms are good exam- 
ples of point defects that hinder dislocation glide by acting as centers of dilation 

Glide in Imperfect Crystals Containing Various Obstacles 
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(see Fig. 3.9) and therefore possess stress fields that interact with dislocation stress 
fields, causing localized dislocation-solute-atom attraction or repulsion. If a dis- 
persion of solute atoms is present in solution, a dislocation will not move through 
it as a rigid line but will consist of segments that bulge in and out as the disloca- 
tion experiences close encounters with nearby solute atoms. The overall dislocation 
motion therefore consists of a uniform motion with superimposed rapid forward 
or backward localized bulging. This type of rapid bulging motion dissipates extra 
energy by a number of the mechanisms already discussed and therefore exerts a 
drag force. At sufficiently high temperatures, solute atoms may migrate in the 
stress field of dislocations (Section 3.5.2), and such induced diffusion can dissipate 
energy and produce a drag force, particularly for slowly moving dislocations. In 
addition, solute atoms with anisotropic displacement fields can change orientations 
under the influence of the stress field of a moving dislocation, thereby producing an 
increment of macroscopic strain (see Section 8.3.1). This can also lead to a dissi- 
pative drag force. Solute atoms can also segregate to the cores of dislocations and 
form atmospheres around dislocations and thus hinder, or even pin, their motion. 

Dislocations attract and repel other dislocations. Perhaps the most important 
example is the work hardening that occurs during the plastic deformation of crys- 
tals. Here, large numbers of dislocations are generated during the deformation; 
many remain in the crystal, where they act as obstacles to the passage of further 
dislocations, causing the material to strengthen and harden. At elevated temper- 
atures during creep, gliding dislocations, which are held up at obstacles in their 
slip planes, can climb around them with the help of thermal activation (see the 
following section) and thus continue their glide. 

Grain boundaries act as barriers to slip, since, in general, a gliding dislocation 
will encounter a discontinuity in its slip plane and Burgers vector when it impinges 
on a boundary and attempts to pass through it into the adjoining grain. 

The host of interesting kinetic processes associated with the movement of dis- 
locations through materials containing various obstacles to their motion is far too 
large to be described in this book. The reader is therefore referred to specialized 
texts [2, 7-91. 

11.3.3 Some Experimental Observations 

Figure 11.7 shows measurements of the velocity of edge and screw dislocation seg- 
ments in LiF single crystals as a function of applied force (stress) [lo]. Stresses 
above a yield threshold stress were required for any motion. The velocity then in- 
creased rapidly with increasing stress but eventually began to level off as the velocity 
of sound was approached. Results within the significantly relativistic range were 
not achieved in these experiments, since for all measurements y~ x 1. It is likely 
that at the lower stresses (where the results are impurity sensitive), the velocities 
were limited by impediments arising from dislocation-dislocation and dislocation- 
defect interactions [2]. This regime holds for the plastic deformation of essentially 
all crystalline materials deformed at normal strain rates. At the higher stresses in 
Fig. 11.7 (where the smaller slope is impurity insensitive and decreases with in- 
creasing temperature), the higher velocities were limited by phonon-viscosity drag. 
High dislocation velocities may be achieved at the start of even low-strain-rate de- 
formation if the initial concentration of mobile dislocations is unusually low [ll]. 
In such cases, a small number of dislocations must move very rapidly to accom- 
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Figure 11.7: 
crystals. From Johnston and Gilman [lo]. 

Velocity vs. resolved shear stress for dislocation motion in LiF single 

plish the strain required. Further experimental evidence has been presented for the 
strong frictional drag forces that come into play at high velocities approaching the 
relativistic range [ l l ] .  Finally, it is noted that the viscous damping of dislocation 
motion converts mechanical energy to  heat. This produces internal friction when a 
crystal containing a dislocation network is subjected to  an oscillating applied stress 
(see Section 11.3.5). 

11.3.4 Supersonic Glide Motion 

If a dislocation is injected into a crystal a t  a speed greater than the speed of sound in 
the crystal, it will radiate energy in the form of sound waves similar to the way that 
a charged particle emits electromagnetic Cherenkov radiation when it is injected 
into a material at a velocity greater than the speed of light in that medium [5]. 
This causes rapid deceleration of the dislocation. However, steady-state supersonic 
motion of dislocations is possible in special cases where the motion of the dislocation 
in its glide plane causes a sufficiently large reduction in the energy of the system [2, 
51. In such a case, this reduction of energy provides the energy that must be radiated 
during the supersonic motion. Conceivable examples include motion of a partial 
dislocation that removes its associated fault (see Fig. 9.10) or dislocation motion in 
a glissile martensitic interface (Section 24.3) , which converts the higher free-energy 
parent phase to the lower-energy martensitic phase. Models for the motion of such 
dislocations are entirely different from those discussed in Section 11.3.1 and are 
described by Nabarro [5] and Hirth and Lothe [2]. So far, there is no clear evidence 
for the supersonic motion of martensitic interfaces, probably due to  the influence of 
frictional drag forces. However, there is some evidence that supersonic dislocations 
are present in shock-wave fronts, as in Fig. 11.8 [12]. Models for the motion of 
such fronts have been described [ll, 131, and some evidence for the existence of 
dislocations in them has been obtained by computer simulation [14]. 
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Figure 11.8: 
in a shock-wave front. 

Possible interface between normal (lower) and compressed (upper) lattice 

11.3.5 

The stress-induced glide motion of dislocation segments in the dislocation networks 
usually present in materials can produce anelastic strains. (See the general dis- 
cussion of anelasticity in Section 8.3.1.) If a segment that is pinned at its ends is 
subjected to an oscillating stress, it will periodically bow in and out in a manner 
similar to a vibrating string, as illustrated in Fig. 11.9. This will produce a small 
oscillating strain in the material. Because dissipative drag forces will be in play 
and the dislocation velocity is not infinite, this strain will lag the stress, causing 
internal friction [15]. Further aspects are considered in Exercise 11.12. 

Contributions of Dislocation Motion to Anelastic Behavior 

Figure 11.9: 
to  the applied shear stress, o. 

Dislocation segment pinned at A and B bowing out in the slip plane due 

11.4 DISLOCATION CLIMB 

Figure 11.2 presents a simplified three-dimensional representation of the climb of 
an edge dislocation arising from the destruction of excess vacancies in the crystal. 
The jogs (steps in the edge of the extra plane) in the dislocation core are the sites 
where vacancies are created or permanently destroyed. Vacancies can reach a jog 
by either jumping directly into it or else by first jumping into the dislocation core 
and then diffusing along it to a jog, where they are destroyed. The elementary 
processes involved include: 

0 The jumping of a vacancy directly into a jog and its simultaneous destruction, 
as at  A 

0 The jumping of a vacancy into the core, where it becomes attached as at B 
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The destruction of an attached vacancy at  a jog, as a t  C 

The diffusion of an attached vacancy along the core, as at D 

In many cases, vacancies are bound to  the dislocation core by an attractive 
binding energy and diffuse along the dislocation more rapidly than in the crystal. 
Many more vacancies may therefore reach jogs by fast diffusion along the dislocation 
core than by diffusion directly to  them through the crystal. 

The jogs required for the climb process can be generated by the nucleation and 
growth of strings of attached excess vacancies along the core. When a string be- 
comes long enough, it will collapse to  produce a fully formed jog pair, as, for ex- 
ample, in the region along the core bounded by A and C in Fig. 11.2. The spacing 
of the jog pair then increases due to  the continued destruction of excess vacancies 
at the jogs until a complete row of atoms has been stripped from the edge of the 
extra plane. During steady-state climb, this process then repeats itself. 

11.4.1 

A detailed kinetic model for the overall climb rate based on the above mecha- 
nisms has been developed [2, 16-20]. In this model it is assumed that because 
the vacancies are easily destroyed at jogs, they are maintained at their equilibrium 
concentration in the immediate vicinity of the jogs. If the vacancies experience an 
attractive binding energy to  the core and also diffuse relatively rapidly along it, a 
typical attached vacancy will diffuse a significantly large mean distance, ( Z ) ,  along 
the core before it jumps back off into the crystal. The magnitude of (2) increases 
with the binding energy of the vacancy to  the dislocation and the relative rate of 
diffusion of the vacancy along the dislocation core. Each jog is therefore capable 
of maintaining the vacancy concentration essentially at equilibrium over a distance 
along the dislocation on either side of it equal approximately to  the distance (2). 
Each jog, with the assistance of the two adjoining segments of high-diffusivity core, 
therefore acts effectively as an ellipsoidal sink of semiaxes b and (2) having a surface 
on which the vacancy concentration is maintained in local equilibrium with the jog. 
The overall effectiveness of the dislocation as a sink then depends upon the mag- 
nitude of (2) and the mean spacing of the jogs along the dislocation, (S). When 
the vacancy supersaturation is small and the system is near equilibrium, the jog 
spacing will be given approximately by the usual Boltzmann equilibrium expression 
( S )  Z b exp[-Ej/(kT)], where Ej is the energy of formation of a jog. However, at 
high supersaturations when excess vacancies can aggregate quickly along the dis- 
location and nucleate jog-pairs rapidly, the number of jogs will be increased above 
the equilibrium value and their spacing will be reduced correspondingly [17, 181. A 
wide range of dislocation sink efficiencies is then possible. When 2 ( 2 ) / ( S )  2 1, the 
effective jog sinks overlap along the dislocation line, which then acts as a highly ef- 
ficient line sink capable of maintaining local vacancy equilibrium everywhere along 
its length. The rate of vacancy destruction is limited only by the rate at which the 
vacancies can diffuse to  the dislocation, and the rate of destruction will then be the 
maximum possible. The kinetics are therefore daflusion-limited, and the dislocation 
is considered an “ideal” sink. Conditions that promote this situation are a high 
binding energy for attached vacancies, a relatively fast diffusion rate along the core, 
a small jog formation energy, and a large vacancy supersaturation. 

Diffusion-Limited vs. Source-Limited Climb Kinetics 
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On the other hand, when the fast diffusion of attached vacancies to the jogs is 
impeded and (2) is therefore small (i.e., (2) 2 b ) ,  each jog acts as a small isolated 
spherical sink of radius b. If, at the same time, (S) is large, the jog sinks are far 
apart and the overall dislocation sink efficiency is relatively small. Under these 
conditions the rate of vacancy destruction will be limited by the rate at which the 
vacancies can be destroyed along the dislocation line, and the overall rate of vacancy 
destruction will be reduced. In the limit where the rate of destruction is slow enough 
so that it becomes essentially independent of the rate at which vacancies can be 
transported to the dislocation line over relatively long distances by diffusion, the 
kinetics are sink-limited. 

When the dislocation acts as a sink for a flux of diffusing vacancies (or alterna- 
tively, as a source of atoms) or as a source for a flux of vacancies, it is useful to 
introduce a source or sink efficiency, 17, defined by 

(11.25) 
flux of atoms created at actual source 

17 = flux of atoms created at corresponding “ideal” source 

A dislocation source that climbs rapidly enough so that ideal diffusion-limited 
conditions are achieved therefore operates with an efficiency of unity. On the other 
hand, slowly acting sources can have efficiencies approaching zero. Applications of 
these concepts to the source action of interfaces are discussed in Section 13.4.2. 

The climb of mixed dislocations possessing some screw character can proceed by 
basically the same jog-diffusion mechanism as that for the pure edge dislocation.1° 
On the other hand, a pure screw dislocation can climb if the excess vacancies convert 
it into a helix, as in Fig. 11.10. Here the turns of the helical dislocation possess 

Figure 11.10: Formation of a helical segment on an initially straight screw dislocation 
lying along [loo] in a primitive-cubic crystal by progressive addition of vacancies to the 
core. For graphic purposes, each vacancy is represented by a vacancy-type prismatic loop of 
atomic size. (a) Vacancy in a crystal with an initial straight screw dislocation nearby. (b) 
Configuration after a vacancy has joined the dislocation. (c)-(  e )  Configurations after two, 
three, and four vacancies have been added. 

‘ODetails are discussed by Balluffi and Granato [19]. 
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strong edge components and, once formed, continue to climb as mixed dislocation 
segments. 

Additional factors may play a role during dislocation climb in many systems. 
These include the possibility that jogs may be able to nucleate heterogeneously at  
nodes or regions of sharp curvature. Also, in low stacking-fault-energy materials, 
the dislocation may be dissociated into two partial dislocations bounding a ribbon 
of stacking fault as shown in Fig. 9.10. In such cases, the jogs may also be dissoci- 
ated and possess a relatively high formation energy, causing the climb to be more 
difficult [2, 191. 

11.4.2 Experimental Observations 

Reviews of experimental observations of the efficiency with which dislocations climb 
under different driving forces have been published [18-221. A wide range of semi- 
quantitative results is available only for metals, including: 

Vacancy quenching experiments where the destruction rate at  climbing dis- 
locations of supersaturated vacancies obtained by quenching the metal from 
an elevated temperature is measured (see the analysis of this phenomenon in 
the following section) 

Dislocation loop annealing where the rate at  which dislocation loops shrink 
by means of climb is measured (see analysis in following section) 

Sintering experiments where the rate at  which vacancies leave voids and are 
then destroyed at  climbing dislocations is measured 

Of main interest is the efficiency of climb and its dependence on the magnitude of 
the force driving the climb process. In general, the efficiency of climbing dislocations 
as sources increases as the driving force increases, since more energy is then available 
to drive the climb. A convenient measure of the relative magnitude of this force is 
the energy change, gsl which is achieved per crystal site created as a result of the 
climb. 

All dislocations, including dissociated dislocations in lower-stacking-fault-energy 
metals and relatively nondissociated dislocations in high-stacking-fault-energy met- 
als, operate as highly efficient sources when lgsj is large, as in rapidly quenched 
metals [20]. However, when lgsl is reduced, lower efficiencies, which may become 
very small, are found for the lower-stacking-fault-energy metals. The efficiencies 
for the higher-stacking-fault-energy metals appear to fall off less rapidly with Jgs 1. 
This may be understood on the basis of the tendency of the dislocations to contain 
more jogs as lgsl increases and the greater difficulty in forming jogs on dissociated 
dislocations than on undissociated dislocations because of the larger jog energies of 
the former. 

11.4.3 

Climbing Dislocations as Sinks for Excess Quenched-in Vacancies. Dislocations are 
generally the most important vacancy sources that act to  maintain the vacancy 
concentration in thermal equilibrium as the temperature of a crystal changes. In 
the following, we analyze the rate at  which the usual dislocation network in a 

Analyses of Two Climb Problems 
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crystal destroys excess supersaturated vacancies produced by rapid quenching from 
an elevated temperature during isothermal annealing at a lower temperature. If 
the dislocations in the network are present at a density Pd (dislocation line length 
per unit volume), a reasonable approximation is that each dislocation segment acts 
as the dominant vacancy sink in a cylindrical volume centered on it and of radius 
R = ( r p d ) - l l 2 .  The problem is then reduced to the determination of the rate at 
which excess vacancies in the cylinder diffuse to the dislocation line as illustrated 
in Fig. 11.11. The diffusion system is assumed to contain two components (A-type 
atoms and vacancies) and is network constrained. Equation 3.68 for the diffusion 
of vacancies is applicable in this case, and therefore 

+ 
J v  = -DVVCV (1 1.26) 

According to the results in Section 11.4.2, the dislocations should act as highly ef- 
fective sinks for the highly supersaturated vacancies. We therefore assume diffusion- 
limited kinetics in which each dislocation segment is capable of maintaining the va- 
cancies in local thermal equilibrium at its core, represented as a cylinder of effective 
radius R,, where R, is of atomic dimensions. Also, in this type of problem, the effect 
of the dislocation climb motion on the diffusion of the vacancies to the dislocation 
can be neglected to a good approximation [2, 231. Using the separation-of-variables 
method (Section 5.2.4), the diffusion equation corresponding to Eq. 3.69, 

may be solved subject to the conditions 

c v  = c? 
cv = c b  
dCV 
dr  

for r = R, and t 2 0 

for R, < r 5 R and t = 0 

- 0  f o r r = R a n d t L O  -- 

(11.27) 

(11.28) 

where c b  is the quenched-in vacancy concentration and c? is the equilibrium va- 
cancy concentration maintained at the “surface” of the dislocation core at the an- 

Figure 11.11: Vacancy diffusion fields in cylindrical cells (of radius R) around 
dislocations acting as line sinks (of radius Ro). 
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nealing temperature. The solution shows that the fraction of the excess vacancies 
remaining in the system decays with time according to 

(11.29) 

where the an are the roots of 

Yo(Roan)Jl(Ran) - Jo(Roan)Yl(Ran) = 0 (11.30) 

and Jn and Yn are Bessel functions of the first and second kind of order n [24]. 
For typical values of Ro and R, the first term in Eq. 11.29 will be dominant except 
at  very early times when the fraction decayed is small [24]. The major portion 
of the excess vacancy decay will therefore be essentially exponential [i.e., f ( t )  
exp(-a:Dvt)]. Finally, it is noted that the above treatment does not take account 
of the effect of the dislocation stress field on the diffusivity of the vacancies, as 
discussed in Section 3.5.2. In general, this stress field is of importance only within 
a relatively small distance from the dislocation. Under these circumstances, its 
effect during the major portion of the decay can be approximated in a simple 
manner by making a relatively small change in the value of the effective dislocation 
core radius, R, [25]. Since the roots of Eq. 11.30 are fairly insensitive to the value 
of Ro, the decay rate is also rather insensitive to this choice of R,. The effect of 
the stress field will therefore be relatively small. 

Shrinkage of Dislocation Loops by Climb. Prismatic dislocation loops are often 
formed in crystals by the precipitation of excess vacancies produced by quench- 
ing or by fast-particle irradiation (see Exercise 11.7). Once formed, these loops 
tend to shrink and be eliminated by means of climb during subsequent thermal an- 
nealing. A number of measurements of loop shrinkage rates have been made, and 
analysis of this phenomenon is therefore of interest [2]. In this section we calculate 
the isothermal annealing rate of such a loop located near the center of a thin film 
in a high-stacking-fault-energy material (such as Al) where the climb efficiency will 
be high, and the shrinkage rate is therefore diffusion-limited. 

The situation is illustrated in Fig. 11.12a. The loop is taken as an effective torus 
of large radius, RL,  with much smaller core radius, Ro, and the film thickness is 2d 
with d >> RL. The vacancy concentration maintained in equilibrium with the loop 

Figure 11.12: (a) Vacancy diffusion fluxes around a dislocation loop (of radius R L )  
shrinking by climb in a thin film of thickness 2d. (b) Spherical approximation of a diffusion 
field in (a). 
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at the surface of the torus, c?(loop), is larger than the equilibrium concentration, 
c"vqco), maintained at the flat film surfaces. These concentrations can differ con- 
siderably for small loops, and the approximation leading to Eq. 3.72, which ignored 
variations in cv throughout the system, cannot be employed. Equation 3.69 can be 
used to describe the vacancy diffusion. Vacancies therefore diffuse away from the 
"surface" of the loop to  the relatively distant film surfaces, and the loop shrinks as 
it generates vacancies by means of climb. 

The concentration, cT(loop), can be found by realizing that the formation energy 
of a vacancy at the climbing loop is lower than at the flat surface because the loop 
shrinks when a vacancy is formed, and this allows the force shrinking the loop (see 
Section 11.2.3) to perform work. In general, N;q = exp[-Gf/(kT)] according to  
Eq. 3.65, and therefore 

(11.31) 

where Gf(m) - Gf(1oop) is the work performed by the force on the shrinking loop 
during the formation of a vacancy. The number of vacancies stored in the loop 
is NV = .irRib/R. The reduction in the radius of the loop due to formation of a 
vacancy by climb is then 6RL/6Nv = -R / (2 rbR~) .  Therefore, 

R 
2.irbR~ G;(CO) - Gv(loop) f = - 2 . i r ~ L 1 . 1 2  

(1 1.32) 
- - 

where the force has been evaluated with Eq. 11.8. 
The vacancy diffusion field around the toroidal loop will be quite complex, but 

at distances from it greater than about ~ R L ,  it will appear approximately as shown 
in Fig. 11.12a. A reasonably accurate solution to this complex diffusion problem 
may be obtained by noting that the total flux to the two flat surfaces in Fig. 1 1 . 1 2 ~  
will not differ greatly from the total flux that would diffuse to a spherical surface 
of radius d centered on the loop as illustrated in Fig. 11.12b. Furthermore, when 
d >> RL, the diffusion field around such a source will quickly reach a quasi-steady 
state [20, 261, and therefore 

v2cv = 0 (11.33) 

(A justification of this conclusion will be obtained from the analysis of the growth 
of spherical precipitates carried out in Section 13.4.2.) In the steady state, the 
vacancy current leaving the loop can be written as 

where C is the electrostatic capacitance of a conducting body with the same toroidal 
geometry as the loop placed at the center of a conducting sphere so that the ge- 
ometry resembles Fig. 11.12b. This result is a consequence of the similarity of the 
concentration fields, c(z, y, z ) ,  and electrostatic-potential fields, $(z, y, z ) ,  which 
are obtained by solving Laplace's equation in steady-state diffusion (V2c = 0) and 
electrostatic potential (V2$ = 0) problems, respectively [20, 261. The shrinking 
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rate of the loop is then 

RI - -- - 
6RL - R bNv 

- 

(11.35) 
6t 2.irbR~ bt 2 r b R ~  

- _  - 2r *D e p b C 2 / [ 4 x ( l - v ) k T R ~ ]  l n ( 4 R ~ / R , )  - 1 
f b In( 8RL/Ro) 

This final result is obtained by using Eqs. 8.17, 11.31, 11.32, 11.34, and the relation 
C = nRL/ ln(8RL/Ro) for the capacitance of a torus in a large space when RL >> 
R, [27]. 

Analyses of the climbing rates of many other dislocation configurations are of 
interest, and Hirth and Lothe point out that these problems can often be solved by 
using the method of superposition (Section 4.2.3) [2]. In such cases the dislocation 
line source or sink is replaced by a linear array of point sources for which the 
diffusion solutions are known, and the final solution is then found by integrating 
over the array. This method can be used to find the same solution of the loop- 
annealing problem as obtained above. 

As in Fig. 11.13, the loop can be represented by an array of point sources each 
of length R,. Using again the spherical-sink approximation of Fig. 11.12b and re- 
calling that d >> RL >> R,, the quasi-steady-state solution of the diffusion equation 
in spherical coordinates for a point source at the origin shows that the vacancy 
diffusion field around each point source must be of the form 

a1 c:(r ) - cv (m) = - r’ 
I eq (1 1.36) 

where a1 is a constant to be determined. The value of a1 is found by requiring 
that the concentration everywhere along the loop be equal to c?(loop). This con- 
centration is due to the contributions of the diffusion fields of all the point sources 
around the loop, and therefore, from Fig. 11.13 and using R, << RL, 

(1 1.37) 
ceVq(1oop) - ceVq(m) = 2a1 

=-In 2al (x) ~ R L  

Ro 

Figure 11.13: 
point sources. 

Annealing prismatic dislocation loop taken as a circular array of vacancy 
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Note that the integral is terminated at  the cutoff distance R0/2 in order to avoid 
a singularity. The vacancy concentration at a distance from the loop appreciably 
greater than RL can now be found by treating the loop itself as an effective point 
source made up of all the point sources on its circumference. The number of these 
sources is ~ T R L ~ R , ,  and therefore 

The vacancy current leaving the loop is then 

[c7(lOOp) - c ~ ( c o ) ]  (11.39) d ~ R L  
dr In( ~ R L  / R o )  

I = 4rr2Dv-  [cv(r)]  = 47rDv 

in agreement with the results of the previous analysis. 

rate of loops have been described [19, 281. 
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EXERCISES 

11.1 Show that Eq. 11.4 for the osmotic force on an edge dislocation may be 
generalized for a mixed dislocation in the form 

(1 1.40) 

where - - k T  
R 

B = b -In (s) (11.41) 
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Solution. The climb force is normal t o  the glide plane, which contains both the Burgers 
vector and the tangent vector. The unit normal vector t o  the glide plane is therefore 

so 

(11.42) 

Since the climb distance that  results from the destruction of 6Nv vacancies is now 

) ~ N v ,  using Eqs. 3.64 and 3.66, 

11.2 Interpret the line tension, p b 2 ,  of a dislocation to be a force that acts along its 
length in a direction to decrease its length (see Eq. 11.9). Using a simple geo- 
metrical argument, show that the curvature force per unit length of dislocation 
acting locally on a curved segment of dislocation is then just /f;cl = p b 2 / R ,  
where R is the radius of curvature. 

Solution. The line-tension forces acting on a curved differential segment of dislocation 
having a radius o f  curvature R due t o  its line tension will be as shown in Fig. 11.14. 
The net force exerted on the segment toward the concave side is then 

pb2 ds df = 2pb2 sin (f) M pb2 dB = - R 

and therefore 

ds 

Figure 11.14: Line tension forces on a curved dislocation segment. 

(1 1.44) 

(11.45) 

11.3 Use Eq. 11.12 to show that a dislocation in a crystal possessing a uniform 
nonequilibrium concentration of point defects and a uniform stress field will 
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tend to adopt a helical form. Note that both a circle and a straight line are 
special forms of a helix. 

Solution. The dislocation will tend t o  adopt a form for which the net force on i t  given 
by Eq. 11.12 is everywhere zero. We therefore want t o  show that a helical dislocation 
will possess a tangent vector f that satisfies 

pb  2 - + [ x ( d - d ) = O  d t  
ds 

( 11.46) 

To evaluate t ,  we recall that the equation for a helix with i t s  axis along z is 

F =  iacose + j a s i n e  + Lpe (11.47) 

where 6 is the polar angle in the zy-plane, a is the radius of the circular projection on 
the zy-plane, and 27rp is the distance between successive turns along z .  Therefore, 

and 

A dr' 1 < = - = [ - '  ;a sine + j a  cos e + Lp] Jm ds 

d t  d2r' A a 
- -  - - = -[icose+jsine]- 
ds ds2 a2 +p2  

(11.48) 

(11.49) 

Comparing the last result with Eq. 11.10, we see that the curvature given by IC = 
./(a2 + p 2 )  is constant everywhere and that the principal normal vector at any point 
0: the hzlix is pointed toward the helix axis and is perpendicular t o  it. Also, the vectors 
B and d are constant vectors independent o f  (. If we now take the axis of the helix t o  

be along (2- d', so that  (d - d', = L (B - 4 and put the results above into Eq. 11.46, 

we find that it is satisfied i f  

(11.50) 

Note that  the solution has the form o f  a circle when p = 0 and a straight line along the 
axis when p + m. 

11.4 When a metal crystal free of applied stress and containing screw disloca- 
tion segments is quenched so that supersaturated vacancies are produced, the 
screw segments are converted into helices by climb. Show that the converted 
helices can be a t  equilibrium with a certain concentration of supersaturated 
vacancies and find an expression for this critical concentration in terms of 
appropriate parameters of the system. Use the simple line-tension approxi- 
mation leading to Eq. 11.12. We note that the helix will grow by climb if the 
vacancy concentration in the crystal exceeds this critical concentration and 
will contract if it falls below it. 

Soht ion.  In this case, c i =  0, and therefore we must have 

(11.51) 

The axis of the helix is parallel t o  g, which, in turn, is parallel t o  g, and therefore 
Eq. 11.50 of Exercise 11.3 applies in the form 

(11.52) 
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The concentration is therefore 

(11.53) 

11.5 Show that regardless of the orientation of a straight dislocation line and its 
Burgers vector, there will exist a stress system that will convert the dislocation 
line into a helix whose axis is along the position of the original dislocation 
when the point-defect concentration is at  the equilibrium value characteristic 
of the stress-free crystal. Use the simple line-tension approximation leading 
to Eq. 11.12. 

Solution. In this case, = 0 and the equilibrium shape o f  the dislocation must satisfy 
the equation 

(11.54) 

The vector Z i s  given by Eq. 11.3, and because the six stre_sses are independent of each 
other, a value o f  the stress tensor may be found so that d is parallel t o  the dislocation 
line. As shown-in Exercise 11.3, a solution of Eq. 11.54 corresponding t o  a helix with 
its axis along d can then be found. 

11.6 Show that the effective mass per unit length of a moving screw dislocation is 

+ 2d( - f = p b  - - - < x d = O  
ds 

m* = Wo/c2 when its velocity is relatively small compared with c. 

0 Expand Eq. 11.20 to first order in ( u / c ) ~  and examine the form of the 
result. 

Solution. Expanding Eq. 11.20 t o  first order in ( w / c ) ~  produces the result 

( 11.55) 

which is seen t o  have the form o f  a rest potential energy plus a kinetic energy involving 
an effective mass given by Wo/c2 .  Therefore, a t  relatively small velocities, the inertia of 
the regions that must be displaced as the dislocation moves produces the same effects 
as if the dislocation possessed the mass m*. 

11.7 (a) Describe how excess supersaturated vacancies in a crystal can precip- 
itate and collapse to form a prismatic dislocation loop. (A prismatic 
dislocation loop is a loop whose Burgers vector possesses a component 
normal to the plane of the loop. It therefore can glide out of the loop 
plane.) 

(b) Find an expression for the number of vacancies required to form a circular 
loop of radius R. 

Solution. 

(a) The vacancies can precipitate in the form of a planar layer as shown in Fig. 11.156. 
If the vacancy precipitate then collapses as shown in Fig. 11.15c, a prismatic 
dislocation loop will be produced. In essence, this process removes a circular 
patch o f  one o f  the (hkl )  planes as shown. The Burgers vector of the loop will 
have a component normal t o  the loop plane equal t o  the interplanar spacing d h k l .  

If there is a shear displacement, S, parallel t o  the loop plane during the collapse, 
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the Burgers vector will also have a component in the loop plane equal t o  S. The 
free energy o f  the supersaturated vacancies is generally greater than the free energy 
of the resulting loop and therefore there is an excess o f  free energy available t o  
drive the loop formation. 

Figure 11.15: Formation of prismatic dislocation by vacancy precipitation and collapse. 
(a) Excess vacancies dispersed in crystal. (b) Precipitation of excess vacancies. ( c )  Collapse 
of vacancy precipitate to form dislocation loop. 

(b) The loop may be constructed formally by making a cut parallel t o  the loop plane 
and removing a circular disc o f  material of area xRT and thickness dhkl  and 
then displacing the two circular faces of the cut by b so that they are joined 
together. The volume o f  material that must be removed in this operation is then 
V = i iR2dt ,k ,  = .irR2G. 6, where f i  is a unit vector normal t o  the loop plane. The 
number of vacancies required t o  remove this volume of material is then 

(11.56) 

11.8 Find the number of supersaturated vacancies that must diffuse to a unit 
length of climbing screw dislocation to convert it into a helix of radius a. turn 
spacing 2 ~ p .  and Burgers vector length b. 
Solution. The helical dislocation may be regarded as equivalent t o  a stack o f  circular 
prismatic edge dislocation loops of radius a as illustrated in Fig. 11.16. This may 
be confirmed by realizing that the stack o f  loops can be converted into a helix in a 
conservative fashion by cutting each loop at  its intersection with AB and then sliding 

Figure 11.16: 
arid also tangent to AB at  the points indicated. (b)  Helix formed from loops in (a). 

(a) A stack of four prismatic edge dislocation loops perpendicular to AB 
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various segments of each loop along the cylindrical glide surface in an appropriate way 
t o  form a continuous helix after joining the free ends. Each prismatic loop contains 
N = na2b/R collapsed vacancies. The total number of vacancies, Ntot, required per 
unit length of helix is then 

tot N N = - - a2b 
2np 2pR 

(11.57) 

11.9 Bardeen and Herring first pointed out that if the pinned dislocation segment 
in Fig. 11.17 has its Burgers vector normal to the plane of the paper, it can act 
as an infinite source or sink for vacancies (and also as a source for dislocation 
loops) [29]. As the segment climbs by creating (destroying) vacancies, it 
bulges as shown in Fig. 11.17b. Upon further climb it creates a surrounding 
closed loop as seen in Fig. 1 1 . 1 7 ~  and d. This process can then repeat itself, 
producing further loops. 

Suppose now that such a source is present in a crystal that is rapidly quenched 
from a temperature Tq to a temperature T, to produce supersaturated vacan- 
cies. Find an expression for the critical value of the quenching temperature, 
Tq, which must be used to produce sufficient supersaturation to activate the 
source so that it will be able to create dislocations loops capable of destroying 
the supersaturated vacancies by climb. The vacancy formation energy is E& 
and the segment length is L. 

Figure 11.17: 
with ends pinned at A and B.  

Generation of a dislocation loop by expansion of a dislocation segment 

Solution. The source will be able t o  become active if the driving osmotic climb force 
is large enough t o  overcome the restraining curvature force that reaches a maximum 
when the dislocation segment has bowed out t o  the minimum radius of curvature cor- 
responding t o  R = L/2. Setting f, = f n ,  we then have the critical condition 

(11.58) 

Since XV = A exp[-E{/(kT,)] and X;q = Aexp[-Ef/(kT,)], we obtain T, in the 
form 

T, 
1 - 2pbR/(LEf) 

Tq = ( 11.59) 

11.10 Imagine that the Burgers vector of the dislocation segment in Fig. 11.17a lies 
in the plane of the figure rather than normal to it as in Exercise 11.9. Frank 
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and Read first pointed out that the configuration in Fig. 1 1 . 1 7 ~  could then 
act as a source for a large number of dislocation loops which would expand by 
glide rather than climb (as in Exercise 11.9) in the presence of a sufficiently 
large shear stress, CT, parallel to the plane of the paper [30]. Find an expression 
for the critical stress, o,., required to activate such a source. 

Solution. The source will become active when the forward driving force due t o  the 
stress is large enough t o  overcome the maximum restoring force due t o  curvature which 
occurs when the dislocation segment has bowed out t o  the minimum radius o f  curvature 
corresponding t o  R = L / 2 .  Setting fo = fn, we then have the critical condition 

pb2 2pb2 g b = - = -  
“ R L  

(11.60) 

so that 

ffc = - 2Pb (11.61) 
L 

11.11 Two parallel edge dislocations of opposite sign, spaced a distance 1 apart, lie 
along the center of a cylindrical body of radius, R, as shown in Fig. 11.18, with 
R >> 1 >> R,, where R, is the dislocation core diameter. The two dislocations 
attract one another with a force (per unit length) given by 

Pb2 
= 2 4 1  - v)1 

(11.62) 

At an elevated temperature, they will therefore climb toward one another 
and eventually anneal out. Obtain an expression for the rate at which they 
approach each other. Assume diffusion-limited climb, that the diffusion is by 
a vacancy mechanism, and that no other sources or sinks are present except 
for the surface. 

0 Use the method of superposition described at the end of Section 11.4.3. 

Figure 11.18: 
large cylindrical body. 

Two closely spaced edge dislocations of opposite sign at the center of a 

Solution. Because o f  the interaction between the two dislocations, the work required 
t o  produce a vacancy at  either dislocation and cause it t o  climb in the direction o f  the 
attractive force is reduced by the force by the amount f f l / b .  The equilibrium vacancy 
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concentration at  each dislocation, cy(disl), is therefore higher than the concentration 
in equilibrium with the surface of the cylinder, cy(m). Vacancies will therefore diffuse 
from each climbing dislocation t o  the surface of the cylinder and the dislocations will 
climb toward one another. Using the same procedures used t o  treat the problem of 
the shrinkage o f  dislocation loops in Section 11.4.3, and described for this particular 
problem by Hirth and Lothe [2], we therefore have 

(11.63) 
fR'(bkT) - 11 

c"vqdis1) - cy(co) = cy(m) [e 

The solution o f  the diffusion equation for the quasi-steady state in cylindrical coordinates 
shows that each dislocation line source will have a vacancy concentration difFusion field 
around i t  o f  the form 

cv(r') - c","m) = a1 In ($) + a z  (11.64) 

where a1 and a2 are constants. The constants can be obtained from the conditions that 
the concentration at  each dislocation produced by the superimposed diffusion fields 
of the two dislocations must correspond t o  the equilibrium concentration, cy(disl), 
and that the concentration at  the surface must be c y ( m ) .  Taking an origin at  one 
dislocation, these conditions are therefore 

a1 In (&) + a1 In (4) + 2a2 = cy(dis1) 
(11.65) 

a2 = C X m )  

2 
a1 \fro/ (11 (11.65) 

A t  a distance from the two closely spaced dislocations appreciably greater than 1, the 
concentration due t o  their superimposed difFusion fields will then be 

cy(dis1) - c y ( m )  

l n ( R / a )  
cv( r )  - c"v"m) = 

The vacancy current diffusing away from the two dislocations is then 

dcv 27rDv [cy(disl) - c y ( m ) ]  

dr l n ( R / a )  
I = -27rrDv- = 

Finally, making use of Eqs. 8.17 and 11.63, the velocity o f  approach is 

27r*D efn/(kTb) - 
2, = -1 s1 = [ 

b f b  I n ( R / a )  

(11.66) 

(11.67) 

( 11.68) 

11.12 Consider a segment of dislocation in the dislocation network of a crystal 
pinned at its ends and lying in its slip plane as in Fig. 11.9. Suppose that an 
oscillating shear stress of the form 

g = g,e- iwt  (1 1.69) 

is imposed along the slip plane, causing it to bow out. 

(a) Describe qualitatively the stress-induced motion of the segment. 

(b) Write the equation of motion of the segment taking into account all of 
the forces acting on it, including the influence of its effective mass (Ex- 
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ercise 11.6), the frictional drag force (Section 11.3.1), and the curvature 
force (Section 11.2.3). 

0 Assume that the stress is relatively small. 

0 Any lateral displacement of the segment will be small compared to its 
length; and the drag force can be taken as viscous (i.e., proportional to 
the dislocation velocity). 

Solution. 

(a) The applied stress exerts a force on each element of the segment, bowing i t  out 
laterally in the slip plane. As the stress oscillates, the segment is forced t o  bow 
backward and forward much in the manner o f  a vibrating string. 

(b) The equation o f  motion will be of the form 

(1 1.70) 

where u(y, t )  is the displacement in the 2 direction. The first term is the inertial 
term proportional t o  the acceleration d2u/dt2 and the effective mass per unit 
length m*. The second is the viscous damping term that is proportional t o  the 
velocity au/dt ( B  is a damping constant). The third term is the restoring force 
proportional t o  the curvature d2u/dy2,  and the fourth term is the oscillating 
driving force ba. Solutions t o  Eq. 11.70 have been found, and further development 
of the model is given by Nowick and Berry [15]. 



CHAPTER 12 

MOTION OF CRYSTAL/VAPOR AND 
CRYSTAL/LIQUID INTERFACES 

A vast number of engineering materials are used in solid form, but during process- 
ing may be found in vapor or liquid phases. The vaporhsolid (condensation) and 
liquidjsolid (solidification) transformations take place at a distinct interface whose 
motion determines the rate of formation of the solid. In this chapter we consider 
some of the factors that influence the kinetics of vapor/solid and liquid/solid inter- 
face motion. Because vapor and liquid phases lack long-range structural order, the 
primary structural features that may influence the motion of these interfaces are 
those at  the solid surface. 

12.1 THERMODYNAMIC SOURCES OF INTERFACE MOTION 

An interface has an effective driving pressure if its displacement decreases the total 
system’s free energy. This effective pressure can derive from any mechanism by 
which a material stores energy, but for many cases it arises from only two sources: 
the volumetric free-energy differences between the interface’s adjacent phases, and 
mechanical pressure differences due to reduction of the interfacial energy. 

The conditions and kinetic equations for phase transformations are treated in 
Chapters 17 and 20 and involve local changes in free-energy density. The quantifica- 
tion of thermodynamic sources for kinetically active interface motion is approximate 
for at  least two reasons. First, the system is out of equilibrium (the transformations 
are not reversible). Second, because differences in normal component of mechanical 
stresses (pressures, in the hydrostatic case) can exist and because the thermal con- 
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ditions of interfacial motion are system-specific (i.e., interfacial motion can involve 
the generation of heat), identification of the appropriate minimizing system free 
energy is troublesome. However, if the interface’s adjacent phases are treated as 
near-equilibrium and if the total free energy, 6, can be used as a placeholder for the 
appropriate free energy, the effective driving pressure due to phase transformations 
can be modeled roughly with 

(12.1) 

where 66 is the change in total free energy when interface with area A moves normal 
to itself by a distance Sx, AG is the difference in free energy per atom, and R is 
related to  the atomic volumes, which may differ, in each phase. 

For a liquid/crystal interface that moves as the undercooled liquid crystallizes 
a t  temperature T ,  a model for Phase trans can be developed. Using AG(T) = 
AH(T)  - T AS(T)  and treating the volumetric heat capacities as temperature 
independent, AS(Tm) = AH(Tm)/Tm, leads to the approximation 

where the undercooling is AT = Tm - T .  The approximation from Eq. 12.1 shows 
that 

(12.3) 

is proportional to the undercooling. 
The surface energy per area, y, has the same units as a force per length and 

for some interfacial geometries can lead to an interfacial net force that is balanced 
by a difference in pressure between the two adjacent phases. If y is isotropic, this 
pressure difference is directly proportional to the interfacial curvature through the 
the Gibbs-Thomson equation (see Sections C.2.1 and C.4.1), 

(12.4) 

where the Ri are the principal radii of curvature and K is the mean curvature. 
The pressure is higher on the side that contains the center of curvature (e.g., the 
pressure inside a soap bubble is larger than the ambient pressure). A P  = y ~ .  is the 
thermodynamic potential to move a small volume R across an isotropic interface, 
absent any chemical or other effects. 

12.2 MOTION OF CRYSTAL/VAPOR INTERFACES 

Crystals grow from their supersaturated vapor by the addition of vapor atoms at 
their free surfaces. In this process, the surface is subjected to an effective pressure 
due to  the difference in free energy between the solid and vapor. The interface 
moves outward toward the vapor as it acts as a sink for the incoming flux of atoms. 
The mechanism by which atoms leave the vapor phase and eventually become per- 
manently incorporated in the crystal is often relatively complex, and the kinetics 
of the process depends upon the type of surface involved (i.e., singular, vicinal, 
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or general). Also, crystal growth from the vapor is generally anisotropic because 
surfaces of different inclination (indices) usually possess different structures. 

Another type of motion of crystal/vapor interfaces occurs when a supersaturation 
of vacancies anneals out by diffusing to the surface where they are destroyed. In this 
process, the surface acts as a sink for the incoming vacancy flux and the surface 
moves inward toward the crystal as the vacancies are destroyed. This may be 
regarded as a form of crystal dissolution, and the kinetics again depend upon the 
type of surface that is involved. 

12.2.1 Structure of Crystal/Vapor Surfaces 

Just as for grain boundaries, crystal surfaces at  equilibrium with their vapor can 
be singular, vicinal, or genera1.l As explained in Section 9.1 and Appendix B, an 
interface is regarded as singular with respect to a degree of freedom if it is at  a local 
minimum of energy with respect to changes in that degree of freedom. Such surfaces 
correspond to the bases of cusps on the surface of the Wulff plot. These surfaces 
are generally of low index and high atomic density and exist at  low temperatures 
relative to  their melting points. Surfaces with inclinations close to those of singular 
surfaces and having energies lying on the sides of cusps are composed of discrete 
steps and terraces corresponding to  the structures of their nearby singular surfaces 
and are classified as vicinal (see Fig. B. l  and Exercise 12.9). Surfaces far from 
singular and vicinal inclinations have highly stepped and irregular structures of 
higher energies and are therefore general. 

As the temperature is raised, singular and vicinal surfaces tend to  undergo a 
roughening transition in which they develop highly stepped and irregular structures. 
During this transition, the ledges roughen as a result of the thermal generation of 
surface and ledge vacancies, adatoms, and vacancy and adatom clusters (Fig. 12.1). 
Ledge vacancy clusters and adatom clusters (which form in strings along the ledge) 
are topologically equivalent to pairs of kinks on the ledges. The roughening occurs 
because of the configurational entropy that is contributed by the structural disor- 
der (see Exercise 12.7). This process is therefore thermodynamically similar to the 
thermal generation of equilibrium vacancies in the bulk. In general, the more singu- 
lar a surface, the higher the temperature at  which it will roughen. The roughening 

Surface Ledge 
vacancy atom 

Figure 12.1: Various point arid line defects on a vicinal crystal/vapor surface. 

'See Appendix B for further discussion of the  structure of surfaces. 
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of a (40 0 1) vicinal surface during heating, as determined by computer simulation, 
is shown in Fig. 12.2. Surfaces that have become roughened in this manner must 
now be classified as general. 

T,  = 0.025 T, = 0.0375 T, = 0.05 T, = 0.075 

Figure 12.2: A Monte-Carlo simulation of roughening of a [40 0 11 vicinal surface in a 
primitive cubic crystal with first- and second-neighbor pair interactions. El and E2. The 
binding enthalpy Affblnd = 6E1+12Ez and the calculations were performed at  the indicated 
values of the reduced temperature defined by T, = kT/AHblnd, with Ez = 0.66E1. 

12.2.2 

Singular and Vicinal Crystal Surfaces. Kinks on ledges are the only places on a vici- 
nal surface where an incoming atom from the vapor can become fully incorporated 
in the crystal with its full binding energy. These kinks therefore play the same role 
during crystal growth as jogs on dislocations during dislocation climb.2 If ledges 
with kinks are present, the incoming atoms can be incorporated at  the kinks by 
several mechanisms. The mechanisms are illustrated in Fig. 12.3 and include: 

Crystal Growth from a Supersaturated Vapor 

0 Direct impingement on the surface of an atom from the vapor, as a t  A 

0 Direct impingement on a ledge of an atom from the vapor. as at B 

0 Direct impingement on a kink of an atom from the vapor and its incorporation 
into the crystal, as at C 

0 Jumping of an adatom into a kink from the surface by surface diffusion and 
its incorporation into the crystal, as at D 

0 Jumping of an adatom onto a ledge by surface diffusion, as a t  E 

0 Jumping of an adatom attached to a ledge into a kink and its incorporation 
into the crystal, as a t  F 

'This is demonstrated in Exercise 12.1. 
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B 
A C  e 
? ! ?  I 

Figure 12.3: 
supersaturated vapor. 

Elementary processes at vicinal surface during crystal growth from a 

Because the adatoms diffuse relatively rapidly along the surface and the ledges 
to  the kinks, many more atoms reach the kinks by these routes than by direct 
impingement from the vapor. Note the close similarity between this crystal growth 
process on a vicinal surface and the climb of dislocations depicted in Fig. 11.2. 

When the surface is initially vicinal, it contains a population of ledges, and 
growth can then occur by the incorporation of adatoms at  the ledges. The efficiency 
of the surface as a sink for the incoming atoms varies widely depending upon a 
number of factors. It is usually assumed that sufficient kinks are present at normal 
growth temperatures so that the ledges act as highly efficient line sinks for the 
incorporation of adatoms (see Exercise 12.1). If most adatoms jump back into 
the vapor phase before reaching a ledge, the sink efficiency will be low. This is 
a result of a small energy of adatom adsorption, a low rate of diffusion on the 
surface, and a large spacing between ledges. On the other hand, a high surface sink 
efficiency, corresponding to  17 = 1 (see Eq. 11.25); can be achieved if the relative 
magnitudes of the above parameters are reversed and essentially all adatoms that 
arrive from the vapor become incorporated at  ledges before rejoining the vapor. 
These variables have been considered in analytical treatments of crystal growth [l] 
and in Exercise 12.1. 

In Exercise 12.2 it is shown that the growth velocity can be expressed in the 
form 

u = K ( P  - P"") (12.5) 

where P is the pressure of the vapor in the system, Peq is the vapor pressure 
that would be in equilibrium with the surface, and K is a rate constant that is 
proportional to  the efficiency, 7, of the surface as a sink for the impinging vapor 
atoms. If the surface acts as an ideal sink, 17 = 1 and u will be proportional to 
( P  - Peq) as indicated by the ideal sink curve in Fig. 12.4. Otherwise, the curve of 
ZI vs. ( P  - P"") will fall below the ideal sink curve. 

An initially singular and atomically flat surface advances only if ledges, possess- 
ing kinks, are nucleated and formed on the surface. This can occur if adatoms 
cluster together on the surface and nucleate new ledges at small pillbox-shaped 
clusters of adatoms as indicated in Fig. 12.1. The free energy to  form such a cluster 
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Figure 12.4: Crystal growth velocity 71 as a fuiiction of excess vapor pressure ( P  - P""). 
Ideal sink curve pertains when all impinging adatoms are incorporated. Screw dislocation 
ledges curve pertains when ledges associated with screw dislocations limit the kinetics. Two- 
dimensional nucleation curve pertains when two-dimensional nucleation of ledges is rate- 
limiting. 

is 
AGClUSt - nR2h - 2rcRgL - - 

R 
(12.6) 

where R is the cluster radius, gL is the ledge energy per unit ledge length, h is 
the ledge height, P is the actual vapor pressure, and Peq is the equilibrium vapor 
pressure of the bulk crystal. The radius of the critical cluster for nucleation (see 
Section 19.1) obtained from the condition 6'AGc1Ust/dR = 0 is 

gLR R -  
- hkTln(P/Peq) 

(12.7) 

The role of ledge nucleation on the kinetics of crystal growth can now be explored. 
If the surface is initially singular, no growth occurs a t  very low supersaturations 
where, according to Eq. 12.7, R, is relatively large. There are no ledges under 
these conditions because the critical free energy for nucleation is so large that the 
nucleation rate is negligible.3 However, as the supersaturation is increased and R, 
is decreased, the nucleation rate of ledges will at some point increase rapidly, and a 
significant density of ledges and kinks will appear on the surface. For the initially 
singular surface, the curve of v vs. P - Peq as a function of increasing P - P"q 

(Fig. 12.4) therefore exhibits a negligible growth rate a t  small values of P- Peq but 
increases extremely rapidly when the supersaturation reaches a value where copious 
ledge nucleation occurs, and from there it follows closely the ideal sink curve. In 
this situation, the initially singular surface has become effectively roughened in the 
presence of the large driving force for its motion. 

Ledge nucleation for crystal growth can be bypassed in many cases if the crystal 
contains dislocations. If a dislocation impinges on a singular surface and has a 
component of its Burgers vector normal to the surface, it is topologically necessary 
that a ledge be present on the surface as illustrated in Fig. 12 .5~ .  Adatoms can 
then become incorporated in the crystal at the ledge, causing it to  move normal 
to itself in the directions of the arrows in Fig. 12.5. The ledge therefore wraps 
itself up into a spiral configuration centered on the dislocation and the total length 

3See Chapter 19 for a treatment of thc kinetics of nucleation. 
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Figure 12.5: 
vapor phase at the intersection of a screw dislocation with the surface at the point S.  

Formation of a spiral ledge on the surface of a crystal growing from the 

of ledge available to  support crystal growth increases continuously. Dislocations 
of this type provide ready-made sources of ledges and crystal growth occurs in the 
absence of any ledge nucleation. When such sources of ledges are present, significant 
crystal growth occurs at lower vapor supersaturations than those required for ledge 
nucleation and analysis of the growth kinetics shows that the v vs. P - Peq curve 
appears as in Fig. 12.4 [l]. 

General Crystal Surfaces. General surfaces possess a high density of sites where 
atoms from the vapor can be incorporated in the crystal and are therefore expected 
to operate as essentially ideal sinks. 

Crystal growth from the vapor is often anisotropic, with singular and vicinal sur- 
faces having lower mobilities than general surfaces. In such cases, any fast-moving 
surface inclinations bounding a growing crystal grow out of existence, leaving be- 
hind only slow-growing inclinations. The result is a faceted crystal bounded by 
slow-moving inclinations. Anisotropic growth when the growth velocity is a known 
function of surface inclination is analyzed in Section 14.2.2. 

There is a body of experimental evidence generally supporting the models above 
for growth at  the different types of surfaces [l]. 

12.2.3 Surfaces as Sinks for Supersaturated Lattice Vacancies 

When a crystal surface acts as a sink for supersaturated vacancies, atoms are sup- 
plied from the surface to replace the incoming flux of vacancies. The process of 
crystal dissolution that occurs is, in many respects, the opposite of the crystal 
growth process described above. Vacancies diffusing to the surface become surface 
vacancies and may then either leave the surface by jumping back into the crystal 
bulk or, in vicinal surfaces, diffuse in the surface to ledges, where they become 
ledge vacancies, which are eventually destroyed at  kinks by being replaced by lat- 
tice atoms. The sink efficiency of the surface is high if most of the surface vacancies 
are destroyed at  the kinks before re-entering the lattice. The analysis of the sink 
efficiency is then analogous to the preceding analysis of crystal growth at  vicinal 
surfaces. 

When the surface is initially singular, the required ledges can be nucleated by 
the clustering of supersaturated surface vacancies in monolayer surface cavities or 
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they can be supplied by impinged dislocations having Burgers vector components 
normal to the surface. The driving pressure for the nucleation of the ledges is the 
vacancy supersaturation rather than the vapor supersaturation as in the previous 
crystal growth situation. Otherwise, the general features of the surface as a sink 
for vacancies are similar to  those of the surface as a sink for atoms during growth 
from the vapor. General surfaces possess a high density of kinks at which vacancies 
are easily destroyed, and they thus have a high sink efficiency. Gold (100) surfaces 
are highly efficient sinks for supersaturated vacancies produced by quenching [2]. 
In this case, the process is undoubtedly aided by the high degree of supersaturation 
of the quenched-in vacancies. 

12.3 M O T I O N  OF INTERFACES DURING SOLIDIFICATION 

12.3.1 Structure of Crystal/Liquid Interfaces 

Because experimental study of the structure of crystal/liquid interfaces has been 
difficult due to the buried nature of the interface and rapid structural fluctuations in 
the liquid, it has been investigated by computer simulation and theory. Figure B.3 
provides several views of crystal/liquid (or amorphous phase) interfaces, which 
must be classified as diffuse interfaces because the phases adjoining the interface 
are perturbed significantly over distances of several atomic layers. 

A critical question has been whether crystal/liquid interfaces are usually rough 
(and therefore general) or singular or vicinal. Jackson developed a simple statis- 
tical mechanical model in which adatoms were added to a crystal/liquid interface 
possessing an initially smooth crystal face [3]. The model shows that the inter- 
face remains smooth, and hence singular, whenever the dimensionless parameter 
Q = (AS,/k) ( T ] / z )  is of magnitude Q > 2 and is rough (general) otherwise. Here, 
AS, is the entropy of melting, is the number of nearest-neighbor adatom sites 
around an adatom on the crystal face, and z is the number of nearest-neighbors 
in the bulk. The model therefore predicts that the equilibrium interface is smooth 
when the entropy of melting is large and the interface is low-index (close-packed). 
This result is reasonable because a smooth interface (one without any intermix- 
ing of the solid and liquid due to the presence of adatoms or adatom clusters) is 
expected when the liquid and solid are strongly dissimilar with respect to their 
vibrational and configurational character and when the interface plane is relatively 
close-packed and therefore strongly bonded. 

In other work it has been argued that crystal/liquid interfaces roughen under the 
nonequilibrium conditions that exist during solidification when the driving pressure 
becomes sufficiently high [4, 51. Under such conditions, the barrier to the nucleation 
of new growth layers is effectively eliminated and the interface becomes rough. This 
behavior is similar to a dislocation becoming highly jogged in the presence of a large 
vacancy supersaturation (Section 11.4.2) and of a crystal/vapor interface developing 
a high ledge density at a large vapor supersaturation. 

12.3.2 Crystal Growth from an Undercooled Liquid 

Singular and Vicinal Interfaces. The crystal/liquid interface during crystal growth 
from an undercooled liquid can be singular, vicinal, or general, depending upon 
the type of material and the driving force [l]. Many types of crystals require 
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a relatively large amount of undercooling (corresponding to 1' to 2") to  obtain 
significant growth rates and solidify in faceted forms. This behavior is expected 
when singular (or vicinal) interfaces are dominant and the growth occurs by the 
movement of discrete ledges across the interface.* Crystals exhibiting this behavior 
have highly directional bonding or strongly bonded complex structures and possess 
values of the Jackson a parameter greater than two. On the other hand, most 
metals and some organic materials, possessing a values less than two, solidify with 
nonfaceted interfaces at exceedingly small undercoolings. This behavior is expected 
when the interface is rough (general) and there is a high density of sites everywhere 
in the interface where atoms can easily be incorporated into the solid. 

The manner in which a singular (or vicinal) crystal/liquid interface moves during 
solidification into an undercooled liquid by the lateral movement of ledges is similar 
to  the way a singular (or vicinal) crystal/vapor interface advances in a supersat- 
urated vapor. Data showing the velocity of (001) and (111) interfaces in Ga as a 
function of the degree of undercooling resulting from the two-dimensional nucle- 
ation and growth of atomic layers are in Fig. 12.6. The velocity increases rapidly 
with increased undercooling in a manner similar to  the rapid increase of growth 
rate predicted schematically by the two-dimensional nucleation and growth curve 
in Fig. 12.4 for the crystal/vapor case. 
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Figure 12.6: Velocity v of singular (or vicinal) (001) and (111) surfaces as a function 
of undercooling durin solidificntion. The growth rate is limited by the two-dimensional 
nucleation of ledges. h e  dashed hies  are niodel predictions. From Howe [I] Original figure from 
Peteves and Abbaschian [6] 

General Interfaces. When the crystal/liquid interface is rough (general) , atoms 
from the liquid can easily be incorporated into the solid at a high density of sites in 
the interface. A primitive expression for the rate of solidification is easily obtained 
by using Fig. 12.7, which shows the change in energy when an atom is transferred 
across the crystal/liquid interface. For an atom to leave the liquid, it must surmount 
the energy barrier AGLIxL, and to leave the crystal, it must surmount the barrier 
(AG+AGLIxL),  where AG is given by Eq. 12.2. If N is the number of atoms (per 
unit area) in a position to jump from liquid to solid (or vice versa), the liquid-to- 
crystal flux is 

J ( L  -+ X L )  = Nve - A G L ' X L / ( k T )  (12.8) 

4This is demonstrated in Exercise 12.1. 
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Distance, x 

Figure 12.7: 
atom is transferred across a crystal/liquid interface. 

Changes i n  energy during solidification of an undercooled liquid when an 

where v is a vibrational frequency. The reverse flux is 

J ( X L  -+ L )  = Nve- ( A G ~ ’ ~ ~ + A G ) / ( I C T )  

and the rate of growth is 

ZI = [ J ( L  + X L )  - J ( X L  --$ L ) ]  R 

(12.9) 

(12.10) 

When AG << IcT, the exponential in Eq. 12.10 can be expanded to first order and, 
using Eq. 12.2, 

Under these conditions, the growth velocity is simply proportional to the undercool- 
ing, and the situation resembles crystal growth a t  a rough crystal/vapor interface 
where the growth rate is proportional to the excess vapor pressure (Fig. 12.4).5 
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EXERCISES 

12.1 Construct a simple steady-state model for the growth from the vapor of a 
crystal with a vicinal surface and investigate the efficiency of the surface as a 
sink for the incoming vapor atoms. For simplicity assume that (i) the surface 
contains an array of evenly spaced straight, parallel ledges at the spacing A, 
and (ii) the ledges contain enough kinks to act as ideal line sinks for adatoms. 

Consider first the surface free of any ledges (i.e., the ledge spacing is infinite). 
Atoms from the vapor then land on the surface as adatoms and spend a mean 
time, T ,  on the surface before jumping back into the vapor. During the time 
T they are able to migrate in the surface layer, which is of thickness 6, a mean 
distance 

(x2)1/2 = 2 @ 5  

where DZ is their diffusivity in the surface layer. The steady-state concentra- 
tion of adsorbed atoms in the surface layer is then cm = ~ 4 i  = T $ ~ ,  where q5i 

and & are, respectively, the rates of impingement and evaporation (per unit 
volume of surface slab), which in this case are equal. 

Consider now the vicinal surface where the impingement rate is the same as 
above. Adsorbed atoms will now either evaporate or diffuse to a ledge and 
become incorporated into the growing crystal. 

Show that the diffusion equation for the adsorbed atoms in the surface 
layer can be written as 

(12.12) 

where x is the distance coordinate running perpendicular to the ledges. 

Show that the solution to the diffusion equation above, subject to the 
applicable boundary conditions, is 

(12.13) 

where ceq is the equilibrium concentration maintained at  the perfect 
ledge sinks. Ignore any effects of the motion of the ledges (see Exer- 
cise 12.3). 

Use the results to show that the efficiency (see Eq. 11.25) of the surface 
as a sink for the incoming atoms from the vapor is 

1 tanh (L) 
77= X / J q  rn (12.14) 

Therefore, when X >> m, q x m / X  << 1 and the efficiency 
is very low. This is the case where the ledge spacing is much greater 
than the adatom diffusion distance on the surface and very few adatoms 
reach the ledge sinks before jumping back into the vapor phase. On the 
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other hand, when X << m, 77 cz 1. This is the case where the ledge 
spacing is relatively small and essentially all adatoms reach the ledge 
sinks before they jump back into the vapor. The surface therefore acts 
essentially as a perfect sink. 

Solution. 

(a) The rate o f  accumulation o f  adatoms in unit volume of the surface slab is 

(12.15) 

where + i  = c m / r  and +e = c / r  (because the evaporation rate will be proportional 
t o  the concentration c). Because the diffusion is in the steady state, 

d2c c - c m  - 4(c-cm)  _ -  
dx2 D i r  (x2) 

(b) The general solution of Eq. 12.16 is 

(12.16) 

where a1 and a2 are constants. Fit t ing Eq. 12.17 t o  the boundary conditions 

c(x = 0) = ceq (12.18) 

then yields the desired result 

(c) The rate a t  which adatoms reach a unit length of ledge on the vicinal surface is 

(12.19) 

The corresponding rate at which adatoms would reach the ledge if the surface 
acted as a perfect sink would be 

(12.20) 

Therefore, 

12.2 In Fig. 12.4 the velocity of crystal growth from the vapor is plotted as a 
function of the excess vapor pressure ( P  - P""). When the surface acts as 
an ideal sink for incoming vapor atoms, the plot indicates that the velocity 
of growth should vary linearly with ( P  - P""). When the sink efficiency is 
lower, the curve of v vs. ( P  - Peq) falls below the ideal curve. Use the results 
of Exercise 12.1 to demonstrate that the velocity of growth for the model 
employed there can be expressed in the form 

v = RJne, zz K ( P  - P"") (12.22) 
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where K is a rate constant that is proportional to the sink efficiency, q, 
given by Eq. 12.14. The behavior predicted by this expression is seen to be 
consistent with the curves in Fig. 12.4. 

Solution. The rate at  which adatoms diffuse into a unit length of ledge is 

q5 = 2 6 0 2  (g) 
x=o 

Using Eq. 12.13 yields 

4bD2(c" - C"") tanh L) 
m m q 5 =  

(12.23) 

(12.24) 

The rate of impingement o f  atoms from the vapor (per unit area) is Ji = Sq5i = b c " / r ,  
while the rate of evaporation from the surface-if the surface were in equilibrium (i.e,, in 
detailed balance) with the vapor-would be J,"" = 64:" = bceq / r .  Since, according t o  
the kinetic theory o f  gases, the rate o f  impingement from the vapor phase is proportional 

(12.25) 

In detailed balance, the rate of evaporation is equal t o  the rate of impingement from 
the vapor at  its equilibrium pressure, Peq, and therefore 

(12.26) 

Solving these equations for C" and ceq and using Eq. 12.24, the net flux of atoms 
incorporated into the crystal from the vapor is 

Jnet =! = 1 tanh &) K' (P  - P'") 
(12.27) 

=qK'(P  - P"") = K ( P  - P"") 

2.3 One aspect of crystal growth from the vapor is the diffusive transport of 
adatoms to ledges (see Exercise 12.1). A suggestion is that the motion of 
ledges can be ignored in the analysis of crystal growth if 

(12.28) 

where (x2)'/' is the root-mean-square distance that an adatom diffuses in the 
surface during a time 7 while the ledge moves with a maximum velocity v,,, 
corresponding to a large separation between ledges. Explain and derive this 
criterion. 

Solution. The effect of the ledge motion on the diffusion of adatoms t o  i t  will be 
small if the mean distance that adatoms can diffuse in the surface during a time T 

is large compared t o  the distance that the ledge moves in the time T .  Under these 
circumstances, the surface adatoms diffuse quickly enough in the surface so that their 
concentration in the vicinity of a moving ledge is only negligibly affected by the ledge 
motion. The mean diffusion distance is (z2)1/2 = ~ ( D : T ) ' / ~  and the distance traveled 
by the ledge is w,,,r. The criterion is therefore (z2)1/2 >> w m a x ~ .  Substituting for r ,  
we then obtain (x2)1/2 wmax/(4D5) << 1. 
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12.4 During the evaporation of crystals with vicinal (or singular) faces, surface 
ledges of height, h; nucleate preferentially at  the edges of the crystals where 
the faces meet. Develop a model for this type of heterogeneous nucleation and 
show that the critical free energy for the nucleation is much smaller than the 
critical free energy for the corresponding homogeneous nucleation of ledges 
by the formation of pillbox-shaped cavities in the crystal surfaces. 

An overview of heterogeneous nucleation is provided in Section 19.2. 

Solution. The homogeneous nucleation geometry is shown in Fig. 12.8a. Using the 
approach that developed Eqs. 12.6 and 12.7 for homogeneous ledge nucleation during 
crystal growth, the free energy of the corresponding evaporation nucleus is 

A G  = 27rRgL - a k T l n  (F) (12.29) n 

R, is found by setting d A G / d R  = 0. Putt ing the result into Eq. 12.29 then yields the 
critical free energy o f  nucleation 

7rn ( S L y  
hkTln (Peq /P)  

AGc(homo) = (12.30) 

A model for the heterogeneous nucleation of a ledge at  a crystal edge is shown in 
Fig. 12.8b. The free energy for i t s  formation is 

A G  = rRgL - 2RhyS - a k T  In (7) 
2R 

Using the same procedure as above, 

7rR[gL - (2hyS/7r)I2 
2hkT In( Peq / P )  AG,(edge) = 

Therefore, 

(12.31) 

(12.32) 

(12.33) 

Because gL = hyS, the critical free energy for heterogeneous edge nucleation is indeed 
considerably smaller than the energy for homogeneous nucleation. 

Figure 12.8: (a) Homogeneous nucleus for surface evaporation. (b) Corresponding 
heterogeneous nucleus at crystal edge. Cavity depth and radius of curvature are h and R, 
respectively. 
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12.5 A crystal growing from the vapor phase possesses a singular surface with 
two screw dislocations intersecting it. The dislocations are very close to one 
another (relative to the dimensions of the surface) and have opposite Burgers 
vectors. Describe the form of the step structure that is produced because of 
the presence of the two dislocations. 
Solution. Before any growth, the two dislocations are associated with steps that may 
be as indicated in Fig. 12 .9~ .  During growth, each dislocation rotates about its point of 
intersection t o  produce a spiral step, as in Fig. 12.5. However, the spirals will rotate in 
opposite directions, and sections will annihilate one another when they meet as in (a) 
and (b). The process will then continue as in (c)-(f) generating a potentially unlimited 
series o f  concentric steps. 

I I 

Figure 12.9: 
two screw dislocations with opposite Burgers vectors. 

Step structure generated on growing crystal surface at the intersections of 

12.6 Suppose that the Burgers vectors of the two screw dislocations in Exercise 12.5 
are now the same. Describe the ledge structure that is produced. 
Solution. Start with the ledge structure in Fig. 12.10~. The growth spirals of the two 
dislocations now rotate in the same direction as indicated. This will generate an inter- 
leaved double growth spiral of potentially unlimited extent as illustrated in Fig. 12.10b-d. 

Figure 12.10: 
of two screw dislocations with the same Burgers vectors. 

Step structures generated on growing crystal surface at the intersections 

12.7 Consider a ledge on a surface which, on average, lies parallel to a closely 
spaced row of atoms. The ledge contains N sites, with spacing a,  where 
either a positive or a negative kink can exist. (When traveling along a ledge, 
positive and negative kinks displace the ledge in opposite directions.) Show 
that the total number of kinks present in thermal equilibrium, NEq, is 

(12.34) 
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where GL is the kink free energy of formation (excluding any configurational 
entropy). 

Solution. The increment of free energy due t o  the presence of NZ positive kinks and 
N i  kinks is 

A g  = NZGL + N iGL  - k T l n P  (12.35) 

where the last term is the configurational entropy. P is the number of distinguishable 
ways of arranging the positive and negative kinks on the N sites and is given by 

N !  P =  (NZ)! ( N F ) !  ( N  - Nk+ - N L ) !  (12.36) 

Using Eqs. 12.35 and 12.36 and the approximation l n z !  = z l n z  - z, 

d Ag = G{ dN$ + G[ d N i  
(12.37) 

N' ) dNF 
N - N,$ - N F  

NZ ) d N z  + k T I n  ( 
N - N? - ~i + k T l n  ( 

Numbers of positive and negative kinks are equal and therefore dN$ = d N i .  The 
condition for equilibrium is then 

Therefore, because N >> NZ + N;, 

and 

N,'q N - - [ $1 eq + [ g] eq = 2 e-G{/( lcT)  

(12.38) 

(12.39) 

(12.40) 

12.8 Exercise 12.7 showed that the total equilibrium concentration of positive and 
negative kinks on a ledge running, on average, along a relatively close-packed 
direction is given by Eq. 12.34. Find the concentrations of positive and neg- 
ative kinks on a ledge lying at an angle 0 with respect to  the close-packed 
direction. Assume that the direction of 8 requires the building-in of positive 
kinks. 

Solution. The population of kinks consists of BaNld built-in positive kinks, where d is 
the kink height, along with equal numbers of thermally generated positive and negative 
kinks, represented by N$ and N i ,  respectively. Following the same procedure as in 
Exercise 12.7, the derivative o f  the total kink free energy, AG, is 

d AG = GidN$ + G,fdNi 

(BaNld) + N,' 
N - (BaN/d) - NZ - N i  

+ k T l n  [ 
+ k T l n  1 

N - (OaN/d) - NZ - N i  
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The numbers of thermally generated positive and negative kinks are equal and therefore 
dN,f = dNL and the condition of equilibrium is 

-- d n g  - 0 = 2 G L + k T l n  } (12.41) 
dN,' [ N  - (eaN/d)  - N,' - Ni l2  

Assuming that 0 is small enough so that N >> (OaN/d) + N,' + N F ,  

(12.42) 

12.9 Consider the energy of a vicinal surface a t  a low temperature that consists of 
an array of straight parallel ledges separated by patches of singular terraces 
as in Fig. B.l. Express the form of the energy cusp in which the surface lies 
(i.e., express the surface energy as a function of 0, the angle by which the 
inclination of the vicinal surface deviates from that of the singular terraces). 
Note that this model will break down at  higher temperatures where the sys- 
tem's entropy increases and free energy decreases as the ledges wander and 
become nonparallel and other roughening processes occur. 

Solution. The structure of the vicinal surface is shown in Fig. 12.11. The energy of 
unit area of surface can be expressed as the sum of two parts: the first is that of the 
singular terraces, which is ys cose , where ys is the energy per unit area of the terraces; 
the second is that of the ledges, which is (gL sinB)/h,  where h is the ledge height and 
gL is the energy per unit length o f  a ledge. Therefore, 

g L s i n e  
h 

= ys + - 

h e 

i b 
t t 
- 

I----------- ' 

(12.43) 

Figure 12.11: Structure of vicinal surface. 



CHAPTER 13 

MOTION OF CRYSTAL/CRYSTAL 
I N T E R FAC ES 

Crystal/crystal interfaces possess more degrees of freedom than vapor/crystal or 
liquid/crystal interfaces. They may also contain line defects in the form of inter- 
facial dislocations, dislocation-ledges, and pure ledges. Therefore, the structures 
and motions of crystal/crystal interfaces are potentially more complex than those 
of vapor/crystal and liquid/crystal interfaces. Crystal/crystal interfaces experience 
many different types of pressures and move by a wide variety of atomic mecha- 
nisms, ranging from rapid glissile motion to slower thermally activated motion. An 
overview of crystal/crystal interface structure is given in Appendix B. 

13.1 T H E R M O D Y N A M I C S  O F  CRYSTALLINE INTERFACE M O T I O N  

In Section 12.1, common sources of driving pressures for the motion of vapor/crystal 
and liquid/crystal interfaces were described. These and additional sources of pres- 
sure exist for crystal/crystal interfaces. For example, during recrystallization, the 
interfaces between the growing recrystallized grains and the deformed matrix are 
subjected to a pressure that is due to the bulk free-energy difference (per atom) 
AG between the free energy of the deformed matrix and that of the recrystallized 
grains.' Also, compatibility stresses are often generated in stressed polycrystals so 

Recrystallization occurs when a crystalline material is plastically deformed at  a relatively low 
temperature and then heated [l]. The as-deformed material possesses excess bulk free energy 
resulting from a high density of dislocations and point-defect debris produced by the plastic 
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that two crystals adjacent to a grain boundary possess markedly different stresses. 
Equation 12.1 then holds, with AF equal to the difference between the elastic strain 
energy per atom in the two adjoining crystals. 

Pressures on crystal/crystal interfaces can also arise when the motion of the 
interface causes a change in the shape of the body in which it moves. Figure 13.1 
shows the motion of a small-angle symmetric tilt grain boundary under applied 
shear stress. The motion occurs by the forward glide motion of the edge dislocations 
which comprise the boundary along x, causing the specimen to shear in the y 
direction. When this occurs, the applied stresses perform work, and the potential 
energy of the system is reduced. A displacement of the interface by Sx allows the 
applied stress, crzy, to  perform the work, oxyO 62. The pressure on the interface is 

oxyo 6s 
p=- = oxyo 

SX 
(13.1) 

There is a close similarity between this type of pressure and the mechanical force 
exerted on a dislocation by a stress (see Section 11.2.1 and Exercise 13.2). 

Estimated values of the magnitudes of the pressures commonly applied to crys- 
tal/crystal interfaces extend over a wide range of values, spanning about six orders 
of magnitude [2]. Generally, the pressures generated by phase transformations are 
the highest (107-109 Pa),  whereas those generated by interface curvature are rela- 
tively small (i03-io5 Pa). 

Figure 13.1: Motion of small-angle symmetric tilt boundary by means of glissile motion 
of its edge dislocations. Dislocation spacing, d ,  is equal to b/B,  where b is the magnitude of 
the Burgers vector and B is the misorientation between the two grains. 

13.2 CONSERVATIVE AND NONCONSERVATIVE INTERFACE MOTION 

The motion of a crystal/crystal interface is either conservative or nonconservative. 
As in the case of conservative dislocation glide, conservative interface motion occurs 
in the absence of a diffusion flux of any component of the system to or from the 

deformation. Upon heating, nuclei of relatively perfect recrystallized material form and then 
grow into the deformed material, eliminating most of the crystal defects a t  the moving interfaces 
between the recrystallized and deformed material. 
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interface. On the other hand, nonconservative motion occurs when the motion 
of the interface is coupled to long-range diffusional fluxes of one or more of the 
components of the system. 

Conservative motion can be achieved under steady-state conditions only when 
the atomic fraction of each component is the same in the adjoining crystals (see 
Exercise 13.1). For sharp interfaces, atoms are simply transferred locally across 
the interface from one adjoining crystal to the other and there is no need for the 
long-range diffusion of any species to the boundary. This local transfer can occur 
by the simple shuffling of atoms across the interface and/or by the creation of 
crystal defects (vacancies or interstitials) in one grain which then diffuse across 
the boundary and are destroyed in the adjoining grain, thus transferring atoms 
across the interface.* Examples of conservative motion are the glissile motion of 
martensitic interfaces (see Chapter 24) and the thermally activated motion of grain 
boundaries during grain growth in a polycrystalline material. 

During nonconservative interface motion, the boundary must act as a source 
for the fluxes. To accomplish this for sharp interfaces, atoms must be added to, or 
removed from, one or both of the the crystals adjoining the interface. This generally 
causes crystal growth or shrinkage of one or both of the adjoining crystals and hence 
interface motion with respect to one or both of the crystals. This can occur by the 
creation at  the interface of the point defects necessary to support the long-range 
diffusional fluxes of substitutional atoms or by atom shuffling to accommodate the 
addition or removal of interstitial atoms. Nonconservative interface motion and the 
role of interfaces as sources or sinks for diffusional fluxes are of central importance in 
a wide range of phenomena in materials. For example, during diffusional creep and 
sintering of polycrystalline materials (Chapter 16), and the thermal equilibration 
of point defects, atoms diffuse to grain boundaries acting as point-defect sources. 
In these cases, the fluxes require the creation or destruction of lattice sites at  the 
boundaries. In multicomponent-multiphase materials, the growth or shrinkage of 
the phases adjoining heterophase interfaces often occurs via the long-range diffusion 
of components in the system. In such cases, heterophase interfaces again act as 
sources for the diffusing components. 

Further aspects of the conservative and nonconservative motion of sharp inter- 
faces are presented below. The mechanism for the motion of a diffuse interface is 
discussed in Section 13.3.4. 

13.3 CONSERVATIVE MOTION 

13.3.1 

Sharp boundaries of several different types can move conservatively by the glide 
of interfacial dislocations. In many cases, this type of motion occurs over wide 
ranges of temperature, including low temperatures where little thermal activation 
is available. 

Glissile Motion of Sharp Interfaces by Interfacial Dislocation Glide 

Small-Angle Grain Boundaries. As described in Appendix B, these semicoherent 
boundaries are composed of arrays of discretely spaced lattice dislocations. For 

2Shuffles are small displacements of atoms (usually smaller than an atomic spacing) in a local 
region, such as the displacements that occur in the core of a gliding dislocation. 
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certain small-angle boundaries, these dislocations can glide forward simultaneously, 
allowing the boundary to move without changing its structure. The simplest ex- 
ample is the motion of a symmetric tilt boundary by the simultaneous glide of its 
edge dislocations as in Fig. 13.1. An important aspect of this type of motion is the 
change in the macroscopic shape of the bicrystal specimen which occurs because 
the transfer of atoms across the boundary from grain 2 to grain 1 by shuffling is a 
highly correlated process. Each atom in the shrinking grain is moved to a prede- 
termined position in the growing grain as it is overrun by the displacement field of 
the moving dislocation array and shuffled across the boundary. The positions of all 
the atoms in the bicrystal are therefore correlated with the position of the interface 
and there is a change in the corresponding macroscopic shape of the specimen as 
the boundary moves. This type of interface motion has been termed military to 
distinguish it from the disorganized civilian type of interface motion that occurs 
when an incoherent general interface moves as described in Section 13.3.3 [3]. In 
the latter case, there is no change in specimen shape. 

Numerous experimental observations of the glissile motion of small-angle bound- 
aries have been made [2]. Most general small-angle boundaries possess more than 
one family of dislocations having different Burgers vectors. Glissile motion of such 
boundaries without change of structure is possible only when the glide planes of 
all the dislocation segments in the array lie on a common zone with its axis out 
of the boundary plane. When this is not the case, the boundary can move conser- 
vatively only by the combined glide and climb of the dislocations as described in 
Section 13.3.2. 

Large-Angle Grain Boundaries. Semicoherent large-angle grain boundaries contain- 
ing localized line defects with both dislocation and ledge character can often move 
forward by means of the lateral glissile motion of their line defects. A classic ex- 
ample is the motion of the interface bounding a (111) mechanical twin in the f.c.c. 
structure illustrated in Fig. 13.2. This boundary can be regarded alternatively as 
a large-angle grain boundary having a misorientation corresponding to a 60" rota- 
tion around a [lll] axis. The twin plane is parallel to the (111) matrix plane, and 
the twin (i.e., island grain) adopts a lenticular shape in order to reduce its elastic 
energy (discussed in Section 19.1.3). The macroscopically curved upper and lower 
sections of the interface contain arrays of line defects that have both dislocation and 
ledge character, as seen in the enlarged view in Fig. 13.2b. Note that the interface 
is semicoherent with respect to a reference structure (see Section B.6) taken to be 
a bicrystal containing a flat twin boundary parallel to (111). The line defects are 
glissile in the (111) plane and their lateral glissile motion across the interface in 
the directions of the arrows causes the upper and lower sections of the interface to 
move normal to themselves in directions that expand the thickness of the lenticu- 
lar twin. In essence, the gliding line defects provide special sites where atoms can 
be transferred locally across the interface relatively easily by a military shuffling 
process, making the entire boundary glissile. This type of glissile interface motion 
produces a macroscopic shape change of the specimen for the same geometric rea- 
sons that led to the shape changes illustrated in Fig. 13.1. When a line defect with 
Burgers vector b' passes a point on the interface, the material is sheared parallel to 
the interface by the amount b. At the same time, the interface advances by h, the 
height of the ledge associated with the line defect. These effects, in combination, 
produce the shape change. A pressure urging the interface sections to move to 
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Figure 13.2: (a) A lenticular twin in an f.c.c. structure bounded by glissile interfaces 
containing dislocations possessing ledge character viewed along [TlO]. (b) An enlarged view 
of the dislocation-step region. The interface is semicoherent with respect to a reference 
structure. corresponding to the bicrystal formed by a 60” rotation around [lll]. The Burgers 
vector of the dislocation is a translation vector of the DSC-lattice of the reference bicrystal. 
which is the fine grid shown in the figure (see Section B.6). ( c )  The same atomic structure as 
in ( b ) .  The interface now is considered to be coherent with respect to a reference structure. 
corresponding to the f.c.c. matrix crystal. In this framework. the dislocation is regarded as 
a coherency dislocation (see Section B.6). (d) The shape change produced by formation of 
a twin across the entire specimen cross section. 

expand the twin and produce this shape change can be generated by applying the 
shear stress, oxy, shown in Fig. 1 3 . 2 ~ .  The magnitude of this pressure is readily 
found through use of Eq. 12.1. The force (per unit length) tending to  glide the line 
defects laterally is given by Eq. 11.1, f = baxy. The work done by the applied 
force in moving a unit area of the boundary a distance 6s is then (bxlh) boxy, and 
the pressure is therefore 

(13.2) 

This type of glissile boundary motion occurs during mechanical twinning when 
twins form in matrix grains under the influence of applied shear stresses [4]. The 
glissile lateral motion of the line defects can be very rapid, approaching the speed 
of sound (see Section 11.3.1), and the large number of line defects that  must be 
generated on successive (111) planes can be obtained in a number of ways, including 
a dislocation “pole” mechanism. Glissile motion of other types of large-angle grain 
boundaries by the same basic mechanism have been observed [2]. 

Heterophase Interfaces. In certain cases, sharp heterophase interfaces are able to 
move in military fashion by the glissile motion of line defects possessing dislocation 
character. Interfaces of this type occur in martensitic displacive transformations, 
which are described in Chapter 24. The interface between the parent phase and 
the newly formed martensitic phase is a semicoherent interface that has no long- 
range stress field. The array of interfacial dislocations can move in glissile fashion 
and shuffle atoms across the interface. This advancing interface will transform 
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the parent phase to the martensite phase in military fashion and so produce a 
macroscopic shape change. 

13.3.2 Thermally Activated Motion of Sharp Interfaces by Glide and Climb 
of Interfacial Dislocations 

The motion of many interfaces requires the combined glide and climb of interfacial 
dislocations. However, this can take place only at elevated temperatures where 
sufficient thermal activation for climb is available. 

Small-Angle Grain Boundaries. As mentioned, a small-angle grain boundary can 
move in purely glissile fashion if the glide planes of all the segments in its dislocation 
structure lie on a zone that has its axis out of the boundary plane. However, this will 
not usually be the case, and the boundary motion then requires both dislocation 
glide and climb. Figure 13.3 illustrates such an interface, consisting of an array 
of two types of edge dislocations with their Burgers vectors lying at 45" to the 
boundary plane, subjected to the shear stress oZy. 

Equation 11.1 shows that the shear stress exerts a pure climb force f = bnZy on 
each dislocation, which therefore tends to  climb in response to this force. However, 
mutual forces between the dislocations in the array will tend to keep them at the 
regular spacing corresponding to the boundary structure of minimum energy. All 
dislocations will then move steadily along +z by means of combined glide and climb. 
The boundary as a whole will therefore move without changing its structure, and 
its motion will produce a specimen shape change, the same as that produced by the 
glissile motion of the boundary in Fig. 13.1. Successive dislocations in the array 
must execute alternating positive and negative climb, which can be accomplished 
by establishing the diffusion currents of atoms between them as shown in Fig. 13.3. 
Each current may be regarded as crossing the boundary from the shrinking crystal 
to the growing crystal. 

An approximate model for the rate of boundary motion can be developed if it is 
assumed that the rate of dislocation climb is diffusion limited [2]. Neglecting any 
effects of the dislocation motion and the local stress fields of the dislocations on 

Figure 13.3: Thermally activated conservative motion of a small-angle symmetric tilt 
boundary containing two arrays of edge dislocations with orthogonal Burgers vectors. f is 
the force exerted on each dislocation, by the applied stress. Arrows indicate atom fluxes 
between dislocations. 
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the diffusion] a flux equation for the atoms can be obtained by combining Eqs. 3.71 

(13.3) 

Under diffusion-limited conditions, the vacancies can be assumed to be maintained 
at equilibrium at the dislocations. The dislocations act as ideal sources (Sec- 
tion 11.4.1) and, therefore] at the dislocations pv = 0. When an atom is inserted at 
a dislocation of type 2 acting as a sink (Fig. 13.3), the dislocation will move forward 
along x by the distance f i  R/b. The force on it acting in that direction is a x y b / f i ,  
and the work performed by the stress is therefore (fi R / b ) ( o x y b / f i )  = oxy R. The 
boundary value for the diffusion potential @ A  at the cores of these dislocations is, 
therefore, 

+:(sink) = p i  - oxy R (13.4) 

where p i  is the chemical potential of atoms in stress-free material. Similarly, at 
dislocations of type 1, acting as sources, @(source) = p i  + gzy R. 

The average potential gradient in the region between adjacent dislocations is 
then (V@A) = 2R ozy/d,  where d is the dislocation spacing. The approximate area 
per unit length, A, through which the diffusion flux passes is of order A E d .  Using 
these quantities and Eq. 13.3, and assuming that the variations in *D due to local 
variations in the vacancy concentration are small enough to be neglected, the total 
atom current per unit length entering a dislocation of type 2 is given by 

(13.5) 

where *D is the self-diffusivity as measured under equilibrium conditions. The 
volume of atoms causing climb (per unit length per unit time) is then IAR, and the 
corresponding climb rate is therefore vc = IAR/b. Each dislocation moves along z 
by combined climb and glide at a rate that exceeds its climb rate by f i , and the 
boundary velocity is then v = five, or 

4 f i  R*D 
b f k T  gxy 

V =  (13.6) 

Since d = b / ( O f i )  [7] and the pressure on the boundary is P = tbzyl Eq. 13.6 may 
be expressed 

(13.7) 

Equation 13.7 shows that the velocity is proportional to the pressure through a 
boundary mobility, MBl itself proportional to the self-diffusivity, *D. The activa- 
tion energy for boundary motion will therefore be that for crystal self-diffusion as 
expected for a crystal diffusion-limited process. 

Large-Angle Grain Boundaries. Semicoherent large-angle boundaries may move con- 
servatively through the lateral motion of their dislocations (which also generally 
possess ledge character) by means of combined glide and climb. In these bound- 
aries, the coherent patches of the boundary between the dislocations are relatively 

3Equation 13.3 was first obtained by Herring and is useful in modeling the kinetics of diffusional 
creep [5] and sintering [6] in pure metals. 
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stable and therefore resistant to any type of motion. The dislocations, however, are 
special places in the boundary that support the transfer of atoms across the inter- 
face from the shrinking to the growing crystal relatively easily as the dislocations 
glide and climb. 

The example in Fig. 13.4 is an extension of the model for the motion of a small- 
angle boundary by the glide and climb of interfacial dislocations (Fig. 13.3). Fig- 
ure 13.4 presents an expanded view of the internal “surfaces” of the two crystals 
that face each other across a large-angle grain boundary. Crystal dislocations have 

I V 

Figure 13.4: Expanded view of the “internal surfaces” of two crystals facing each other 
across a grain boundary. Lattice dislocations AB and D E  have impinged upon the boundary, 
creating line defects with both ledge and dislocation character which may glide and climb in 
the boundary in the directions of the arrows creating growth or dissolution spirals. 

impinged upon the boundary from crystals 1 and 2, causing the formation of extrin- 
sic dislocation segments in the boundary along CB and EF, re~pectively.~ These 
extrinsic segments have Burgers vector components perpendicular to the boundary 
plane and possess ledge character. Crystal 1 can grow and crystal 2 can shrink if 
the segments CB and EF climb and glide in the directions of the arrows under the 
influence of the pressure driving the boundary. This can be achieved by the diffu- 
sion of atoms across the boundary from segment EF to segment CB, thus allowing 
the boundary to  move conservatively. The continued motion of the segments in 
these directions will cause them to wrap themselves up into spirals around their 
pole dislocations in the grains (i.e., AB and E D ) .  The dislocations will therefore 
form crystal growth or dissolution spirals in the boundary similar to the growth spi- 
rals that form on crystal free surfaces at points where lattice dislocations impinge 
on the surface (see Fig. 12.5). There is therefore a close similarity between this 
mode of dislocation-induced boundary motion and the motion of free surfaces due 
to  the action of growth or dissolution ledge spirals as discussed in Section 12.2.2. 
Probable observed examples of such dislocation growth or dissolution spirals on 
grain boundaries are shown in Fig. 13.5. 

The rates of boundary motion will depend strongly upon the available densities of 
boundary dislocations with ledge character. The formation of such dislocations by 

4See Section B.7 for a discussion of extrinsic vs. intrinsic interfacial dislocations. 
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Figure 13.5: 
grain boundaries. From Gleiter 181 and Dingley and Pond 191. 

Observed examples of apparent dislocation growth or dissolution spirals on 

the homogeneous nucleation of dislocation loops in the boundary is highly unlikely 
at the pressures that are usually exerted on boundaries [2]. An important source 
may then be impinged lattice dislocations, as described above. However, under 
many conditions, the rate of this type of boundary motion may be very slow. 

13.3.3 

Shuffling a t  Pure Ledges. Interfaces capable of supporting pure ledges (see Sec- 
tion B.7) may migrate by the transverse motion of the ledges across their faces 
much like the motion of free surfaces described in Section 12.2.2. However, the 
ledges in interfaces can move conservatively by the shuffling of single atoms or small 
groups of atoms from the shrinking crystal to  the growing crystal at kinks in the 
interface ledges. This type of motion does not produce a specimen shape change. 
Its conservative nature is in contrast to the nonconservative nature of free-surface 
motion via surface-ledge migration. The shuffles will be thermally activated, and a 
simple analysis shows that the interface velocity can then be written 

Thermally Activated Motion of  Sharp Interfaces by Atom Shuffling 

(13.8) 

where NI, is the number of kink sites per unit interface area, N, is the average 
number of atoms transferred per shuffle, vo is a frequency. and Ss and E S  are the 
activation entropy and energy for the shuffling. As in Eq. 13.7, the velocity is 
proportional to  the driving pressure, P ,  through a boundary mobility, M B .  This 
mobility is critically dependent upon the density of kink sites, which may vary 
widely for different interfaces. Ledges will be present initially in vicinal interfaces, 
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but these will tend to be grown off during the interface motion and can therefore 
support only a limited amount of motion. Ledges cannot be nucleated homoge- 
neously in the form of small pillboxes at  significant rates at  the driving pressures 
usually encountered. However, heterogeneous nucleation could be of assistance in 
certain cases. In general, widely different boundary mobilities may be expected 
under different circumstances [ 2 ] .  

Uncorrelated Shuffling at  General Interfaces. Interfaces that are general with respect 
to all degrees of freedom possess irregular structures and cannot support localized 
line defects of any significant strength. However, in many places along an irregular 
general interface, the structure can be perturbed relatively easily to allow atoms to 
be shuffled from the shrinking crystal to the growing crystal by means of thermal 
activation. In this case, a simple analysis of the interface velocity leads again to a 
relationship of the form of Eq. 13.8 [ 2 ] .  However, the quantity Nk appearing in the 
mobility M B  is now the density of sites in the interface at  which successful shuffles 
can occur. Under most circumstances, the intrinsic density of these sites will be 
considerably larger than the density of kink sites on vicinal stepped boundaries, 
and the mobility of general interfaces will be correspondingly larger. 

13.3.4 

Diffuse interfaces of certain types can move by means of self-diffusion. One example 
is the motion of diffuse antiphase boundaries which separate two ordered regions 
arranged on different sublattices (see Fig. 18.7). Self-diffusion in ordered alloys 
allows the different types of atoms in the system to jump from one sublattice to the 
other in order to change the degree of local order as the interface advances. This 
mechanism is presented in Chapter 18. 

Thermally Activated Motion of Diffuse Interfaces by Self-Diffusion 

13.3.5 

The conservative motion of interfaces can be severely impeded by a variety of mech- 
anisms, including solute-atom drag, pinning by embedded particles, and pinning at  
grooves that form at the intersections of the interfaces with free surfaces. We take 
up the first two of these mechanisms below and defer discussion of surface grooving 
and pinning at  surface grooves to Section 14.1.2 and Exercise 14.3. 

Impediments to Conservative Interface Motion 

Solute-Atom Drag. Solute atoms, which are present either by design or as un- 
wanted impurities, often segregate to interfaces where they build up “atmospheres” 
or segregates. This effect is similar in many respects to the buildup of solute-atom 
atmospheres at  dislocations (discussed in Section 3.5.2). For the interface to move, 
it must either drag the solute atmosphere along with it or tear itself away. The 
dragging process requires that the solute atoms diffuse along with the moving in- 
terface under the influence of the attractive interaction forces exerted on them by 
the interface. In many cases, the forced diffusive motion of the solute atmosphere 
will be slow compared to the rate at  which the interface would move in the absence 
of the solute atoms. The solute atoms then exert a solute-atom drag force on the 
moving interface and impede its motion. In cases where the applied pressure mov- 
ing the interface is sufficiently large, the interface will be torn away from the solute 
atmosphere. A number of models for solute-atom drag, involving various simpli- 
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fications, have been developed [2]. Figure 13.6 shows some of the main behavior 
predicted by Cahn's model [lo]. 

When the driving pressure, P ,  is zero, the steady-state interface velocity, w, 
is also zero and the distribution of solute atoms around the interface, shown in 
Fig. 13.6a, is symmetric. No net drag force is therefore exerted on the interface 
by the solute atoms in the atmosphere. However, as w increases, the atmosphere 
becomes increasingly asymmetric and increasing numbers of atoms cannot keep up 
the pace and are lost from the atmosphere. Figure 13.6b shows the steady-state 
velocity as a function of P.  For the pure material ( c x L  = 0), the velocity is simply 
proportional to  the pressure. This is known as intrinsic behavior. When solute 
atoms are added to the system, the velocity is reduced by the drag effect and 
the system now exhibits extrinsic behavior. At low pressures, the extrinsic velocity 
increases monotonically with increasing pressure, but a t  high pressures the interface 
eventually leaves behind its atmosphere and the velocity approaches the intrinsic 
velocity. When the solute concentration is sufficiently high, a region of instability 
appears in which the interface suddenly breaks free of its atmosphere as the pressure 
is increased. Figure 1 3 . 6 ~  shows that essentially intrinsic behavior is obtained at  
elevated temperatures at  all solute concentrations because of thermal desorption of 
the atmospheres. However, extrinsic behavior appears a t  the lawer temperatures in 
a manner that is stronger the higher the solute concentration. Finally, Fig. 13.6d 
shows that essentially intrinsic behavior can be obtained over a range of solute 
concentrations as long as the driving pressure is sufficiently high. To summarize, 
the drag effect becomes more important as the solute concentration increases and 
the driving pressure and temperature decrease. 

x = o  x - - c  

Constant T 

P--, 

Constant T , Constant P 

IIT + log (.XI. - 
Figure 13.6: Grain-boundary solute-drag phenoinena predicted by Cahn's model. (a) 
Segregated solute concentration profile c(z) across boundary as a function of increasing 
boundary velocity v (the z axis is perpendicular to the boundary). cxL is the solute 
concentration in the adjoining crystals. (b) Bouiidary velocity vs. pressure, P ,  on boundary 
as u, function of increasing c x L .  ( c )  In v VS. 1/T as a function of increasing cxL. (d) In v 
vs. hi cayL as a function of increasing P. From Cahn [lo] 



314 CHAPTER 13 MOTION OF CRYSTALLINE INTERFACES 

Pinning Due t o  Embedded Second- Phase Particles. A single embedded second-phase 
particle can pin a patch of interface as illustrated in Fig. 13.7. Here, an interface 
between matrix grains 1 and 2, in contact with a spherical particle, is subjected to 
a driving pressure tending to move the interface forward along y past the particle. 
Interfacial energy considerations cause the interface to be held up at the particle. as 
analyzed below, and therefore to bulge around it. Inspection of the figure shows that 
static equilibrium of the tangential capillary forces exerted by the particle/grain 1 
interface, the particle/grain 2 interface, and the grain l/grain 2 interface requires 
that the angle Q satisfy the relation 

(13.9) 

The net restraining force along y exerted on the interface by the particle (i.e., 
the negative of the force exerted by the interface on the particle) is 

F = ~ T R C O S  Q 7'' COS(Q - 4) ( 13.10) 

The maximum force, F,,,, occurs when dF/dQ = 0, corresponding to Q = a/2. 
Applying this condition to Eq. 13.10, the maximum force is 

F,,, = .irRy12(1 + COSQ) 

0 and Q 

(13.11) 

For the simple case where ypl E yp2,  COSQ 7r/4 and thus 

F,,, E r R y  12 (13.12) 

and F,,, depends only on R and 
Consider now the pressure-driven movement of an interface through a dispersion 

of randomly distributed particles. At any instant, the interface will be in contact 
with a certain number of these particles (per unit area). each acting as a pinning 
point and restraining the interface motion as in Fig. 13.7. Additionally, the particles 
themselves may be mobile due to diffusional transport of matter from the particle's 
leading edge to its trailing edge [a, 121. Each particle's mobility depends upon its 
size and the relevant diffusion rates. A wide range of behavior is then possible 
depending upon temperature, particle sizes, and other factors. If the particles are 

Matrix grain 1 

f Y12 
\ 

Interface ~ 

Figure 13.7: Spherical particle inning an interface between grains 1 and 2. The interface 
is subjected to a driving pressure tRat tends to  move it in the y direction. From Nes et  a1 [Ill. 
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immobile and the driving pressure is low, the particles may be able to pin the 
interface and hold it stationary. At higher pressures, the interface may be able to 
break free of any stationary pinning particles and thereby move freely through the 
distribution. The breaking-free process may also be aided by thermal activation 
(thermally activated unpinning, as analyzed in Exercise 13.5) if the temperature is 
sufficiently high or the particles sufficiently small. Also, if the particles are mobile, 
the interface and its attached particles may move forward t ~ g e t h e r . ~  

13.3.6 Observations of Thermally Activated Grain-Boundary Motion 

The motion of large-angle grain boundaries has been studied more thoroughly than 
that of any other type of interface. Many measurements of thermally activated 
motion have been made as a function of temperature, the geometric degrees of 
freedom, driving pressure, specimen purity, etc. The results have been reviewed 
[2, 131. According to the models described earlier, intrinsic motion is expected in 
materials of extremely high purity at elevated temperatures under large driving 
pressures.6 In addition, intrinsic mobilities of general boundaries should commonly 
be higher than those of singular or vicinal boundaries because of insufficient den- 
sities of kinks at dislocation-ledges on boundaries of the latter types. However, in 
almost all cases, observed interface motion has been influenced to at least some 
extent by solute-atom drag effects, so that the motion has been extrinsic and not 
intrinsic. For example, general grain boundaries moved as much as three orders 
of magnitude faster in A1 that had been zone-refined (see Section 22.1.2) using 
twelve rather than four passes [14]. Also, as in Fig. 13.8, activation energies for 
the motion of a number of [loo] tilt grain boundaries in 99.99995% pure A1 were 
about half as large as the energies for corresponding boundaries in 99.9992% pure 
Al. Such results show that grain boundary mobilities are extremely sensitive to 
solute-atom drag effects, and can be strongly affected by them even at exceedingly 
small solute-atom concentrations. 

4 1  I 

Purity 

99.9992 

0 " " " " " '  
0 10 20 30 40 50 

Misorientation 8 (degrees) 

Figure 13.8: Activation energy, E B ,  for the motion of (100) tilt boundaries in A1 as a 
function of tilt angle. The arrows at the top indicate misorientations of singular boundaries. 
Data for A1 of 99.99995%, 99.9992%, and 99.98% purity. From Fridman et al. [15]. 

5Detailed analyses of these processes are given by Sutton and Balluffi [2]. 
61f motion is unaffected by drag effects due to impurity atoms, it is called intrinsic. 
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The degree of solute segregation and drag is a function of the intrinsic grain- 
boundary structure as well as the type and concentration of the solute atoms. 
When solute drag is rate controlling, the intrinsic boundary structure is only one 
of several factors that influences the drag and therefore the boundary mobility. 
The interpretation of boundary-motion experiments solely in terms of the nature 
of the intrinsic boundary structure then becomes rather indirect and exceedingly 
treacherous. 

For general boundaries, essentially all measurements are consistent with the lin- 
ear relationship between velocity and pressure given by Eq. 13.7 (i.e., 'u = M B P ) ,  as 
might be expected on the basis of the preceding shuffling model. Available mobility 
data have been collected for the motion of general grain boundaries in exception- 
ally high-purity A1 and the activation energy of 55 kJ mol-' is significantly lower 
than that of boundary self-diffusion, which is expected to be about 69 kJ mol-I [2]. 
Also, the data can be fit to  the uncorrelated atom-shuffling model for intrinsic mo- 
tion in Section 13.3.3 using reasonable values of the parameters. These results are 
at least consistent with the shuffling mechanism. 

Regarding the motion of singular or vicinal grain boundaries, Fig. 13.5 shows 
direct electron microscopy images of dislocation-ledge spirals on such boundaries. 
The importance of line defects with ledge-dislocation character to the mobility of 
singular boundaries has been demonstrated in a particularly clear manner for highly 
singular (111) twin boundaries in Cu [16]. These boundaries were essentially im- 
mobile in the annealed state but became mobile after picking up dislocation line 
defects which impinged upon them during plastic deformation. In other work, 
electron-microscope observations of the motion of vicinal boundaries by atom shuf- 
fling at pure ledges have been made [17-191. The motion of boundaries by shuffling 
at pure ledges has also been studied by computer simulation [20]. 

Evidence from measurements of the generally faster intrinsic motion of general 
boundaries relative to that of singular or vicinal boundaries has been collected [2]. 
The situation is complicated because the degree of solute segregation at singular or 
vicinal boundaries is often expected to be lower than that at general boundaries. 
The extrinsic mobilities of general boundaries may therefore be smaller than those 
of singular or vicinal boundaries (because of increased solute-atom drag), while their 
intrinsic mobilities may be larger. This supposition is at least partially supported 
by the data in Fig. 13.8. Here, the relatively large activation energies for the motion 
of general tilt boundaries in the 99.9992% material (having misorientations between 
those of the singular boundaries indicated by the arrows) most probably arose from 
strong drag effects associated with relatively strong impurity segregation at these 
boundaries. This effect disappears in the higher-purity, 99.99995%, material. At 
even higher purity, the situation could reverse and the activation energies for the 
general boundaries could become lower than for the singular boundaries [13]. 

Observations of further solute-atom drag effects have been reviewed [2, 131. A 
number of effects measured as a function of driving pressure, temperature, and 
solute concentration appear to follow the general trends indicated in Fig. 13.6. 
The approximate nature of the model makes some discrepancies unsurprising. In 
Fig. 13.9, the discontinuous increases in boundary mobility as the temperature is 
increased are presumably caused by successive detachments of portions of a solute- 
atom atmosphere that exerted a drag on the boundaries. 
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Figure 13.9: Experimentally determined plot of l n M B  vs. 1/T for a (111) tilt boundary 
with a 46.5' tilt angle in A1 containing Fe solute atoms. M B  = boundary mobility. From 
Molodov et a l .  1211. 

13.4 NONCONSERVATIVE MOTION: INTERFACES AS SOURCES AND 
SINKS FOR ATOMIC FLUXES 

The basic mechanisms by which various types of interfaces are able to move non- 
conservatively are now considered, followed by discussion of whether an interface 
that is moving nonconservatively is able to operate rapidly enough as a source to 
maintain all species essentially in local equilibrium at the interface. When local 
equilibrium is achieved, the kinetics of the interface motion is determined by the 
rate at  which the atoms diffuse to or from the interface and not by the rate at 
which the flux is accommodated a t  the interface. The kinetics is then digusion- 
limited. When the rate is limited by the rate of interface accommodation, it is 
source-limited. Note that the same concepts were applied in Section 11.4.1 to the 
ability of dislocations to act as sources during climb. 

13.4.1 

By the Climb o f  Dislocations in Vicinal Interfaces. The climb of the discrete lat- 
tice dislocations that comprise small-angle grain boundaries allows them to act as 
sources for fluxes of point defects (e.g., vacancies). In such cases, the various dislo- 
cation segments in the array making up the boundary will attempt to climb in the 
manner described for individual dislocations in Section 11.4. However, they will 
be constrained by the tendency to maintain the basic equilibrium structure of the 
boundary array. In the simplest case of the symmetric tilt boundary illustrated in 
Fig. 13.1, the edge dislocations will all be able to climb in unison relatively e a ~ i l y . ~  
However, a pure twist boundary will act as a source only if the screw dislocations 
are able to climb into helices as illustrated in Fig. 11.10. This climb process will 
seriously perturb the structure of the boundary and will be possible only at  large 
driving forces (i.e., large super- or subsaturations of the point defects). 

Figure 13.10 shows evidence for small-angle boundaries in Au acting as efficient 
sinks for supersaturated vacancies under a large driving force. Here, the supersat- 
urated vacancies have collapsed in the form of vacancy precipitates in the region of 

Source Action of Sharp Interfaces 

7Note that this process will cause the boundary to move relative to  inert markers embedded in 
either crystal adjoining the boundary. 
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Figure 13.10: Denudation of vacancy precipitation i n  ~1 zone lying alongside a sniall- 
angle grain boundary in quenched and subsequently anneitled Ail. The boundary (lower 
right) acted as a sink for the supersaturated vacancies. Vacancy precipitates are sniall 
dislocation configurations resulting from the collapse of vacancy aggregates (as illustrated 
sclieniatically in Fig. 11.15). From Siege1 et  a1 (221 

the bulk away from the boundary. However, a precipitate-denuded zone is present 
adjacent to  the boundary due to the annihilation of supersaturated vacancies in 
that region by the sink action of the boundary. 

Large-angle singular or vicinal grain boundaries containing localized line defects 
with dislocation-ledge character can also act as sources for point defects by means 
of the climb (and possibly accompanying glide) of these defects across their faces. 
The patches of coherent interface between the line defects remain inactive since they 
are relatively stable and difficult to perturb. The source efficiency then depends 
upon the ability of the climbing dislocations to collect or disperse the point defects 
by diffusion along their lengths as well as in the grain-boundary core. (Note the 
similarity of this situation to the growth of a crystal at  a vicinal surface in a 
supersaturated vapor as in Fig. 12.3.) 

A vicinal grain boundary acting as a sink for supersaturated self-interstitial de- 
fects is shown in Fig. 13.11. The interfacial line defects needed to  support the source 
action may often be produced by impinged lattice dislocations as in Fig. 13.4. How- 
ever, a t  sufficiently high driving forces, the necessary line defects with dislocation 
character may be nucleated homogeneously in the boundary in the form of small 
loops possessing ledge character.8 In the case of supersaturated point defects, the 
free energy to nucleate such a loop may be written approximately as 

nR2('* '1 Edefect (13.13) 
pb2 R 

A F = - ~ n ( ~ ) - l ] + 2 n R f L -  2(1 - v) R 

where R is the loop radius, f is the energy per unit length of ledge, and Edefect is 
the energy supplied per precipitated defect. The first term is the elastic energy of 
the loop, the second the core-ledge energy, and the third the energy supplied by the 
precipitated point defects. For a material with a high vacancy supersaturation, such 
as one subjected to high-temperature annealing and rapid quenching, Eq. 13.13 may 
be used to  evaluate A F ,  and it may then be shown that loops may be nucleated 
at significant rates. During high-energy irradiation, boundaries can act as sinks for 
highly super-saturated self-interstitials by the nucleation (and subsequent growth) 

8NNucleatiori theory is presented in Chapter 19. 
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Figure 13.11: Experimentally observed climb of extrinsic grain-boundary dislocations 
A. B. and C in vicinal (001) twist grain boundary in Au. Static array of screw dislocations 
in background accommodates the twist deviation of the vicinal boundary shown from the 
crystal misorientation of the nearby singular twist boundary to which it is vicinal. Excess self- 
interstitial defects were roduced in the specimen by fast-ion irradiation and were destroyed 
at the grain-boundary &locations by climb, causing the boundary to act as a defect sink. 
(a) Prior to irradiation. (b) Same area as in (a) after irradiation. ( c )  Diagram showing the 
extent of the climb. From Komen et al [24] 

of boundary dislocation loops [23]. Triangular dislocation loops formed on twin 
boundaries in irradiated Cu are shown in Fig. 13.12. 

Experimental evidence shows generally that vicinal grain boundaries can act as 
efficient sinks for point defects under high driving forces where grain boundary 
dislocation climb is possible [a]. In the case of large-angle boundaries, line defects 
with dislocation character may be generated as the boundary absorbs vacancies 
from the bulk. However, a t  low driving forces the efficiency is often relatively low. 

Vicinal heterophase interfaces can act as overall sources (or sinks) for fluxes 
of solute atoms by the motion across their faces of line defects possessing both 
dislocation and ledge character of the general type illustrated in Fig. B.6. The line 
defects act as line sources; during their lateral motion, lattice sites are shuffled from 
one adjoining crystal to  the other, and the interface moves with respect to both 
phases. If the two phases adjoining the interface have different compositions, solute 
atoms must be either supplied or removed at  the ledge by long-range diffusion. The 
motion of the ledge is therefore essentially a shuffling process coupled to  the long- 
range diffusional transport of solute atoms. 

Figure 13.13 illustrates how platelet precipitates grow and thicken by the move- 
ment of line defects of the type just described. The efficiency of the growing precip- 
itate platelet as a sink for the flux of incoming solute atoms then depends upon the 
density of ledges and their ability to move while incorporating the solute atoms. 



320 CHAPTER 13: MOTION OF CRYSTALLINE INTERFACES 

Figure 13.12: (111) twin boundary in Cu acting as a sink for excess self-interstitial 
defects produced by 1 MeV electron irradiation. Defects are destroyed by aggregating in the 
boundary and then collapsing into triangular grain-boundary dislocation loops as illustrated 
schematically in Fig. 11.15. Once formed, the loops destroy further defects by climbing (and 
expanding). Micrograph provided by A H King 

Figure 13.13: (a) Ag,A1 precipitates in the form of thin platelets in Al-Ag alloy. The 
broad faces of the platelets are parallel to  (111) planes of the matrix, which lie at different 
angles to  the viewer. (b) Precipitate platelets in Cu-A1 alloy. Line defects that possess both 
dislocation and ledge character are present on the broad faces. Platelets grow in thickness 
by climb of these line defects across their faces. From Rajab and Doherty 1251 and Weatherly [26] 

Available experimental information about the source (or sink) efficiency of het- 
erophase interfaces for fluxes of solute atoms indicates that  low efficiencies are 
often associated with a lack of appropriate ledge defects [2]. 

By the Uncorrelated Shuffling of Atoms in General Interfaces. Homophase and het- 
erophase interfaces that are general with respect to all degrees of freedom are inco- 
herent interfaces unable to sustain localized line defects. However, in many cases, 
such interfaces are able to act as highly efficient sources for fluxes of point defects or 
solute atoms by means of atom shuffling in the interface core. The process may be 
modeled by assuming that the core is a slab of bad material containing a density of 
favorable sites where point defects can be created and destroyed, or where atomic 
sites containing solute atoms can be transferred across the interface, by the uncorre- 
lated local shuffling of atoms. It has been shown that high source efficiencies can be 
obtained in many cases for reasonably low densities of the favorable sites [ 2 ] .  From 
experimental results, this appears to be the case for homophase (grain) bound- 
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aries as sources for point defects. However, it may not be the case for heterophase 
boundaries when one of the adjoining phases has a relatively high binding energy 
and a correspondingly high melting temperature and thermodynamic stability. 

13.4.2 Diffusion-Limited Vs. Source-Limited Kinetics 

The efficiency of an interface as a source or sink can be specified by using the same 
parameter, q ,  which defined the source or sink efficiency of climbing dislocations 
(see Eq. 11.25).’ To illustrate this explicitly under diffusion- and source-limited 
conditions, consider the rate at  which a dilute concentration of supersaturated B 
atoms, which are interstitially dissolved in an A-rich a solution, diffuse to a distribu- 
tion of growing spherical B-rich @-phase precipitate particles during a precipitation 
process. The rate depends upon the efficiency of the a / @  interfaces as sinks for the 
incoming B atoms. Consider first the case where the interfaces perform as ideal 
sinks and the solute concentration at  each a / @  interface is therefore maintained at  
the equilibrium solubility limit of the B atoms in the a phase, c$. If the particles 
are initially randomly distributed, an approximately spherically symmetric diffu- 
sion field will be established around each particle in a spherical cell as in Fig. 13.14. 
The problem of determining the rate at  which the B atoms precipitate is then re- 
duced to solving the appropriate boundary-value diffusion problem within a given 
cell. The particle radius is R and the cell radius is given, to a good approximation, 
by R, = [ 3 / ( 4 ~ n ) ] l / ~ ,  where n is the density of precipitate particles. We assume 
that the particle radius is always considerably smaller than the cell radius and first 
find a solution for the case where the particle radius is assumed (artificially) to be 
constant during the precipitation. The more realistic case where it increases due 
to the incoming flux of B atoms is then considered. 

The diffusion equation is &/at = DgV2c,  where DB and c are, respectively, the 
diffusivity and concentration of the B atoms in the a phase. The initial condition 

Figure 13.14: Spherical diffusion cells surrounding particles during precipitation. 

gMuch of this section closely follows Interfaces in Crystalline Materials, by A.P. Sutton and R.W. 
Balluffi [2]. 
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in the cell is 
c(r ,O) = co 

and the boundary conditions are 

c(R, t )  = ce"4p 

[TI.=,. = 0 

(13.14) 

(13.15) 

The separation-of-variables method (Section 5.2.4) then gives the series solu- 
tion [27] 

OL? 

c ( r ,  t )  = ce"9p + 5 e-'TDBt sin [&(r - R)] 
r 

(13.16) 
i = O  

where the eigenvalues, X i ,  are the roots of 

tan[Xi(R, - R)] = XiR, ( 13.17) 

and the coefficients, ai ,  are given by 

2(c0 - c , * , ~ ) R ( x ~ R ~  + 1) 
ai = 

Xi[XiR?(R, - R) - R] 
(13.18) 

The diffusion current into the particle carried by the i th term in the series given 
in Eq. 13.16 is 

Ii = 4.rrR2D~ [ d ~ / d r ] , = ~  

The total diffusion current into the particle is therefore a sum of the terms given 
by Eq. 13.19. Each term decays exponentially with a characteristic relaxation time 
corresponding to Ti = 1/X;DB. 

When R << R,, all of the short-wavelength terms decay very rapidly compared 
to the lowest-order i = 0 term, which, with acceptable accuracy, is 

I, = 47rD~ (c, - cz!) R e-t lTo ( 13.20) 

where ro = R ~ / ~ D B R  [27]. Letting (c) be the average concentration in the spherical 
cell, 

(13.21) 

Integrating Eq. 13.21 and combining the result with Eq. 13.20 leads to the remark- 
ably simple expression for the total diffusion current entering the particle: 

I = 4.irD~R ((c) - c$) (13.22) 

The analysis shows that the diffusion current quickly settles down to the value given 
by Eq. 13.22 during all but very early times and that the transients which occur at 
the early times due to the higher-order eigenfunctions can be neglected whenever 
the degree of precipitation is significant. Because the effects of any transients are 
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small, Eq. 13.22 also describes, with acceptable accuracy, the instantaneous quasi- 
steady current of atoms to the particle when it is growing due to the incoming 
diffusion. Section 20.2.1 (see Eq. 20.47) shows that Eq. 13.22 also holds with 
acceptable accuracy for an isolated sphere which is growing in an infinite matrix. 
It also holds for an isolated sphere of constant radius in an infinite matrix (see 
Exercise 13.6). The result given by Eq. 13.22 is therefore insensitive to the effects 
due to sphere growth or to the volume in which it is growing as long as R << R,. 
In Exercise 13.8 this result is used to determine the growth of the precipitates in 
Fig. 13.14 as a function of time. 

The situation becomes quite different when the a l p  interface is no longer capa- 
ble of maintaining the Concentration of B atoms in its vicinity at  the equilibrium 
value c z t .  If the concentration there rises to the value cap, the instantaneous 
quasi-steady-state current of atoms delivered to the particle by the diffusion field 
(obtained from Eq. 13.22) will be given by 

I = 4. i rD~R ( ( c )  - Pa)  (13.23) 

This must be equal to the rate at  which these atoms are incorporated into the 
particle locally at the interface. The rate at  which B atoms in the matrix transfer 
to the particle across the a l p  interface will be proportional to the local matrix 
concentration. The reverse rate of transfer from the particle to the matrix will 
be the same as the rate of transfer from the matrix to the particle that would 
occur under equilibrium conditions when detailed balance prevails. The net rate of 
transfer will then be 

I' = 4.irR2K ( c " ~  - c$) (13.24) 

where K is a rate constant. This rate-constant model should apply over a range 
of situations and has been widely used in the literature. The rate at  which in- 
coming B atoms are permanently incorporated in the particle depends upon the 
product of the impingement rate of B atoms on the particle (which is proportional 
to the B atom concentration in the matrix at  the interface) and the fraction of the 
impinging B atoms that is permanently incorporated (this fraction depends upon 
the efficiency with which the particle collects and incorporates these atoms). This 
efficiency depends upon sink characteristics of the interface, such as the density 
of incorporation sites, the binding energy of a B atom to the interface, and its 
rate of diffusion along the interface. These factors can be lumped together in the 
form of a rate constant, K ,  so that the rate of permanent incorporation (per unit 
area of interface) is expressed as the product Kc"0. The rate at  which B atoms 
are permanently removed from the particle at  the interface can be determined by 
a stratagem in which the particle (with the identical interfacial sink structure) is 
imagined to be in detailed balance with the equilibrium concentration of B atoms 
in the matrix. The rate of permanent removal is then equal to the rate of per- 
manent incorporation. However, the rate of incorporation depends upon the same 
rate constant as in the nonequilibrium case and is therefore given by Kc$. This 
must also be equal to the rate of permanent removal because of the detailed bal- 
ance. However, it will also be equal to the rate of removal under nonequilibrium 
conditions since the sink structure is assumed to be unchanged. The net rate of 
incorporation (per unit area) in the nonequilibrium situation is then K(c"@ - c::). 
The magnitude of the rate constant. K .  can vary widely depending upon the sink 
efficiency of the particle and it can evolve with time if the structure of the interface 
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(sink) changes. A detailed analysis of the analogous problem of crystal growth due 
to the impingement of atoms from the vapor phase in Exercises 12.1 and 12.2 shows 
that the growth rate can be represented by a rate-constant expression of similar 
form. Setting I = I ' ,  solving for cap, and putting the result into Eq. 13.23 yields 
the rate of precipitation 

(13.25) 

which is smaller than the rate of precipitation under diffusion-limited conditions 
(Eq. 13.22) by the factor 1 + D B / ( K R ) .  In fact, the efficiency of the particle as a 
sink is just 

1 
1 

(13.26) 
rl = 1 + D B / ( K R )  

if the previous definition of the efficiency given by Eq. 11.25 is employed. When the 
transfer rate is very high (or the diffusivity is very small) so that D B / ( K R )  << 1, 

2 1, caO E c$, and the kinetics is diffusion-limited. At the other extreme, when 
D B / ( K R )  >> 1, q E 0, cap E (c), and the kinetics is source-limited. When the 
kinetics is between these limits, it is regarded as rnixed.l0 
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EXERCISES 

13.1 Consider the conservative motion of a heterophase a l p  interface in an A-B 
binary system. cs, cg, c:, and c$ are the concentrations of A and B in the 
two phases facing each other across the interface. Show that the conservative 
motion requires that Xz = X$ and that it is generally expected that c2 # 

SoZution. If the interface moves conservatively into the LY phase, it will convert a 
slab of the cy phase of thickness be into a slab of ,8 phase of thickness b P .  Each 
slab must contain the same number of A and B atoms ( i t ,  NZ = N$ = N A  and 
NE = N$ = N B ) .  Each slab will then have the same mass, but because the slab 

C t .  
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densities will generally differ, the slab thicknesses will generally differ. The condition 
X :  = X $  must then be satisfied since 

= x$ NA 
NA -t N B  

x; = 

However, since (for unit area of boundary) 

N A  NA c z  = - and cp - - 
A -  60 6" 

(13.27) 

(13.28) 

the concentrations will be expected t o  differ since in general 6" # b P .  

13.2 Equation 13.1 for the pressure exerted on the small-angle tilt boundary by 
a shear stress was derived by considering the work done by the shear stress 
during the change in macroscopic shape of the bicrystal which occurred when 
the boundary moved (see Fig. 13.1). Obtain the same result by considering 
the force exerted on each moving edge dislocation by the applied stress and 
summing the forces on all dislocations. 

Solution. Using Eq. 11.2, the force per unit length on each dislocation is fo  = uxyb. 
The spacing, d ,  o f  the dislocations in a symmetric t i l t  boundary is d = b / 0  [7]. The 
pressure on the boundary due t o  all dislocations is then 

(13.29) 
1 0 
d b P = a x y b  - = uz,b - = 0 Z y 0  

Note that this result is expected since the force exerted on an individual dislocation by a 
stress is the result of the change in crystal shape that occurs when the dislocation moves. 
Since the change in shape of the bicrystal due t o  the boundary motion is just the sum 
of the changes due t o  the motion of each of its individual dislocations, the total force 
on the boundary must be just the sum of the forces on the individual dislocations. 

13.3 An expression for the diffusion potential at  an edge dislocation in a small- 
angle tilt boundary subjected to a pure shear stress has been derived in Sec- 
tion 13.3.2. Derive a general expression for the diffusion potential at an iso- 
lated general (mixed) straight dislocation acted on by a general stress field. 
Express your answer in terms of the stress tensor, u, the Burgers vector, b, 
and the unit tangent vector, (. Remember that the potential is related to the 
work performed by the stress field when an atom is inserted at the dislocation 
(per unit dislocation length) during the dislocation climb. The force exerted 
on the dislocation is given by the Peach-Koehler equation (Eq. 11.1). Also, 
only the edge component of the dislocation plays a role in the climb. 

Solution. The dislocation will climb in a direction perpendicular t o  its glide plane (i.e., 
the plane containing both b'and 0. The unit normal, A, t o  the glide plane is 

-# 

(13.30) 

The force per unit length, f ,  exerted on the dislocation by the stress field in the climb 
direction normal t o  the glide plane is then 

+ 
f = f , . A  (13.31) 
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13.4 

The climb distance per unit length, d c ,  due t o  the insertion o f  an atom is 

R R d - - - = -  c -  
be ( A x  r ^ )  ' b '  (13.32) 

where be = (h x t) . 6 is the magnitude o f  the edge component of the Burgers vector. 
The potential relative t o  the reference potential, p i ,  is then the negative o f  the work 
done by the stress during the climb and is therefore given by 

Note that the sign of the final expression in Eq. 13.33 must be consistent with the 
convention for determining the Burgers vector (see the text following Eq. 11.1). 

A single-phase bicrystal sheet of thickness, h, is produced in a laboratory and 
cut into a symmetrical wedge as in Fig. 13.15. Upon heating, the boundary 

Figure 13.15: 
distance L(0)  froin the apex. 

Bicrystal specimen with a planar grain boundary initially located a 

is found to migrate toward the apex and data for L ( t )  as a function of time, 
t ,  are shown in Fig. 13.16. 

t (min) 

Figure 13.16: Migration data for boundary in Fig. 13.15 

Develop a plausible model for the observed data in Fig. 13.16. State two 
assumptions of the model. 

Give a plausible explanation for the observed initial transient behavior 
in Fig. 13.16. 

Using only the information in Fig. 13.16, estimate the activation energy 
for boundary motion. 
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(d) Closer examination of the data in Fig. 13.16 shows that growth is not uni- 
form but oscillates between slow and fast growth, as shown in Fig. 13.17. 
Give a plausible explanation for this behavior. 

L2( 0)  -b 

L2(t) 
(mm2) 

9 
0 10 20 30 40 SO 

t (min) 

Figure 13.17: Magnified view of data. from Fig. 13.16 a t  1000°C. 

(e )  The same experiment is repeated, but the material is obtained from a 
different supplier. Give a plausible explanation for the kinetic transition 
which is now observed after about 30 minutes a t  T = 8OO0C, as in 
Fig. 13.18. 

0 10 20 30 LK) 50 
t (rnin) 

Figure 13.18: 
supplier. 

Same experiment as for Fig. 13.16, but with material from a different 

Solution. 

Assuming that the surface energies o f  grains 1 and 2 are the same and that the 
grain-boundary energy is isotropic, the boundary will quickly adopt a circular-arc 
shape which is perpendicular t o  the wedge edges in order t o  balance surface-tension 
forces. The driving pressure on the boundary will then be P = y / R ,  where the 
radius of curvature is R = L/ cos(a/2) .  Therefore, 

Y a  P = - cos - L 2  
Assuming a constant boundary mobility, M B ,  

or 
a! L dL = - M B Y ~  cos - dt 
2 

(13.34) 

(13.35) 
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Integrating Eq. 13.35 yields 

L 2 ( 0 )  - L 2 ( t )  = 2 M ~ y ~  cos cy t (13.36) 

(b) The data indicate that  the boundary motion corresponding t o  Eq. 13.36 does not 
begin immediately. This could be the result o f  grain boundary pinning by solute 
atoms or small precipitates or by the existence of a grain-boundary groove in the 
initial position o f  the boundary from which the boundary must break away. It could 
also be the result of t ime taken for the boundary t o  adopt the curved shape-a 
process that would presumably begin from the specimen edge. 

(c) Equation 13.35 indicates that the slope of the linear regions of the two curves 
in Fig. 13.16 is proportional t o  the boundary mobility, M B .  Assuming that the 
boundary energy, yB,  is independent of temperature and that M B  follows an 
Arrhenius law, M B  = Mg exp[-EB/(kT)], the activation energy for migration 
can be calculated. Letting TI = 1073 K and T2 = 1273 K, the corresponding 
mobilities are proportional t o  the slopes of the curves in Fig. 13.16: 

2 

4 
19 - 2 

= 0.082 and M B ( T ~ )  0: - = 0.23 (13.37) M B ( T 1 )  0: 

From the Arrhenius law, 

and hence 

= 1.0 x 1 0 - l ~  J 
- 1.054 x 1.38 x lo-'' J K-' - 

1.46 x 10-4 K-I 

(13.38) 

(13.39) 

(d) The most likely explanation for jerky motion of the boundary is localized pinning by 
precipitates or small inclusions from which the boundary must repeatedly escape. 

(e) Figure 13.18 indicates that the boundary initially moves steadily at a relatively 
slow rate, then undergoes a transition t o  steady motion at a higher rate. Such 
behavior is consistent with an impurity-drag breakaway effect, which could be 
due t o  certain impurities in the material from the different supplier. Note that 
according t o  Eq. 13.34, the driving pressure increases as the boundary migrates 
and L decreases. The initial slow migration regime takes place when the boundary 
is less highly curved and is moving under a relatively small capillary driving force. 
Under these conditions, the boundaries in the impure material could have an 
impurity atmosphere that would have t o  move along with the boundary as it 
migrates with a relatively low mobility (extrinsic migration). As the boundary 
moves toward the apex o f  the wedge-shaped bicrystal specimen, it becomes more 
highly curved and the capillary driving force rises (ultimately becoming infinite). 
When the driving force becomes sufFiciently high, the moving boundary can break 
free of the impurity atoms and move with a higher intrinsic mobility. 

13.5 Consider the pinned second-phase particle illustrated in Fig. 13.7 and de- 
scribed by Eqs. 13.9-13.12. Assume that ypl = yp2, so that a = 90". 

(a) Show that t,he force exerted by the interface on the particle (or alter- 
nately, the force exerted by the particle on the interface) when the in- 
terface is a t  a position where it meets the particle at  the distance along 
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y denoted by y = 77 is given (as a function of q) by 

which is plotted in Fig. 13.19. 

(13.40) 

Figure 13.19: F ( q )  is the pinning force exerted on an interface by a 
spherical particle embedded in  the interface in the configuration illustrated in Fig. 13.7. q is 
the displacement of the interface in the y direction, corresponding to q = Rsiri 4 in Fig. 13.7. 

F ( q )  vs. 7. 

(b) Consider the possible thermally activated unpinning of the particle when 
the interface is initially held a t  the position 71; by a force F'. The 
activation energy E for the unpinning will be the work required to move 
the interface off the particle in the direction of y in the presence of the 
initial force F'. The force resisting this motion will correspond to F(q) .  
Show that E is given by 

E = - F m a x R  2 ( 1-- F V 2  (1 3.41) 

The thermally activated unpinning is therefore favored by a small par- 
ticle size and a large applied force, as might be expected intuitively. 

3 

Solution. 

(a) When QC = go", Eqs. 13.10 and 13.12 yield 

F = 2Fmax cos 4 cos(90 - 4) = 2Fma, cos q5 sin 4 (13.42) 

From Fig. 13.7, C O S ~  = J m / R ,  and cos(90 - 4) = s in4  = q /R .  Substi- 
tution of these quantities into Eq. 13.42 then yields the desired relationship. 

(b) The energy that must be supplied by thermal activation in the presence of the 
initial force F' is the shaded area in the figure, and therefore 

E = S,f""' A q ( F )  d F  (13.43) 

Using q = Rsin4 ,  Aq = R(sin42 - sin41). From Eq. 13.42, 

F(q1) = 2Fmp.x cos 41 CoS(90 - 41) F(q2) = 2Fmax cos 4 2  cOs(90 - 4 2 )  
(13.44) 
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F(q1)  = F(q2)  requires that $2 = 90 - $1. Therefore, 

Aq = R(sin $2 - sin $1) = R(cos 41 - sin $1) 
(13.45) 

= R J ~  - 2sin41 C O S ~ ~  = R J ~  

Putt ing Eq. 13.45 into Eq. 13.43 and integrating then produces the desired result. 

13.6 Equation 13.22 holds for the quasi-steady rate at  which B atoms diffuse to 
a spherical precipitate in a distribution of similar precipitates in a dilute 
supersaturated solution. Show that an equation of the same form holds for 
the quasi-steady rate of diffusion to a single spherical precipitate of constant 
radius R embedded in an infinite volume of a similar solution. [Note that 
a similar result is also obtained in Section 20.2.1 (Eq. 20.47) for the more 
realistic case where the particle is allowed to grow as the diffusion occurs.] 

0 Use spherical coordinates and solve the resulting boundary-value prob- 
lem by making the change of variable u = (c - c0)r ,  where co is the 
concentration when r + 03. 

Solution. The basic differential equation is 

(13.46) 

and the boundary and initial conditions are 

c ( r  = R, t > 0) = ce*," c ( r  2 R, t = 0) = co c ( r  + co, t > 0 )  = co 
(13.47) 

Making the change o f  variable u = ( c  - c o ) r ,  Eq. 13.46 becomes 

A standard solution of Eq. 13.48 (see Chapter 4) is 

where a1 and a2 are constants. Therefore, 

r 

(13.48) 

(13.49) 

(13.50) 

and applying the boundary and initial conditions, a2 = 0 and a1 = R(c:{ - c o ) .  The 
final solution is then 

The total difFusion current entering the particle is then 

(13.51) 

The second term inside the brackets is seen t o  be an initial transient that falls off 
as t -1/2.  It is associated with the establishment a t  early times o f  a steep concentra- 
t ion gradient in the difFusion field over a distance from the particle equal t o  about R. 
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Once the diffusion distance, 2(D~t) ’ / ’ ,  substantially exceeds R, the transient becomes 
unimportant, and Eq. 13.52 then has the same form as Eq. 13.22. 

13.7 Consider the analysis leading to  Eqs. 13.23 and 13.24 for a spherical precipi- 
tate particle acting as an ideal or nonideal sink. 

(a) Show that when E/(rcR) << 1 and the particle is acting almost as a per- 
fect sink, the concentration maintained at  the particle/matrix interface, 
cap,  must inevitably be slightly larger than the equilibrium concentra- 
tion, c$, and that ,  in fact, 

(13.53) 

(b) Next, show that when E/(rcR) >> 1 and the particle is acting as a very 
poor sink, the concentration at the interface will inevitably be slightly 
lower than the average concentration in the bulk, (c), and that,  in fact, 

(13.54) 

0 Neglect higher-order terms in any expansions that are employed. 

Solution. First, solve for caP by equating Eqs. 13.23 and 13.24 t o  obtain 

(13.55) 

(a) When D / ( K R )  << 1, let D / ( K R )  = E .  Then 

(b) When D / ( K R )  >> 1, let KR/D = E .  Then 

(13.57) - C,aq41KR 
= ( c )  + EC:! - ( C ) E  = ( c )  - I 

( c )  + E c g  cap = 
I + &  D 

13.8 Using the model and results in Section 13.4.2, find a relationship showing 
how the particle radius grows with increasing time during the precipitation 
of the finite number of supersaturated interstitial atoms with diffusivity DB 
available. Assume that the particles are of fixed composition throughout and 
act as perfect sinks and that R << R,. 
Solution. Starting with Eq. 13.22, the instantaneous rate a t  which the particle volume 
increases is 

(13.58) 
dV 2 dR - = 47rR - = 47rDR[(c) - c:!] R’ 
d t  d t  

where R’ is the increase in particle volume per added interstitial. At  any time, the 
volume of the precipitate is given by 

- 

(13.59) 4 3 4 3  V = -7rR = -7rR,[co - ( c ) ]  R’ 
3 3 
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Solving Eq. 13.59 for ( c )  and putting the result into Eq. 13.58 yields the differential 
equation 

= 50’ dt R dR 
(co - c:!) - R3/R2 f l t  

(13.60) 

The final size o f  the particle when the precipitation is complete is given by 

(13.61) R, 3 = R:(co - c:[)Rt 

and therefore Eq. 13.60 may be put into the more convenient form 
- 
D 

= -dt RL -R3 RZ 
RdR 

(13.62) 

The solution of Eq. 13.62, subject t o  the initial condition R = 0 when t = 0, is 

t (13.63) R 2 + R w R + R &  ) - & t a n - ’ (  2R+ R, ) + G = T  rr 3R,5 
ln(’ R,-R & R, 

A few calculations show that  R increases with t ime at an ever-decreasing rate and 
approaches R, asymptotically as t -+ m. 

13.9 Consider a small-angle tilt boundary of the type shown in Fig. 13.1, which is 
acting as a sink for highly supersaturated vacancies at  initial concentration 
given by i?. Assume that each edge dislocation acts as a perfect line sink 
and that the vacancies are diffusing to  the boundary from a distance, L,  
larger than the spacing of the dislocations in the boundary, d. Show that the 
boundary will act as a perfect sink for all practical purposes whenever L >> d. 

0 Neglect any effects due to the climb motion of the dislocations and as- 
sume quasi-steady-state diffusion. The vacancy isoconcentration con- 
tours around the dislocations in the boundary will then appear approx- 
imately as illustrated in Fig. 13.20. 

At distances from the boundary along 2 greater than about half the disloca- 
tion spacing (i.e., d / 2 ) ,  the contours will be unaffected by the fine structure of 
the boundary and will essentially be planes running parallel to the boundary. 
Nearer to  the dislocation cores, the contours will be concentric cylinders. A 
reasonable approximation is then to represent the diffusion field as shown in 

Figure 13.20: 
boundary acting as a sink for supersaturated vacancies. 

Approximate flux lines around edge dislocations in a small-angle tilt 
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Fig. 13.20. Here, at distances from each core less than d / 2 ,  the diffusion into 
each core is taken to be cylindrical. Beyond this distance, the diffusion into 
the boundary as a whole along 2 is taken to be planar (one-dimensional). At 
the “surface” of the core (i.e., the core radius of the dislocation, r = Ro) ,  
the equilibrium vacancy concentration is negligible compared with the high 
concentration, C, at the large distance, L.  Therefore, c ( r  = R,) = 0. Assume 
a quasi-steady state in the boundary region. The concentration at x = d / 2  
will then take on an intermediate value, c’, which can be determined. The 
total diffusion current into the boundary can then be determined. 

Solution. Using Eq. 5.13, the quasi-steady-state current entering each dislocation by 
cylindrical diffusion is 

(13.64) 

while the current diffusing toward each dislocation from the distance L by planar diffu- 
sion is 

2 d D v ( E  - c’) 
L - d / 2  Ip = 

Equating these currents then yields 

d In [d /  ( 2 R 0 ) ]  ’ 
T ( L  - d / 2 )  + d In [ d / ( 2 R o ) ]  ‘ c =  

Substituting this into the expression for Ic, 

21rDvd 
T(L - d / 2 )  + d In [ d / ( 2 R o ) ]  Ic = 

(13.65) 

(13.66) 

(13.67) 

The current that would diffuse into the boundary if it were a perfect sink would be 

2 d D v E  
Iideal = - L 

The sink efficiency (see Eq. 11.25) is then 

(13.68) 

(13.69) 

Therefore, 7 x 1 when L >> d .  Note: a more exact treatment using the analogy 
between steady-state diffusion fields and electrostatic fields leads t o  a very similar re- 
sult [22]. 



PART 1 1 1  

MORPHOLOGICAL EVOLUTION 
DUE TO CAPILLARY AND 
APPLIED MECHANICAL FORCES 

A material can change its morphology-its external macroscopic shape and its in- 
ternal microstructure-when suitable driving forces exist. As always, these driving 
forces result from differential decreases in total free energy. 

Morphology depends to a major extent upon the shapes and positions of inter- 
faces. Every real material has at  least one interface-the exterior interface which 
separates it from its environment. If an interface separates a material from its vapor 
or a vacuum, it is typically called a free surface. Interfaces that exist in materi- 
als within a condensed phase (or between condensed phases) are termed internal 
interfaces. 

Chapters 14 and 15 are concerned with the contributions made to morphological 
change by the motion of free surfaces and internal interfaces. Interfaces contribute 
an excess free energy to a material which depends on their areas and their crystal- 
lographic degrees of freedom, and they can also respond to mechanical forces. As a 
result, interfaces are commonly subjected to  two independent forces which tend to 
drive their motion and produce morphological change. If the interface motion de- 
creases the total excess free energy associated with the interface itself (i.e., through 
the product of its area and energy per unit area), the resulting force for motion is 
conventionally called a capillary force. For a curved isotropic interface, the capil- 
lary force is present due to the pressure difference across the interface caused by its 
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local mean curvature. Such capillary forces are especially influential in fine-scale 
microstructures containing interfaces with large curvatures where pressure differ- 
ences can become correspondingly large. In addition to  a capillary force, a force 
for interface motion is produced whenever motion of the interface allows an applied 
force to perform work: such a force is an applied force. 

The three chapters that comprise Part I11 are limited to  cases where chemi- 
cal driving forces are absent, and phase transformations therefore do not occur. 
Morphological change due to the evolution of free surfaces under the influence of 
capillary forces is treated in Chapter 14. Topics include surface smoothing and 
faceting, surface grooving at  intersections with grain boundaries, and the incipient 
evolution of a cylinder into a row of spheres. Transport mechanisms considered 
include surface and volume diffusion and vapor transport. Morphological change 
due to  the capillarity-driven motion of internal interfaces is treated in Chapter 15, 
which includes grain growth in polycrystals and the coarsening of a fine distribu- 
tion of second-phase particles. In Chapter 16 we address cases of morphological 
change that involve free surfaces and internal interfaces and include capillary and 
applied mechanical forces. Attention is focused on two technologically important 
kinetic processes: the surface smoothing and removal of porosity which occurs dur- 
ing sintering of porous bodies and the change in body shape produced by diffusional 
creep. 



CHAPTER 14 

SURFACE EVOLUTION DUE T O  CAPILLARY 
FORCES 

The total interfacial contribution to the free energy of a system corresponds to 
the integral of the interfacial free energy per unit area, y, over all interfaces. y is 
a material property that is a function of the geometric degrees of freedom of an 
interface. Therefore, driving forces for interfacial motion in a particular material 
derive from two sources-reductions in interfacial area and reductions in interfacial 
energy per unit area due to changes in the geometrical/crystallographic attributes 
of the interfaces. 

Analysis is simplified if y is isotropic-i.e., independent of geometrical attributes 
such as interfacial inclination f i  and, for internal interfaces in crystalline materi- 
als, the crystallographic misorientation across the interface. All interfacial energy 
reduction then results from a reduction of interfacial area through interface mo- 
tion. The rate of interfacial area reduction per volume transferred across the in- 
terface is the local geometric mean curvature. Thus, local driving forces derived 
from variations in mean curvature allow tractable models for the capillarity-induced 
morphological evolution of isotropic interfaces. 

This chapter treats the morphological evolution of free surfaces under capillary 
driving forces, including phenomena associated with both isotropic and anisotropic 
surfaces. The kinetics of surface smoothing, the formation of surface grooves on 
free surfaces at  intersections with grain boundaries, and the incipient evolution of 
a cylinder into a row of isolated spheres are considered for bodies with isotropic 
surfaces. Transport mechanisms include surface and volume diffusion and vapor 
transport. General methods of analyzing the evolution of anisotropic surfaces are 
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discussed; particular attention is given to the phenomenon of faceting and crystal 
growth when the surface velocity is a function of the surface inclination. 

In a two-phase composite material of isolated spherical particles embedded in 
a matrix, there is a driving force to transport material from particles enclosed by 
isotropic surfaces of larger constant mean curvature to particles of smaller constant 
mean curvature. This coarsening process and the motion of internal interfaces due 
to curvature are treated in Chapter 15. 

14.1 ISOTROPIC SURFACES 

An isotropic surface with undulations will generally evolve toward constant mean 
curvature as a result of the driving force arising from differences in curvature. 
As indicated by Eq. 3.76, material below a bump of large mean curvature has a 
larger diffusion potential than material below a bump of smaller mean curvature.’ 
Considering only capillary driving forces, it can be shown that irregularities on a 
uniform flat surface flatten due to capillarity-induced evolution, as illustrated in 
Fig. 3.7. However, a cylinder with surface irregularities can either evolve back to a 
uniform cylinder or toward a row of isolated spheres. 

The rate and characteristics of surface evolution depend on the particular trans- 
port mechanisms that accomplish the necessary surface motion. These can include 
surface diffusion, diffusion through the bulk, or vapor transport. Kinetic mod- 
els of capillarity-induced interface evolution were developed primarily by W.W. 
Mullins [l-41. The models involving surface diffusion, which relate interface veloc- 
ity to  fourth-order spatial derivatives of the interface, and vapor transport, which 
relate velocity to second-order spatial derivatives, derive from Mullins’s pioneering 
theoretical work. 

14.1.1 

Consider a system composed of only one type of atom along with its equilibrium 
point defects, having an initial surface profile 

Flattening of Free Surfaces by Surface Diffusion 

y - yo = h(z )  or F ( z ,  y) = y - h ( z )  = constant (14.1) 

where h(z)  represents deviations from a flat (y = constant) surface as in Fig. 14.1.2 
The diffusion potential of an atom at the surface is proportional to local surface 

curvature as demonstrated in Section 3.4. The curvature can be determined from 
Eq. 14.1 and is a function of z. The local diffusion potential produces boundary con- 
ditions for diffusion through the bulk or transport via the vapor phase. For surface 
diffusion, gradients in the diffusion potential produce fluxes along the surface. 

For surface diffusion, migration is constrained to a thin surface slab of thick- 
ness 6, as described in Section 9.1. Because the surface is an efficient point-defect 
source, point defects may be assumed to be at  their local equilibrium populations. 

lThe  following convention is employed: when a center of curvature is on the same side as the 
material in question, the curvature is positive. A ball has positive curvature; a spherical hole has 
negative curvature. 
’Additional material regarding the mathematical descriptions of interfaces is given in Appendix C, 
particularly Eq. C.9. 
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Figure 14.1: Flattening of a ruled surface h(s) by surface diffusion. The normal velocity 
is proportional t o  the accumulation of flux. The rate of vertical motion dhldt is related to  
the normal velocity u, by the local geometry of the surface. 

Therefore, combining the force-flux equation (Eq. 2.21) and the diffusion potential 
at  a curved interface (Eq. 3.76), 

where c = 1/R is the concentration of atoms in a surface layer of thickness 6, and the 
surface mobility M s  is related to the surface diffusivity *Ds by Eq. 3.43. Vsurf in 
Eq. 14.2 is the surface gradient operator, which has derivatives within the interface 
(i.e., it is a two-dimensional gradient operator in the interface tangent plane). For a 
two-dimensional interface embedded in three dimensions {z(u, w), y(u, w ) ,  z(u,  w)}, 
with interfacial coordinates (u, w )  and curvature K ,  the surface gradient of K ,  

(14.3) 

is a vector perpendicular to the surface normal which points in the direction of 
fastest increase in K .  For the ruled surface described by Eq. 14.1, 

J s  = ys*Ds dr; 
k T  ds 

(14.4) 

where s is the arc length along the surface curve y - h ( z )  = constant, as illustrated 
in Fig. 14.1. The rate of particle accumulation at  a particular surface site is the 
integral of the flux over the surface enclosing each surface site. Representing each 
surface site as a box with a square base of area l /cs  (where cs is the number of 
surface sites per area) and height 6, the particle accumulation rate is 

+ - 6  
V . J s  dV RZ -V . J s -  (14.5) 

The atom addition rate per unit area is N s c s  = - 6 V . 3 ,  and therefore the normal 
velocity of the surface is 

J J box-volume C S  

- -  
J S  . dA = - ii/s = - 

box-walls 
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where BS collects the kinetic and material coefficients that multiply the surface 
Laplacian, VZurf E V7,,,f~Vsurf, the two-dimensional Laplacian operator with deriva- 
tives with respect to coordinates in the interface as in Eq. 14.3. The figure indicates 
a relation between the rate of change of the surface height, h, and v,: 

(14.7) 

Figure 14.1 indicates that the derivatives with respect to arclength, s, can be con- 
verted to derivatives with respect to x using ds2  = dh2 + dx2. From the expression 
for .K in Eq. C.5, 

dh BS d r 1 

In the limit of small slopes, Idh/dxl << 1, 

sd4h 
= -B - +3BS 

dh 
at 8x4 
- (14.9) 

The second term on the right-hand side is negligible unless there are regions where 
the (small) slopes change rapidly. Any such regions disappear rapidly, due to the 
first term. Therefore, the linearized surface diffusion equation is 

d4h -RySG*DS d4h --B - =  - dh 
d t  6x4 kT ax4 
_ -  (14.10) 

The dependence of h on the length scales of the surface roughness can be analyzed 
with independent Fourier components having the form 

h(x,  t )  = A(t)  sin - ( 2 Y )  
Substitution of Eq. 14.11 into Eq. 14.10 gives 

-- dA(t) - -RySG*DS ( 27r)4 dt 
A( t )  kT 

(14.11) 

(14.12) 

so that the time dependence of the Fourier amplitude, A@),  is 

A(t)  = A(0)e-BS(2"/w4t (14.13) 

The amplitude decay exponent is proportional to l / X 4 ;  fine-scale roughness there- 
fore disappears much more rapidly than longer-wavelength surface roughness. Gen- 
eral roughness can be decomposed into a sum of Fourier terms, and since Eq. 14.10 
is linear, each term decays independently. Physically, the short-wavelength modes 
disappear rapidly and the flattening rate of an isotropic surface by surface dif- 
fusion is limited by the longest wavelength. Equation 14.13 is an approximation 
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for the limit of small slopes. However, numerical solutions of the nonlinear evo- 
lution equation, Eq. 14.8, for large-slope conditions indicate that the small-slope 
approximation can be applied in the general case without significant error [5] .  

The wavelength dependence in Eq. 14.13 can be used for experimental measure- 
ments of the surface and kinetic coefficients that constitute BS.  If an array of evenly 
spaced parallel grooves is introduced on a surface, the spacing dependence of the 
grooves' amplitude-decay factor can be measured [6 ] .  An analysis for flattening of 
an isotropic surface by bulk diffusion as in Fig. 3.7 is presented in Exercise 14.1. 

14.1.2 

Solid/vapor interface motion can be produced by evaporation-the atoms that com- 
pose the solid phase are removed from the surface via the vapor phase; reverse mo- 
tion can be produced by condensation where a vapor-phase flux is directed onto the 
solid phase. Figure 14.2 illustrates how simultaneous evaporation and condensation 
can result in surface smoothing. 

Vapor transport differs from surface diffusional transport, where the flux is al- 
ways in the surface plane. For both surface diffusion and vapor transport. the 
diffusion potential at the surface is proportional to the local value of y s ~  if the 
surface free energy is isotropic. For surface diffusion, the interface normal velocity 
is related to a derivative (Le., the divergence of the flux). Also, the total volume 
is conserved during surface diffusion. For vapor transport, the interface normal 
velocity is directly proportional to the vapor flux, and the total number of atoms 
is not necessarily conserved. 

Crystal growth from the vapor phase has been treated in Chapter 12. An ex- 
pression for the net atom flux, Jv, gained at  a macroscopically flat crystal surface 
during growth from the vapor has been obtained in Exercise 12.2 in the form of 
Eq. 12.27. To treat surfaces possessing nonuniform curvature, this relationship can 
be generalized in the form 

J" = K[P""b - P""K)] (14.14) 

where Pamb is the ambient vapor pressure in the system, P " ~ ( K )  is the vapor pres- 
sure in equilibrium with a local region of the surface with curvature K ,  and K is a 
rate constant. The function P " ~ ( K )  may be derived by equating the atom diffusion 
potential in the surface and in the equilibrium vapor. For the vapor, dG = kT In P ,  
and therefore 

Surface Evolution by Vapor Transport 

Peq ( K  = 0 )  p ' ( ~ )  - p " ( ~  = 0) = a"(.) - Q ~ ( K  = 0) = kT1n 

J" 

Figure 14.2: Flattening of surface h ( z )  by vapor transport involving evaporation from 
regions of larger curvature and condensation at regions of lower curvature. The velocity 
along the surface normal is proportional to  the normal flux a t  the solid/vapor interface. 
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while at the surface, according to Eq. 3.76, as(&) - @ ( K  = 0) = RySr;. Equating 
these expressions results in 

(14.15) 

The first-order expansion employed will be valid under all usual conditions. 

then be found by using Eqs. 14.14 and 14.15: 
The normal growth velocity of a local region of the surface with curvature K can 

P e q  ( r ;  = 0) Ry S 

kT 
u, = R J V  = OK [pamb - Peq(tc = 0) - (14.16) 

In the common situation where the surface contains undulations but is macroscop- 
ically flat, Pamb will be well approximated by Peq(n = 0), so that 

V (14.17) 
K@ySPeq(r; = 0) tc=-B K 

kT 
21, = - 

where the coefficient BV collects the vapor-transport kinetic and material param- 
eters (and has the same units as a diffusivity). 

Surface Grooving a t  Surface/Grain-Boundary Intersections by Vapor Transport. When 
a grain boundary with isotropic surface energy y B  intersects a free surface with 
isotropic surface energy ysl a grain-boundary groove forms in order to achieve a 
capillary-force balance, as illustrated in Fig. 14.3. The dihedral angle II, is deter- 
mined by Young's equation, 

1c, Y B  
2 27s 

cos- = - (14.18) 

Grain-boundary grooves can develop during thermal annealing by mass transport 
arising from vapor transport, surface diffusion, or surface-to-surface transport by 
means of volume diffusion. 

Equation 14.17 can be used to model grain-boundary grooving kinetics when 
vapor transport is the dominant mechanism. The normal velocity ah/& is related 

I y B  
boundary I 

Figure 14.3: (a) Initial intersection of grain boundary with flat surface and (b) 
subsequent formation of surface groove with dihedral angle, $. Because a grain boundary 
migrates toward its center of curvature (discussed in Section 15.2), stationary grain 
boundaries intersect the surface at right angles. 
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to the vertical velocity as in Fig. 14.1 and Eq. 14.7: 

dh BV 

In the limit of small slopes lgl << 1, 

(14.19) 

(14.20) 

This surface evolution equation has the same form as the bulk mass diffusion equa- 
tion; the concentration is replaced by the height of the surface, h, and the diffusivity 
is replaced by BV. 

For the grain-boundary grooving problem, the initial and boundary conditions 
derive from the initial shape of the surface and Young’s equation at  the groove 
notch: 

dh T - $  d h  
-(x = 0 , t )  =tan(- ) 
dX 2 dX 

h(x,t = 0) = 0 -(x = ~ , t )  = 0 (14.21) 

Only x > 0 is considered, since the solution will have mirror symmetry about the 
grain boundary plane x = 0. 

These boundary conditions correspond to the constant surface-flux diffusion 
problem in Section 5.2.5, in which the surface concentration increased propor- 
tionally to t112. Therefore, adapting the solution given by Eq. 5.69 to the grain- 
boundary grooving model, 

h(0, t )  = -2 tan (Ti$) - (14.22) 

and the groove therefore deepens proportionally with t112 as well. 

Stability of a Cylinder. A cylinder of radius R, with isotropic ys can reduce its 
total surface energy if it evolves into a row of spheres with radii greater than 3R,/2 
(Le., if each cylinder section with a length of at  least 9R,/2 evolves into a sphere). 
Therefore, microstructures with cylindrical features can be morphologically unsta- 
ble. However. kinetics requires that the total surface energy (or, surface area for 
the isotropic case) must decrease continuously if a cylinder evolves into a row of 
isolated particles. Continuous surface-energy reduction sets a fundamental or crit- 
ical length scale for the wavelength, Xcr i t ,  of an infinitesimal axial undulation on 
a uniform cylinder, which produces instability. Rayleigh derived an expression for 
Xcrit using perturbation analysis as follows [7].  

Consider a radially symmetric perturbation (or an infinitesimal Fourier mode) 
on a uniform cylinder of initial radius R,: 

2TZ 
R(z ,  t )  = Rcyl(t) + c ( t )  cos - x (14.23) 

where ~ ( t )  is the time-dependent perturbation amplitude (see Fig. 14.4). The cylin- 
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Figure 14.4: Perturbation of cylindrical body by a sinusoid. Long-wavelength 
perturbations reduce the surface area of the Lody and ultimately result in breakup of the 
body into a linear array of spheres. 

der is isolated so that its volume per wavelength, ITRZA, is constant. Therefore, 

x 
TRZX = Jd r R 2 ( z ,  t )  d z  

27rz '"1 d z  ( 14.24) 
x = IT JdA [Rbl  + 2 R c y l ( t )  ~ ( t )  cos - + f 2 ( t )  COS' x 

I T X E 2 ( t )  
= ITXR:,~ + - 

2 
The average cylinder radius, Rcyl, must shrink when c(t)/Ro is small according to  

(14.25) 

The total surface energy per wavelength for the surface of revolution, Eq. 14.23, is 
x x 

E S  = Jd y S d A  = ys Jd 2 ~ R d . s  
( 14.26) 

x RJ;lz2fdRZ = 27rys LA R J W d z  * 

Expanding in powers of ~ ( t ) ,  

( 14.27) 

7ryV( t )  
= E," + [(27rRo)2 - x2] t 2 X R ,  
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Therefore, the energy decreases continuously with time if the  Rayleigh instability 
condition is satisfied, 

X > Xcrit = 2nR0 (14.28) 

Any perturbation with a wavelength less than the circumference of the cylinder will 
not grow. 

The particular characteristics of morphological evolution are determined by the 
dominant transport mechanism; their analyses derive from the diffusion potential, 
which depends on the local curvature. For a surface of revolution about the z-axis, 
the curvature is given by Eq. (2.16; that is, 

1 a2R 

Substituting Eq. 14.23 into Eq. 14.29 and expanding for small E/R, yields 

(14.29) 

(14.30) 

14.1.3 Evolution of Perturbed Cylinder by Vapor Transport 

Suppose that a perturbed cylinder with radius given by Eq. 14.23 evolves by vapor 
transport in an environment with an ambient vapor pressure in equilibrium with 
the unperturbed cylinder, Pamb = Peq(,  = l /R,) .  Then, using Eqs. 14.15, 14.16, 
and 14.17, 

u, = BV ($ - K )  (14.31) 

According to Eq. 14.25, Rcyl N R,, so Eq. 14.23 shows that v, a t  z = 0 is approxi- 
mately d E ( t ) / d t .  Therefore, using Eq. 14.30, 

(14.32) 
1 

d t  

Small perturbations therefore evolve according to 

E ( t )  = E(0)et/Tv(’) ( 14.33) 

where the amplification fac tor  l/rv = (Bv/Rz)[l  - ( ~ T R , / X ) ~ ] .  This first-order 
kinetic result is consistent with the previous Rayleigh result: only perturbations 
with wavelengths longer than Xcrit will grow. 

14.1.4 

Suppose that the perturbed cylinder considered above evolves by surface diffu- 
sion. A first-order differential equation for the amplitude E ( t )  follows from in- 
serting Eq. 14.30 into the surface diffusion relation, Eq. 14.6, and again setting 
u, = d c ( t ) / d t  at z = 0: 

Evolution of Perturbed Cylinder by Surface Diffusion 

(14.34) 
39 = - 47r2 BS [ l -  (i)2] 27rR, E ( t )  = 1 

dt  RZ X2 
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In addition to the Rayleigh result, Eq. 14.34 predicts that a particular perturba- 
tion wavelength, A,,,, grows the fastest and hence dominates the morphology of 
the evolving cylinder. This kinetic wavelength maximizes the right-hand side of 
Eq. 14.34, giving the result A,,, = f i A c r i t .  

14.1.5 

Comparison of surface-diffusion and vapor-transport kinetics in Fig. 14.5 shows 
a difference in long-wavelength behavior. The amplification factor ~ / T ( A )  in the 
perturbation growth rate E ( t )  = ~ ( 0 )  exp[t /~(X)]  is monotonically increasing for 
vapor transport and approaches BV/ R: asymptotically for long wavelengths. For 
surface diffusion, ~ / T ( A )  goes to zero for long wavelengths and has a maximum at 
A = fi (27rR,). For a cylinder with an initial small random roughness, evolution by 
surface diffusion results in a morphological scale associated with A,,,. For vapor 
diffusion, no characteristic morphological scale is predicted. 

Thermodynamic and Kinetic Morphological Wavelengths 

d& 
dt 

Figure 14.5: Behavior of the perturbation-amplitude growth coefficients 1 / ~ "  and l / r s  
for cylinder-pertiirbatiori growth by vapor transport arid surface diffusioii, respectively. For 
surface diffusion, a fastest-growing wavelength A,,,, determines a morphological scale for the 
initial instability. Except for the Rayleigh critical wavelength, &,.it, no characteristic length 
scale appears for vapor transport. 

14.2 ANISOTROPIC SURFACES 

14.2.1 

An anisotropic surface's energy per unit area, y(A), depends on its inclination, A. 
For isotropic surfaces, the surface energy is simply proportional to  the area, but two 
additional degrees of freedom emerge for the anisotropic case. These correspond 
to  the two parameters required to  specify the surface in~l ina t ion .~  An anisotropic 
surface can often decrease its energy at  constant area by tilting (i.e., changing its 
normal). The variation of the interfacial energy with inclination can be represented 
conveniently in the form of a polar plot (or y-plot), as shown in two dimensions 
in Fig. 14.6. Here, the energy of each inclination is represented by a vector, r ( A ) A  

3Geometrical constructions for describing anisotropic surfaces are reviewed in Section C.3.1. 

Some Geometrical Aspects of Anisotropic Surfaces 
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C D 

Figure 14.6: 
be faceted into inclinations corresponding to points B and C. y-plot same as in Fig. C.4a. 

Construction for testing whether an interface of inclination A will prefer to 

(i.e., a vector normal to that inclination and of magnitude equal to the interfacial 
energy a t  that inclination). If all of these vectors are referred to a single origin, 
the y-plot is the surface passing through the tips of these vectors. Inclinations of 
particularly low energies will therefore appear as cusps or depressions in the plot. 

Conceptually, treatment of the morphological evolution for an anisotropic surface 
is no different than for an isotropic surface-kinetics requires that s y(A) dA (com- 
pared to y J dA for an isotropic surface) must decrease monotonically. However, 
because the evolving surface's geometry is linked to the local surface-energy density 
through f i ,  the analysis is considerably more complicated. Furthermore, when a sur- 
face is sufficiently anisotropic, inclinations f i  associated with large energies become 
unstable and cannot be in local equilibrium-the surface must develop corners or 
edges. The missing inclinations create points or curves on a surface where surface 
derivatives will be discontinuous. When the y-plot has cusp singularities, planar 
facets may appear; such a surface can have portions that are smoothly curved or 
portions that are flat and these portions are separated by edges or corners where 
derivatives are discontinuous. 

For surfaces with the two-dimensional y-plot shown in Fig. 14.6, certain incli- 
nations will be unstable and will be replaced by other inclinations (facets), even 
though this increases the total surface area. Whether a certain inclination is un- 
stable and prone to facet into other inclinations can be determined by a simple 
geometrical construction using the y-plot [8]. The surface will consist of two differ- 
ent types of facets, as in Fig. 14.7a. The energy of such a structure per unit area 
projected on the macroscopically flat surface, "ifac, is 

where yi is the surface energy of the ith-type facet and fi  is the fraction of the 
projected area contributed by facets of type i. If f i  is the unit normal to the flat 
surface and f i ~ ,  &, and f i 3  are unit vectors normal to type-1 facets, type-2 facets, 
and along the facet intersections, respectively, as in Fig. 14.7a, 

f i  = f i f i I +  f2h2 (14.36) 
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Figure 14.7: Morphology of an initially smooth surface that has reduced its energy by 
faceting. (a) Morphology if two facet inclinations are stable. (b) Morphology if three facet 
inclinations are stable. 

If a set of vectors, St, reciprocal to  the vectors hi, is introduced so that 

(14.37) 
a, x f i 3  '* a, x a1 ??I x a, 6; = 6; = n2 = 

a1. (a, x a,) (a, x a,) a1. (752 x f i 3 )  

so that 6; . f i j  = dij, Eq. 14.35 can be rewritten 

where Z= yl6p + 726; has the properties 

Whether faceting will occur can now be settled by a simple geometrical con- 
struction using the y-plot shown in Fig. 14.6. If the surface to be tested has the 
inclination fi and the inclinations corresponding to  points B and C are chosen as 
the inclinations for the i = 1 and i = 2 facets, Zmust appear as shown in Fig. 14.6 
in order to  be consistent with Eq. 14.39. The energy of the surface of average incli- 
nation fi that  is faceted into inclinations corresponding to points B and C is then, 
according to  Eq. 14.38, the projection of Zon a. This energy is smaller than the 
energy of the nonfaceted interface (indicated by the outer envelope of the y-plot) 
and the surface will prefer to  be faceted. 

I t  may also be seen that the energies of all other surfaces with inclinations varying 
between those at B and C will fall on the dashed circle. All of these surfaces will 
therefore be faceted. On the other hand, a similar construction shows that all 
surfaces with inclinations between those at C and D will be stable against faceting 
into the inclinations at C and D .  Points such as those at B and C where the dashed 
circle is tangent to the y-plot therefore delineate the ranges of inclination between 
which the surface is either faceted or nonfaceted. The construction indicated in 
Fig. 14.6 is readily generalized to  three dimensions: three facet planes could then 
be present, as in Fig. 14.7b, and c'then terminates at the point of intersection of 
three planes rather than two lines. 

Figure 14.8 shows a three-dimensional y-plot comprised of eight equivalent spher- 
ical surface regions. The shape of this y-plot is consistent with all surfaces repre- 
sented by the plot being composed of various mixtures of the three types of facets, 
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Figure 14.8: The y-plot for a material with a Wulff shape corresponding to  a cube 
when y[100] = y[010] = y[001]. It consists of portions of eight identical spheres, shown 
here in cutaway view. These spheres share a common point at the origin. but each has a 
diametrically opposed point directed toward the eight (111) directions. 

corresponding to  the y[lOO], y[OlO], and y[OOl] vectors shown.4 Any interface cor- 
responding to  a vector lying on a groove at the intersection of two spheres, such as 
y h v l  will consist of t w o  types of facets. corresponding to a pair of the vectors y[100], 
y[OlO], or y[OOl]. Any interface corresponding to a vector going to  a spherical re- 
gion of the plot. such as ypyrl will consist of three types of facets. corresponding to  
y[lOO], y[OlO], and y[OOl]. 

Figure 14.9 shows a three-grain junction on the surface of polycrystalline A1203 
after high-temperature annealing. Each grain surface has a different inclination 

Fi ure 14.9: 
pofjfcrystal. From J M Dynys [9]. 

41n Fig. 14.6. which holds in two dimensions, the energies of all faceted surfaces with inclinations 
between B and C fall on the dashed tangent circle shown. In three dimensions, a comparable 
construction would show tha t  faceting would occur on three facet planes, such as in Fig. 14.7b, 
and tha t  the counterpart to the tangent circle would be a tangent sphere. 

Surface morphology of three faceted grains in an annealed alumina 
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and exhibits a different facet morphology. Grain 1 remains flat, grain 2 shows two 
facet inclinations, and grain 3 exhibits three facet inclinations. 

Other constructions employing the y-plot are reviewed in Section (2.3.1. These 
include the reciprocal y-plot, which is also useful in treating the faceting problem 
above, and the Wulff construction, which is used to find the shape (Wulff shape) of 
a body of fixed volume that possesses minimum total surface energy. 

14.2.2 

The kinetics of the morphological evolution of anisotropic interfaces can be devel- 
oped as an extension of the isotropic case. Isotropic interface evolution originates 
from a diffusion potential proportional to the local geometric curvature (mean cur- 
vature) multiplied by the surface energy per unit area. The local geometric curva- 
ture is the change of interface area, 6A, with the addition of volume 6V, K = 6A/6V 
(see Section C.2.1). Therefore, the local energy increase due to the addition of an 
atom of volume R is Ryn. The anisotropic analog to the isotropic energy increase 
is the weighted mean curvature K-, = 6(yA)/6V, developed by J. Taylor [lo]. In 
the anisotropic case, the diffusion potential is increased by, RK-,, the local energy 
increase per adatom. It can be shown that 

K-, = VJsurf f(fi) (14.40) 

where f i s  the capillarity vector and Vsurf is the surface divergence operator, similar 
to the surface gradient introduced in Eq. 14.2.5 Two different types of derivatives 
are involved in this expression for &,-the first produces {from a derivative in 
y-space as seen in Eq. C.20; the second derivative used to obtain the divergence is 
taken along the evolving interface. 

Rate of Morphological Interface Evolution 

Evolution by Surface Diffusion and by Vapor Transpott. Although calculation of the 
morphological evolution for particular cases can become tedious, the kinetic equa- 
tions are straightforward extensions of the isotropic case [ l l ] .  For the movement 
of an anisotropic surface by surface diffusion, the normal interface velocity is an 
extension of Eq. 14.6 which holds for the isotropic case; for the anisotropic case, 

(14.41) 

If the surface diffusivity is anisotropic, its surface derivatives must appear as well. 
For movement by vapor transport of an anisotropic interface that is exposed to 

a vapor in equilibrium with a very large particle6, the normal interface velocity is 
an extension of Eq. 14.17: 

K R ~ P ~ ~ ( K  = 0) 
kT 6-l vn = - (14.42) 

The expression for weighted mean curvature for any surface in local equilibrium 
is simplified when the Wulff shape is completely faceted [lo,  121. In this case, 

5The capillarity vector $ and the weighted mean curvature ny are discussed in more detail in 
Section C.3.2. 
6Weighted mean curvature, which is uniform on a Wulff shape, goes to zero in the limit of large 
body volumes. 
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tractable expressions and simulations can be produced for morphological evolution 
by surface diffusion and vapor transport [13]. However, these models do not include 
edge and corner energies because they are inadmissible in the Wulff construction- 
nor do they include nucleation barriers for ledge and step creation, ledge-ledge 
interactions, and elastic effects associated with edges and corners. 

Growth Rate for Inclination-Dependent Interface Velocity For a crystalline parti- 
cle growing from a supersaturated solution, the surface velocity often depends on 
atomic attachment kinetics. Attachment kinetics depends on local surface struc- 
ture, which in turn depends on the surface inclination, A, with respect to the crystal 
frame. In limiting cases, surface velocity is a function only of inclination; the inter- 
facial speed in the direction of A is given by w(A). The main aspects of a method 
for calculating the growth shapes for such cases when .(A) is known is described 
briefly in this section. 

Given an initial surface, F(t = 0),  the surface morphology at some later time, 
t ,  can be computed from the growth law w(A) with a simple construction [14, 151. 
Let r(fl be the time that the growing interface reaches a position r'; therefore, the 
level set tconst = r(fl could be inverted to give the surface F(tcOnst). The surface 
normal must be in the direction of the gradient of 7 ;  A = Vr/lVrl, where IVrI 
must be proportional to [w(A)]-'. Solving for the constant of proportionality, a,  as 
a function of V r ,  

(14.43) 

wext (p3  is the homogeneous extension of the surface velocity w(A) from A on the unit 
sphere to  gradients of arbitrary magnitude p" V r  [16]. 

The extended normal velocity, wext (p3 ,  can be used to construct characteristics 
that specify the surface completely at some time t [14]. The characteristics are rays 
that emanate from each position on the initial surface ?(t = 0), given by 

?(t) = r'(t = 0) + t V&=t(p3 
(14.44) 

The surface normal A is constant along the characteristics, and therefore the surface 
velocity u(A) is constant as well (see Exercise 14.5). The characteristics, defined as 

(14.45) 

do not depend on the magnitude lVd. Therefore, the time-dependent morphology 
can be calculated directly from any initial surface r'(t = 0) and a normal velocity 
.(A) by the following procedure. First calculate ((A) for every point on the initial 
surface ?(t = 0), then construct rays equal to tf from each point. Using Eqs. 14.44 
and 14.45, the surface positions at an arbitrary time t are 

?(t) = ?(t = 0) + tf((a) (14.46) 

The method is illustrated with a simple example in two dimensions. Suppose 
that the surface has the symmetry of a square and w(k) = w(n1, n2) = w(cos8, sine) 
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is given by 

w(h) = 1 + p(n; + cun;n; + n;) 

(14.47) 

where a: and ,B are constants. The velocity w(h) and its associated [ ( h )  are illus- 
trated in Fig. 14.10 for particular values of Q and p.' 

Figure 14.10: Exaniples of ~ ( A ) i i  and <(ii) from Eq. 14.47 for ,B = 1/2 and LY = 4. (a) 
A polar plot of ~ ( i i ) i i .  The magnitude of the plot in each direction, ii = (cos 8, sin O ) ,  is the 
velocity in that direction. (b) <(ii) is plotted parametrically as a function of 8. The vector 
<(A) = f (8 )  is generally not in the direction of i i (8) .  However, t,he surface of the <(O)-plot at 
any point is always normal to f i ( 8 ) ,  as shown in Eq. C.19, which although written for Gii) 
and y(A), also holds for <(?i) and ~(6). 

Figure 14.11 shows the shape evolution due to w(h) and its characteristics f i n  
Eq. 14.47 for an initially circular particle. After very long times, the only remaining 
orientations on the growth shape are those that lie on the interior portion of the 
f-surface; therefore, the portion of the <-surface with the spinodes (the swallowtail- 
shaped region) is removed. 

For morphological evolution during dissolution of a crystal (or disappearance of 
voids in a crystalline matrix), the same characteristic construction applies, but the 
sense of the surface normal is switched compared to Fig. 14.11. An example of 
dissolution is illustrated in Fig. 14.12. 

The asymptotic growth shapes (Fig. 14.11) are composed of inclinations asso- 
ciated with the slowest growth velocities, and the fastest inclinations grow out of 
existence by forming corners. On the contrary, for dissolution shapes (Fig. 14.12), 
the inclinations associated with the fastest dissolution remain and the slow-speed 
inclinations disappear into the corners. The asymptotic growth shape is the in- 

7 ( ( i ? L )  is related to v(7i) in the same way that the capillarity vector, (, is related to y(6) and is 
constructed in the sanie way. The Wulff construction applied to v(A) produces the asymptotic 
growth shape. This and other relations between the Wulff construction and the common-tangent 
constriiction for phase equilibria are discussed by Cahn and Carter [16]. 
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Shape at t = 0 Shape at t = t ,  Shape at t = 0 Shape,at t 2 >  t ,  

Figure 14.11: Development of growth shape for an  initially circular particle for the v ( f i )  
illustrated in Fig. 14.10. Rays t f ( f i )  are drawn from each associated inclination on the initial 
surface. Fastest-growing inclinations accumulate at 45" and its equivalents and form corners. 

Figure 14.12: Development of di_ssolution shape for initially circular particle for the 
w(h) illustrated in Fig. 14.10. Rays tC(-h) are drawn from each associated inclination on 
the initial surface. The slowest-growing inclinations accumulate at 90" and its equivalents 
and form corners. 

terior of the f-surface and the asymptotic dissolution shape is composed of those 
inclinations between the cusps on the swallowtail-shaped region on the f-surface. 
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EXERCISES 

14.1 Section 14.1.1 treated the smoothing of a sinusoidally roughened surface by 
means of surface diffusion to obtain Eq. 14.13. Show that the corresponding 
expression for smoothing by means of crystal bulk diffusion, as in Fig. 3.7, is 

where w = 27r/X. 

0 Use the same small-slope approximations as in Section 14.1.1. 

(14.48) 
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14.2 

Assume that self-diffusion occurs by a vacancy mechanism and take 
Eq. 13.3 as the volume diffusion equation. 

Assume that the diffusion field is in a quasi-steady state and that local 
equilibrium is maintained at  the surface and in the volume at  a long dis- 
tance from the surface, where pv = 0 and p~ has the value characteristic 
of a flat surface. 

Note that one of the solutions to  Laplace’s equation is 

@ A  = p~ - pv = a1 + a2 sin(wz) ewy (14.49) 

Solution. The height of the surface is given by h = Asin(wx) and the flux equation 
is given by Eq. 13.3. Therefore, 

(14.50) 

To evaluate Eq. 14.50 we must obtain an expression for @ A  by solving the steady-state 
diffusion equation, 

(14.51) 

in the volume, subject t o  appropriate boundary conditions. 
y = 0), pv = 0, and from Eq. 3.76, 
and p~ = p i ,  so that @ A  = p>.  Because 

At  the surface (i,e., at 
= pz + ySRtcF. In the deep interior, pv = 0 

= Aw2 sinwx 
d 2 h  
6x2 

.- (14.52) 

the boundary conditions above and the diffusion equation are satisfied by a solution of 
the form of Eq. 14.49 with a1 = p i  and a2 = ySCLAw2. Therefore, using Eqs. 14.49 
and 14.50, 

(14.53) 
* D X L y S R  h W 3  

kTf  
Aw3 sinwx = - 

d h  - *DXLySR 
at kTf  
- -  - 

Finally, because ( l / h ) ( d h / d t )  = ( l / A ) ( d A / d t ) ,  Eq. 14.53 may be integrated t o  pro- 
duce Eq. 14.48. 

Figure 14.13 illustrates a portion of an infinite thin plate of thickness h con- 
taining a circular hole of radius R. The plate is held at a high temperature 
where diffusional transport processes become active. 

(a) At which specific location(s) will the shape of the plate first begin to 
change? Explain your reasoning in terms of driving forces for diffusion. 

Figure 14.13: Portion of infinite plate of thickness h containing a hole of radius R. 
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(b) What role do you expect the initial value of the ratio hlR to  have in de- 
termining whether the hole in the plate will either shrink and disappear 
spontaneously or grow spontaneously? Explain your reasoning. 

Solution. 

(a) Equation 3.76 demonstrates that  the diffusion potential of an atom a t  a surface 
depends on the local surface curvature. Consistent with the convention that a 
convex spherical surface has a curvature +2/R (see Section 14.1), the curvature 
of the surface of the flat plate is zero and the initial curvature of the cylindrical 
surface inside the hole is KI = 1/m - 1/R = -1/R. The highest curvature is 
a t  the "rim" o f  the hole where the hole intersects the flat surface; the curvature 
here is K' = 1 / ~  - 1/R --+ +m. Therefore, there is a large diffusion-potential 
gradient for atoms at the rim of the hole. The first shape change would therefore 
be rounding o f  the sharp edges of the hole. The driving force for diffusion would 
be reduction of the total surface area, and this would commence by movement of 
atoms away from the r im o f  the hole toward both the flat plate surface and the 
cylindrical surface of the hole. The interior surface of the hole will continue t o  
evolve at  a slower rate, as described in part (6). 

(b) Recall that  curved interfaces can reduce their area by migration toward the center 
o f  curvature o f  the higher principal curvature. Consider two limiting cases, depicted 
in Fig. 14.14. Case 1, R >> h: assuming complete rounding of the sharp hole 
edges, as in Fig. 14.14a, the curvature o f  the rounded hole will be K I  = l / ( h / 2 )  - 
1/R x 2/h,  and the surface tension force will cause the hole t o  increase in 
diameter. Case 2 ,  h >> R: as in Fig. 14.146, the hole interior has curvature 
K' = l / ( h / 2 )  - 1/R % - l / R ,  and the surface-tension force acts t o  reduce 
the diameter o f  the hole. One can make a simple calculation t o  investigate this 
problem further. Assume that the hole o f  diameter 2R lies somewhere in a fixed 
area A o f  the plate. Then the initial total surface area o f  the plate and hole (with 
sharp corners) will be 

Atot = 2A + x2Rh - 2xR2 
Now the rate o f  change o f  Atot with hole diameter R is 

~ = 2xh - dAtot 
dR 4nR = 2 ~ ( h  - 

and the l imiting condition for hole expansion or contraction is simply h = 2R 

Figure 14.14: 
depicted in cross section. In Case 1, the hole expands; in Case 2, it will fill in. 

Limiting cases of the evolving shape of a plate with a cylindrical hole. 

14.3 Consider a pillbox-shaped grain ernheddecl in an otherwiw single-crystal sheet 
(not shown) of thickness h. as in Fig. 14.15. Such a grain will shrink and 
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r 

Figure 14.15: Pillbox-shaped grain in a single-crystal sheet of thickness h. 

eventually disappear. However, if grain boundary grooves develop on the two 
sheet surfaces and pin the boundary so that it is essentially stationary, the 
boundary can equilibrate locally and develop a minimum-energy form similar 
to that of a soap film held between two rigid circular wires. 

Show that such an equilibrated boundary would have the form 

T ( Z )  = R, cosh 
Rul 

( 14.54) 

Here, the cylindrical coordinate system in Fig. 14.15 has been employed 
and R, is the radius a t  the "waist" of the boundary. 

Calculate the force per unit length exerted on each groove by the pinned 
boundary when R, = h. Note: p = cosh(P/2) has two solutions, p = 
1.1787 and p = 4.2536. 

What happens to the grain when R, decreases to 3/4h? Note: ap = 

cosh(P/2) has no solutions when a < 0.75. 

Solution. 

(a) One way t o  solve this exercise is t o  show that the mean curvature of the boundary 
is zero when Eq. 14.54 is satisfied by inserting ~ ( z )  into Eq. 14.29. There is then 
no pressure anywhere on the pinned boundary urging i t  t o  change its shape, and 
it possesses the shape of minimum energy. However, direct consideration of the 
two curvatures is instructive. Figure 14.16 shows a convenient choice for the two 
orthogonal planes which will be used t o  find the mean curvature by the method 
illustrated in Fig. C.2. Consider the curvature at  a general point on the boundary 
such as P in Figs. 14.15 and 14.16. The first plane, Plane 1, selected is the 
constant4 plane in Fig. 14.15, which lies in the plane of the paper in Fig. 14.16. 
The second plane, Plane 2 (which must be orthogonal t o  the first and intersect i t  
along f i )  is indicated by its trace, AB,  in Fig. 14.16. Using Eq. C.5, the curvature 
of the boundary intersection with Plane 1 is 

(14.55) 
- cosh(z/Rw) - -1 

- - - 
R,[1 + ~ i n h ~ ( z / R , ) ] ~ / ~  R, coshz(z/Rw) 
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L 

f 

Figure 14.16: Intersection of the pillbox-shaped grain in Fig. 14.15 with a constant4 
plane. 

(b) 

Plane 2 is t i l ted with respect t o  the z = 0 plane by the angle q5 = tan-'(dr/dz). 
Therefore, 

1 

cosq5 = 4- (14.56) 

The curvature o f  the line of intersection of the boundary with a plane parallel t o  
the sheet surface is ns = l / r ( z ) .  The curvature of the line of intersection of the 
boundary with Plane 2 is then 

1 

(14.57) 

This follows from the fact that the curvature is the rate of change of the tangent 
vector as the curve is traversed (see Fig. C . l ) .  Using Eq. 14.57, 

(14.58) 
1 

RW cosh2(z/Rw) 
- - 1 

R, cosh(z/R,)Jl + sinh2(z/RW) 
IC2 = 

The mean curvature of the boundary at  P is therefore IC = ICI + I C ~  = 0. Alter- 
natively, Eq. C.18 can be used t o  demonstrate that the mean curvature is zero on 
the bou nd a ry. 

If f is the force per unit length, the work required t o  expand the boundary radially 
by dR, is dW = dB = f 2.rrRgdR,, where d 0  is the change in the energy of the 
boundary region lying between z = 0 and z = h/2. So 

f=-- 1 dB 
2xR, dR, 

(14.59) 

Integrating over this boundary region yields 

rJ1+ (dr/dz)2 dz = hR, + RL sinh - ) (14.60) 
2 RW 

h / 2  

Using Eq. 14.54, 

Because B = B(Rw) and R, = Rg(Rw), Eq. 14.59 can be written 

f=- 1 dB/dRw 
2.rrR9 dRg/dR, 

(14.61) 

(14.62) 
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Using Eqs. 14.60 and 14.61 and defining p = h/R,, 

~~h 
4Rg cosh(2lp) - (2//3) sinh(2/P) 

1 - coshp + (2/p) sinhp f=- (14.63) 

When R, = h ,  Eq. 14.61 becomes 

P = cosh(2/p) (14.64) 

and Eq. 14.63 becomes 

(14.65) 

The value of P in Eq. 14.65 must satisfy Eq. 14.64. The smaller solution of 
Eq. 14.64 for P gives the smaller boundary energy 9 ,  and therefore putting p = 
1.1787 into Eq. 14.65 gives the force per unit length acting on the groove as 

f = 0 . 5 2 9 6 ~ ~  (14.66) 

The total force, Ftot, acting on the groove is 

(14.67) 

(c) When the groove shrinks below a critical size, no minimal solutions can be obtained 
for the grain boundary. Note that this happens well before the "waist" pinches 
down t o  zero. The boundary then becomes unstable. Assuming that the boundary 
mobility is large compared t o  the groove mobility, beyond the stability point, the 
boundary will pinch down and form two caps, which will subsequently "pop" 
through the top and bottom surfaces of the sheet. A circular "ghost" groove of 
the critical radius will be left on the surface. 

B Ftot = 2?rRgF = 2.irRg(0.5296yB) = 3.3273Rgy 

14.4 Consider two faces of a faceted crystal advancing at different velocities during 
crystal growth as in Fig. 14.17. The growth rates of facets 1 and 2 are GI and 

(a) Find the condition on the velocities under which facet 2 will grow at the 

(b) Find the corresponding condition under which facet 1 will grow at the 

expense of facet 1. 

expense of facet 2 .  

Figure 14.17: Two facets on a crystal growing at different velocities. 
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14.5 

Solution. In general, during unit time the faceted interface advances as shown in 
Fig. 14.17. In the situation shown, facets 1 and 2 will both grow with time. However, a 
few simple constructions show that if w2 < w1 cos8, facet 1 will shrink and facet 2 will 
grow. On the other hand, if w1 < w~cos8 ,  facet 2 will shrink and facet 1 will grow. 

Consider the growth from the vapor of a crystal possessing vicinal faces. The 
shape that the crystal assumes depends upon the number and rate at  which 
ledges move across its surfaces. When one of the surfaces consists of a series of 
straight parallel ledges of height, h, running parallel to the z axis, the ledges 
move parallel to z, causing crystal growth along y. Let k = k(z,t) be the 
local ledge density at  the point z. Also, let q = q(x! t )  be the ledge flux equal 
to the number of ledges passing the point z per unit time. The local slope 
of the surface is then (ay/ax), = -hk and the rate of crystal growth along 
y is (dy ld t ) ,  = qh. Assume that q = q ( k ) ,  which is often the case because 
the flux depends upon both the ledge density and the ledge velocity, which 
is, itself, dependent upon the ledge density. The rate of growth will then be a 
function of the inclination of the surface [i.e., 'u = w ( f i ) ] ,  as in Section 14.2.2. 

(a) Show that the moving ledges obey the equation of continuity, 

(E), = - (:It 
(b) Using q = q ( k )  and the equation of continuity, show that 

(14.68) 

(14.69) 

(c) Now consider a point on the evolving surface where the slope is constant. 
Use the results above to show that this point moves along a trajectory 
which projects on the zy-plane as a straight line. This trajectory, called 
a characteristic, is shown in Fig. 14.18. 

Figure 14.18: (a) Various polar plots of w(A) for interfaces whose growth velocities, 
v(A), are functions of their inclinations, n. (b) Shapes at increasing times of a body that 
was initially spherical and whose w(A)-plot is indicated by A in (a). Growth characteristics 
(outward rays) are shown which delineate the paths taken by points on the interface where the 
inclination remains constant. The tangent constructions along the characteristic indicated 
by B illustrate this constancy of inclination. From Cahn et al. (171. 
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Solution. 

(a) In the usual way, the continuity relationship is 

(b) Because k = k(x, t ) ,  

Because q = q(k), dq = (dq/dk)dk, and using Eq. 14.70, 

dq dk (2) t  = dlc (z), = - ( $ I x  
Therefore, combining Eqs. 14.71 and 14.72 yields 

(14.70) 

(14.71) 

(14.72) 

(14.73) 

(c) The evolution of the surface shape as a function of x and t is shown in Fig. 14.19. 
A t  a point where the slope is constant, k is constant and, since q = q(lc), q is 
also constant. Because dq/dk = f(k), dq/dk must also be constant. Therefore, 
according t o  Eq. 14.73, dx/dt = dq/dk = constant. The point of constant slope 
must therefore project as a straight line in the zt-plane. Now, 

and 

d y =  ($)tdx+ ($) dt 

2 = ( $ ) t  + ( g ) x  2 = -hk + qh- dt 
dx 

X 

(14.74) 

(14.75) 

Because a l l  the terms on the right side of Eq. 14.75 are constant, i t s  projection in 
the xy-plane must therefore be a straight line. 

Y 

t l  

Figure 14.19: Stepped-surface evolution during crystal growth. 

14.6 Prove that all of the results obtained in Exercise 14.5 for crystal growth 
(including the basic differential equation, its solution, and the expression for 
the sink efficiency) also hold for crystal evaporation. 
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Solution. The basic differential equation is in a form that holds for both growth 
and evaporation. The diffusion boundary conditions are the same for the two cases, 
and therefore the solution is equally applicable. Finally, the same expression for the 
efficiency of the surface is obtained. (Note that the two changes o f  sign encountered in 
its derivation cancel.) 



CHAPTER 15 

COARSENING OF MICROSTRUCTURES DUE 
T O  CAPILLARY FORCES 

In Chapter 14 we focused on capillarity-driven processes that primarily alter the 
shape of a body. Two types of changes were considered: those driven by reduction of 
surface area, and those driven by altering the inclination of surfaces. In this chapter, 
changes in the length scales that characterize the microstructure are treated. 

Coarsening is an increase in characteristic length scale during microstructural 
evolution. Total interfacial energy reduction provides the driving force for coarsen- 
ing of a particle distribution. Coarsening plays an important role in microstructural 
evolution in two principal ways. When a particulate phase is embedded in a matrix 
of a second phase, flux from smaller to  larger particles causes the average particle 
size to increase as the total heterophase interfacial energy decreases. The parti- 
cles compete for solute and the larger particles have the advantage. This process 
degrades many material properties, depending on the presence of fine precipitates. 
In single-phase polycrystalline materials, larger grains tend to grow at the expense 
of the smaller grains as the the total grain-boundary free energy decreases. This 
process is also competitive and often produces unwanted coarse-grained structures. 

15.1 COARSENING OF A DISTRIBUTION OF PARTICLES 

15.1.1 

In 1961, the classical theory of particle coarsening was developed at about the same 
time, but independently, by Lifshitz and Slyozov [l] and Wagner [2]. Most of the 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 363 

Classical Mean-Field Theory of Coarsening 
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theory’s essential elements were worked out earlier by Greenwood [3]. This theory 
is often referred to as the L S W  theory of particle coarsening and sometimes as the 
GLS W theory. 

Consider a binary system at an elevated temperature composed of A and B 
atoms containing a distribution of spherical @-phase particles of pure B embedded 
in an A-rich matrix phase, a. The concentration of B atoms in the vicinity of each 
@-phase particle has an equilibrium value that increases with decreasing particle 
radius, as demonstrated in Fig. 15.1. Because of concentration differences, a flux of 
B atoms from smaller to larger particles develops in the matrix. This flux causes 
the smaller particles to shrink and the larger particles to grow. 

t 
G 

(4 

t 
T 

T 

Distance, r - 
Figure 15.1: Effect of P-phase particle size on the concentration, Xeq, of component B 
in the cy phase in equilibrium with a P-phase particle in a binary system at the temperature 
T*.  assuming that P is pure B. (a) Schematic free-energy curves for cy phase and three 
P-phase particles of different radii, R1 > R2 > R3. The free energies (per mole) of the 
particles increase with decreasing radius due to the contributions of the interfacial energy. 
which increase as the ratio of interfacial area to volume increases. (b) Corresponding phase 
diagram. The concentration of B in the a phase in equilibrium with the &phase particles. as 
determined by the common-tangent construction in ( a ) ;  increases as R decreases, as shown 
in an exaggerated fashion for clarity. ( c )  Schematic concentration profiles in the cy matrix 
between the three P-phase particles. 
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In the following, this model is used to analyze the kinetics for the two cases 
where the particle growth is either diffusion- or source-limited. Each of the two 
cases yields a different growth law for the particles in the distribution. 

At any time t ,  a distribution of particle sizes will exist which can be quantified 
by defining a particle-size distribution function, f ( R ,  t )  [units, (length)-4], such 
that the number of particles per unit volume with radii between R and R + dR, 
n (R ,  R + dR; t ) ,  is given by 

n(R,  R + dR; t )  = f ( R ,  t )  dR (15.1) 

It is assumed that the total number of B atoms in solution remains constant 
during coarsening, and that a particle increases its volume by R as it absorbs a B 
atom from solution. Therefore, the total volume of the particles is constant,' and 

part 

Thus, 
C R x = O  2 dR 
part 

(15.2) 

(15.3) 

where the sums are over all particles in the distribution. 

Diffusion- Limited Coarsening. During diffusion-limited coarsening, the heterophase 
interfaces surrounding the particles act as highly effective point-defect sources and 
sinks and maintain the concentrations of B in the Q phase in their direct vicinities 
at  the equilibrium values. The rate of coarsening is then controlled by the rate at  
which diffusion can take place between the particles. An approximate expression 
for this equilibrium concentration as a function of particle radius can be obtained 
by assuming that: a and ,B are fluid phases; p is pure component B and is an 
incompressible spherical particle of radius, R; and Q is a dilute solution (see Sec- 
tion C.4.2). Using Eqs. A.4 and (3.37, the concentration of B atoms in Q at  the 
a l p  interface is 

(15.4) 

where ceq(m) is the solubility of B in Q for a system with a planar a/,B interface. 
Because particles of different sizes are distributed throughout the bulk randomly, 

developing an exact model that couples diffusion to particle size evolution is daunt- 
ing. However, a mean-field approximation is reasonable because diffusion near a 
spherical sink (see Section 13.4.2) has a short transient and a steady state char- 
acterized by steep concentration gradients near the surface. The particles act as 
independent sinks in contact with a mean-field as in Fig. 15.2. 

In the mean-field approximation, each particle develops a spherically symmet- 
ric diffusion field with the same far-field boundary condition fixed by the mean 
concentration, ( c ) .  This mean concentration is lower than the smallest particles' 

'This may not always be the case. 
coarsening may begin before complete precipitation has occurred [4]. 

For example, if the particles are formed by precipitation, 
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Figure 15.2: The mean-field approximation for diffusion-limited coarsening. Each 
particle is surrounded by a spherically symmetric diffusion field (fluxes are indicated by 
arrows). The concentration in the matrix at the interface of each particle is fixed by Eq. 15.4 
and the concentration far-removed from particles is fixed at ( c ) .  The flux is zero near particles 
of average size, ( R )  . 

equilibrium concentration and higher than the largest particles' equilibrium con- 
centration. Therefore, the large particles tend to grow and the small particles to 
shrink, as shown in Fig. 15.2. Using Eq. 13.22, the growth rate of a particle with 
radius R is 

dR - c"'(R) - ( c ) ,  
- = -D 
dt R (15.5) 

Combining Eqs. 15.3 and 15.5 gives 

C R(ceq(R) - ( c ) )  = 0 
part 

(15.6) 

Substituting the expression for ceq(R) into Eq. 15.6, 

c R [ ( c )  - ceq(m)  
part 

Rearranging this equation gives 

part part 

On further rearrangement, Eq. 15.8 becomes 

where ( R )  is the average particle size (radius), given by 

(15.7) 

(15.8) 

(15.9) 

(15.10) 
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where Ntot = Cpart 1 is the total number of particles. By comparison with 
Eq. 15.4, Eq. 15.9 shows that (c) is the matrix concentration in equilibrium with 
particles of size (R) :  

(4 = ceq((R)) (15.11) 

Subtracting Eq. 15.4 from Eq. 15.9 yields 

kT 
(c) - ceq(R) = 

Equation 15.5 can be combined with Eq. 15.12 to obtain 

( 15.12) 

(15.13) 

Therefore, when R < ( R ) ,  dR/dt is negative, and when R > ( R ) ,  dR/dt is positive. 
Equation 15.13 is an example of the results of a mean-field theory-the behavior 
of any particular particle depends only on its size compared to the mean particle 
size (R) .  Figure 15.3 presents a schematic plot of this equation for two different 
particle-size distributions, f l  and f 2 ,  such that (R)z = 1.5(R)l. 

The particle size for which the rate of particie-size growth will be a maximum 
must satisfy the condition 

(15.14) 

Thus, the maximum rate of particle size increase occurs at  R,,, = 2(R). 
Several qualitative observations may be made about the time dependence of the 

particle-size distribution. As predicted by Eq. 15.14, the growth of the largest 
particles will be slow and particles with smaller radii (but greater than ( R ) )  will 
grow more quickly, shifting the distribution of particles toward 2(R) .  However, 
the average radius, ( R ) ,  is an increasing function of time. Ultimately, the tail of 
the distribution at  large R is expected to diminish with time and particles with 
R >> ( R )  will be rarely observed. Figure 15.4 depicts this expected shift of the 
distribution. 

t 

Figure 15.3: 
growth rate for two different particle-size distributions, such that (R)2 = 1.5(R)l. 

Particle growth rate vs. particle size in Eq. 15.13. f l  and f 2  represent the 
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Figure 15.4: Initial distribution, f l ( R ) ,  changing with time according to the growth 
law, Eq. 15.13. The smallest particles disappear with relatively large shrinkage rates, so the 
lower end of the distribution collapses to zero. 

The time dependence of the particle-size distribution can be studied analytically 
by developing a differential equation based on the flux of particles that occurs in 
particle-size space as the distribution evolves. The flux of particle density passing 

(15.15) 

The accumulation equation is then 

(15.16) 

Equation 15.16 is the rate of change o f f  in the interval (R,  R+ dR), and is related 
to the difference between the rates of particles entering from below and exiting the 
interval a t  R + dR. Combining Eqs. 15.13 and 15.16 gives 

] (15.17) 
d f ( R ,  t )  25yR2ceq(m) d ( R  - ( R ) )  f ( R ,  t )  - [  R2 dt kT(R) dR 

- 

If an initial form of f ( R , t  = 0) is assumed (e.g., a Gaussian distribution), it is 
possible to compute the form of f ( r ,  t )  at later times using Eq. 15.17. Solutions of 
this type yield the following results [l, 21: 

A steady-state (normalized) distribution function is approached asymptoti- 
cally as t + m. This steady-state distribution, illustrated in Fig. 15.5, is 
approached by all initial distributions. The most frequent particle size in the 
steady-state distribution is 1.13(R) and there will be no particles larger than 
1.5(R), the cut-ofl size. 

During annealing, the mean particle size increases with time, and the number 
of particles, Ntot, decreases because the smallest particles disappear as the 
larger ones grow. 

The growth law (Eq. 15.13) and the continuity equation €or the particle-size 
distribution (Eq. 15.17) lead to the equation for the evolution of the mean 
particle size: 

(1 5.18) 

where KD is the rate constant for diffusion-limited coarsening. See Exer- 
cise 15.2. 
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Figure 15.5: 
coarsening. 

Final steady-state normalized particle-size distribution for diffusion-limited 

Experimental Observations. Generally, two quantities are measured in experimen- 
tal studies of particle coarsening [5]. First, the mean particle size is studied as a 
function of time. For volume-diffusion-limited coarsening, the t1I3-law correspond- 
ing to Eq. 15.18 is generally observed, in agreement with theoretical predictions. 
The second measured characteristic is the particle-size distribution, including its 
time dependence. The experimental time-dependent evolution of particle-size dis- 
tributions does not always match predictions from classical coarsening theory [5, 61; 
the distributions observed are generally broader than the classical theory predicts 
and particles are often larger than the predicted cut-off size, 1.5(R). 

A study of coarsening in semisolid Pb-Sn alloys verified the t1I3-law kinetics 
predicted by the mean-field theory (see Fig. 15.6). However, some aspects of the 
classical theory are not observed in Fig. 15.6. Limitations of the classical mean-field 
theory are discussed in Section 15.1.2. 

To same 
scale 

Different 
scales 

Figure 15.6: Particle distributions observed in coarsening experiments on semisolid Pb- 
Sn alloys. The volume fraction of particles is 0.64. The upper row shows a steady increase 
in mean particle size with aging time. The lower row is scaled so that the apparent mean 
particle size is invariant-demonstrating that the particle distribution remains essentially 
constant during coarsening. From Hardy and Voorhees [7]. 
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Source- Limited Coarsening. During source-limited coarsening, the interfaces sur- 
rounding the particles behave as poor sources and sinks, and the coarsening rate 
then depends upon the rate at  which the diffusion fluxes between the particles can 
be created or destroyed (accommodated) at  the particle interfaces. In a simple 
model, the same assumptions can be made about the source action at the particles 
as those that led to Eq. 13.24. The rate of particle growth can then be written 

dR 
d t  
- = K [c(R) - c""(R)] R (15.19) 

where K is the same type of rate constant as in Eq. 13.24. If diffusion in the matrix 
between the particles is so rapid, or K is so small, that all gradients in composition 
are essentially eliminated on a short time scale compared to the growth time of the 
particle, c(R) = ( c )  and the rate-limiting process is the source action. 

An expression for the average composition ( c )  can be obtained by first combining 
the growth law, Eq. 15.19, with Eq. 15.3 and assuming that the concentration field 
is uniform ( ( c )  = c(R); see Fig. 15.7): 

C R ~ ( c " ~ ( R )  - ( c ) )  = o 
part 

(15.20) 

(15.21) 

Equations 15.19 and 15.21 lead to an expression for the growth rate of any particle 
in a particular size distribution: 

- dR - - 2Kce9(w)yR2 ( ( R )  
1 )  d t  kT (R2)  €2 

(15.22) 

This leads to the integral equation, 

R2(t)  - R2(0) = 4 K c y  IcT m)yR2 (I' g d t  - t )  (15.23) 

Figure 15.7: Solute concentration field for source-limited kinetics. The matrix 
concentration field is essentially uniform and c = (c) everywhere, including the regions 
adjacent to  the particles where c(R) = (c). 
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Equation 15.23 can be averaged and Wagner derives the solution, 

o Sn-rich particles a 
a Pb-rich particles 
- Theory 

a o  

(15.24) 

where KS is the rate constant for source-limited coarsening [2]. 

15.1.2 

The mean-field theory has a number of shortcomings, including the approximations 
of a mean concentration around all particles and the establishment of spherically 
symmetric diffusion fields around every particle, similar to those that would exist 
around a single particle in a large medium. The larger the particles’ total volume 
fraction and the more closely they are crowded, the less realistic these approxima- 
tions are. No account is taken in the classical model of such volume-fraction effects. 
Ratke and Voorhees provide a review of this topic and discuss extensions to the 
classical coarsening theory [8]. 

Work by Voorhees and Glicksman concludes that the classical theory is correct 
in the limit of zero volume fraction of the coarsening phase and that both the 
kinetics and the size distributions are significantly dependent on the precipitate 
volume fraction, 4 [9-121. The temporal law for diffusion-limited coarsening, given 
by Eq. 15.18, remains valid for all volume fractions, but the rate constant K D  is a 
monotonically increasing function of q3, as in Fig. 15.8. 

Volume-fraction effects on particle coarsening rates have been observed experi- 
mentally. For comparisons between theory and experiment , data from liquid+solid 
systems are far superior to those from solid+solid systems, as the latter are poten- 
tially strongly influenced by coherency stresses. Hardy and Voorhees studied Sn-rich 
and Pb-rich solid phases in Pb-Sn eutectic liquid over the range 4 = 0.6-0.9 and 
presented data in support of the volume-fraction effect, as shown in Fig. 15.9 [7]. 

Voorhees’s experimental study of low-volume-fraction-solid liquid+solid Pb-Sn 
mixtures carried out under microgravity conditions during a space shuttle flight 
enabled a wider range of solid-phase volume fractions to be studied without sig- 
nificant influence of buoyancy (flotation and sedimentation) effects [13]. The rate 
of approach to the steady-state particle-size distribution in 0.1-0.2 volume-fraction 

Beyond the Classical Mean-Field Theory of Coarsening 

Figure 15.8: Rate constant KD(C$) for particle coarsening vs. volume fraction of particles, 
expressed as a ratio of the rate constant K ~ ( q 5 )  at volume fraction C$ to that at q5 = 0.6. 
From Hardy and Voorhees [7]. 
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Figure 15.9: Coarsening data from experiments on semisolid Pb-Sn alloys, showing the 
effect of volume fraction 4 on the rate constant for coarsening, which is proportional to the 
slope of the curves. ( L )  is the mean linear intercept of the coarsening particles, measured 
on a random two-dimensional section of the microstructure. From Hardy and Voorhees [7]. 

solid specimens was very slow. The initial stages of coarsening involved signifi- 
cant solid-particle clustering that accelerated the coarsening kinetics compared to 
a system with a random spatial arrangement of particles. 

Another complication is that the particles interact elastically, causing shape 
changes and other effects. Ardell and Nicholson were first to realize that elastic 
energy could influence particle distributions during coarsening [14]. Their study 
reported the formation of modulated (aligned) precipitate structures in Ni-A1 alloys 
after prolonged aging, thereby demonstrating that alignment of coherent misfitting 
precipitates along the cube axes of a material could lower its elastic energy. 

Another effect of elastic energy, described as stress coarsening, is seen in systems 
with coherent misfitting precipitates aged under an applied load, as studied origi- 
nally by Tien and Copley [15]. In a nickel-based superalloy, single crystals coarsen 
when subjected to  an applied uniaxial load, and precipitates form either platelets 
or rods, depending on whether the load is tensile or compressive. In the absence 
of load, the particles are cuboidal. This phenomenon, known as rafting, may al- 
low the production of structural alloys with improved creep resistance. Even for a 
single coherent particle in a matrix, elastic anisotropy, elastic inhomogeneity, the 
applied stress state, and the stress-free transformation strain of the precipitates all 
influence the equilibrium precipitate shapes [16]. 

Numerical simulations of the coarsening of several particles are now possible, 
allowing the particles to change shape due to diffusional interparticle transport 
in a manner consistent with the local interphase boundary curvatures [17]. These 
studies display interparticle translational motions that are a significant phenomenon 
at high volume fractions of the coarsening phase. 

Examples which show that elastic interactions between particles can stabilize dis- 
tributions of fine particles against coarsening include the observation by Miyazaki 
et al. that large particles in aged Ni-Si and Ni-A1 alloys split into pairs and even 
octets of smaller particles as aging proceeds [18]. In such cases, the reduction in 
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elastic energy achieved by the splitting outweighs the attendant increase in inter- 
phase boundary area. Johnson has given a theoretical treatment of the coarsening 
in a two-precipitate system under applied load [19]. 

15.2 GRAIN GROWTH 

Grain growth is a kinetic process by which the average grain size of a polycrystalline 
material increases during annealing at  an elevated temperature. In this process (il- 
lustrated in Fig. 15.10), the larger grains tend to increase in size while the smaller 
grains shrink and eventually disappear, causing the total number of grains to de- 
crease and the average grain size to increase. The driving force is the decrease in 
the total interfacial energy of the system that accompanies the growth. 

The construction of realistic models for this process, which include detailed infor- 
mation about the distribution of the evolving grains’ sizes and shapes, has proven 
to be elusive and has been reviewed [20, 211. Grain growth in two-dimensional 
polycrystals (e.g., polycrystalline sheets with columnar grain structures) is taken 
up first because it is considerably simpler than growth in three dimensions. For two- 
dimensional growth, there are powerful topological rules, and considerable progress 
has been made in developing detailed models for the process. Following this, grain 
growth in three dimensions is considered. Here, relatively little success has been 
met in developing physical models. and progress has been achieved mainly by using 
computer simulation. 

Grain growth in polycrystalline materials is similar in many respects to the 
growth of bubbles in froths or foams, to magnetic domain coarsening, and to the 
growth of cells in many types of cellular materials. Concepts and results developed 
for grain growth therefore also apply to these phenomena. 

Figure 15.10: Simulation of isotropic arid uniform grain growth in two dimensions. 
The ( N  - 6) rule is obeyed for all grains except those intersecting the edge of the domain. 
Calculation using Surface Evolver [22]. Courtesy of Ellen J Siem. 

15.2.1 Grain Growth in Two Dimensions 

Topology of Two-Dimensional Polycrystals. In two dimensions, three (and only 
three) grains meet at  every grain boundary vertex, as in Fig. 15.10. Vertices where 
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larger numbers of boundaries come together are unstable: for example, a conceiv- 
able four-grain vertex would immediately decompose into two three-grain vertices 
connected by a new boundary segment. It is expected that the three boundaries 
at  each vertex will be locally equilibrated with respect to one another; when all 
boundary energies are isotropic and equal, this equilibration requires that the net 
capillary force exerted by the three boundaries on the vertex be zero. This is 
accomplished when the boundaries meet at  equal 120" angles. 

An important geometrical growth parameter is the average number of sides per 
grain, ( N ) ,  in the ensemble, which can be determined with Euler's theorem, which 
states that 

N~ - N~ + N~ = 1 (15.25) 

where N G  is the number of grains, N B  is the number of boundary segments, and 
NV is the number of vertices in the system. If there are NV vertices, the number 
of boundary segments must be 

(15.26) 
3 
2 

N B  = -NV 

Each boundary segment provides a side for two grains, therefore ( N )  = 2NB/NG.  
Since N G ,  N B ,  and NV in Eq. 15.25 are all much greater than unity, N G  + NV = 
N B  to a good approximation, and, using Eq. 15.26, N B  = 3NG. Therefore, 

(15.27) 

Model for Two-Dimensional Grain Growth. During growth, the distribution of the 
sizes and shapes of grains evolves with time. The changes in the overall struc- 
ture can then be described adequately by a distribution function F ( A ,  N ,  t ) ,  which 
represents the number of grains in the system that have area A and N sides at  
time t .  This distribution evolves when grains grow or shrink without changing the 
number of their sides or discontinuously change the number of their sides by means 
of switching events, as illustrated in Fig. 15.11. In Fig. 15.11a, two vertices meet, 
two grains each lose a side, and two grains each gain a side. In Fig. 15.11b, a 
three-sided grain shrinks to disappearance and all three grains lose one side apiece. 
In Fig. 1 5 . 1 1 ~ ~  a four-sided grain disappears, two grains each lose one side, and the 
other two grains retain their sides. In Fig. 15.11d1 a five-sided grain disappears, 
one grain gains one side, two grains lose one side apiece, and two grains retain 
their sides. As shown below, it is unlikely that grains with N 2 6 will shrink to 
disappearance, so all significant switching events are included in Fig. 15.11. The 
rate of change of the distribution, F ( A ,  N ,  t ) ,  is then the sum of two terms: the 
first is the rate at  which grains possessing area A and N sides accumulate due to 
the growth or shrinkage of grains in the absence of switching, and the second is the 

. .  

Figure 15.11: Switching events during two-dimensional grain growth. From Thompson [21]. 
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rate at  which they accumulate due to the switching of grain sides. To determine 
the first term, an expression is needed for the rate of growth or shrinkage of a single 
grain in the absence of switching. 

Growth or Shrinkage of  a Single Grain in the Absence of  Switching. A simple expres- 
sion can be obtained if it is assumed that all boundaries are isotropic and of the 
same energy, y. Consider first the single isolated interior grain shown in Fig. 15 .12~.  
According to  Eq. C.17, any portion of its boundary will be subjected to a normal 
pressure directed toward its concave side and given by P = Y K  (see the arrows in 
Fig. 15.12a). Following Eq. 13.7, we assume that the resulting boundary velocity 
will vary linearly with the pressure according to  

= MBP = MBYK (15.28) 

where MB is a mobility linking velocity with pressure. If the local velocities of the 
boundaries are integrated along the perimeter of a grain, an expression for the rate 
of change of area of the interior grain is obtained: 

d A  
d t  - = - lB u d s  = - 

Assuming that MB and y and do not depend on orientation and curvature, 

(1 5.29) 

(1 5.30) 

= -2.irM~y 

In the relationships above, 0 is the angle that the boundary normal makes with 
a fixed direction in the plane of the specimen. Because the curvature is the rate 
of change of the boundary normal as the line integral is carried out, K = d 0 / d s .  
Also, 0 varies between 0 and 27r in the integration, because the normal rotates by 
27r as the boundary is traversed. Therefore, independent of the shape of the grain, 
Eq. 15.30 becomes 

= -constant (15.31) 
d A  
d t  
- 

Figure 15.12: (a) Two-dimensional isolated grain. Arrows indicate loc,al pressures 
acting on the boundary. (b) Five-sided grain in polycrystalline material with isotropic 
grain-boundary energies. 
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This result holds even if mass is leaving the grain along some segments of the 
boundary and entering the grain along other segments, as in Fig. 15.12a. 

Now consider that the grain is one of many in a two-dimensional polycrystal, as 
in Fig. 15.12b. The rate of area change is again given by Eq. 15.29, but now the 
change in boundary orientation has discontinuities in d 0 / d s  at the vertices. If the 
grain has N sides, and there are therefore N vertices, the integral can be written 
as a sum of contributions from each boundary segment: 

-- 
d 0  + d B + ' . ' + /  seg N d 0 )  (15.32) 

dA") - -MBy 
d t  

where A0 is the change in the exterior angle at each vertex: 

A0 = Obegin(segment i + 1) - Oend(segment i) 

Assuming that the boundaries are locally equilibrated at each vertex, the angles 
between boundaries at each vertex are 2~13 ,  so A0 = 4x13 - T .  Therefore, 

x d A ( N )  = M g y 3 ( N  - 6) 
d t  ( 15.33) 

and grains with more than six sides will grow and those with fewer than six will 
shrink. This remarkable result of Mullins [23] generalizes an earlier result for the 
( N  - 6)-rule by Smith and von Neumann [24]. The growth rate depends only on 
grain topology and not on grain size. Grains with more than six sides grow as 
shown in Fig. 15.13, because the fixed angles at each vertex force the boundary 
segments to be concave away from the grain center. The pressure due to this 
curvature therefore induces growth. Grains with fewer than six sides show the 
opposite behavior, whereas grains with six sides possess flat sides and are static. 

Figure 15.13: Shapes of N-sided grains in two-dimensional polycrystals. 

Completion of Model and Description of Its Behavior. Having the result given by 
Eq. 15.33, the rate of change of the distribution, F ( A ,  N ,  t ) ,  can now be expressed 
in the form [25, 261: 

(15.34) 
The first term in brackets is the rate at which grains of area A and sides N 

accumulate in area space due to  the growth or shrinkage of grains as described by 
Eq. 15.33. The second is the corresponding rate of accumulation of such grains due 
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to  switching. In this nomenclature, I s p l ,  for example, is the rate at which grains 
of area A with N - 1 sides gain a side by switching to become grains of area A with 
N sides. 

The development of exact expressions for the switching terms in Eq. 15.34 is 
difficult and has not been achieved. Marder obtained approximate expressions by 
applying some simple rules that ignored spatial correlations [25]. For example, 
when a four-sided grain disappears, four grains are picked at random from the 
distribution and a side is removed from the two having the smallest areas. When 
a five-sided grain disappears, the grain that gains a side is the one that has the 
largest area. Using several additional approximations to obtain expressions for the 
switching terms and the rule that (N)  = 6, Marder solved Eq. 15.34 numerically 
to  obtain the results shown in Fig. 15.14. The figure also contains experimental 
measurements of bubble growth in two-dimensional soap froths for purposes of 
comparison. 

Experiment 
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Figure 15.14: (a) Average area of grains vs. time. (b) Fraction of grains possessing 
N sides. Figures compare Marder's theoretical results with experimental measurements of 
bubble growth in soap froths made by Glazier e t  al. From Marder [25] and Glazier et al .  (271. 

The agreement between theory and experiment is reasonably good, indicating 
that the model captures the essential physics of the phenomena. An important 
result, apparent in Fig. 15.14a, is that, after an initial transient, the model predicts 
a linear increase in the average grain area with time: 

( A )  t ( 15.35) 

As discussed below, this is expected if Eq. 15.33 applies and if statistical self- 
similarity holds during the growth process2 This work is reviewed by Thomp- 
son [21]. 

Computer Simulation of Two-Dimensional Grain Growth. Because of the great dif- 
ficulties in developing rigorous models for grain growth, computer simulation has 
been used to obtain more information about the details of two-dimensional grain 
growth [21]. A wide variety of techniques is employed, including, among others, 

*Statistical self-similarity holds when the normalized grain-size distribution and the number-of- 
sides distribution remain constant during growth. A grain structure at  a later time then looks 
statistically similar to  itself at an earlier time, except for a uniform magnification, and the struc- 
tures are therefore scaled with respect to  each other. 
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Monte Carlo methods, direct tracking methods, and vertex models, where the evo- 
lution of the two-dimensional grain structure is described in terms of the motion 
of the vertices. After initial transients, all of these simulations exhibit statistical 
self-similarity during growth and an average grain area that increases linearly with 
time according to  Eq. 15.35. 

Further Aspects. The constant growth rate of the average grain area found above 
(Eq. 15.35) is to be expected when statistical self-similarity holds and individual 
grains grow or shrink according to Eq. 15.33 [28]. Consider a large area, A, con- 
taining G grains. Then (A) = A/G and (A') = (1/G) xzl a:, where ai is the area 
of the ith grain, and the sum is over all grains. The latter expression can also be 
written 

(15.36) 

Differentiating Eq. 15.36, with (A2)/(A)' = constant because of self-similarity, 
and using Eq. 15.33, 

where Ni is the number of sides of the ith grain. However, 

G 33 

ai(Ni - 6) = ( A N N  -  AN) (15.38) 
n= l  N = 2  

where AN is the total area occupied by N-sided grains. Note that the second 
sum begins with N = 2, because one-sided grains do not exist. Therefore, using 
Eq. 15.38 in Eq. 15.37 yields 

(15.39) 

Here, A N / A ,  the fraction of the total area occupied by N-sided grains, is constant 
because of self-similarity. 

It is often convenient to express the growth law given by Eq. 15.39 in terms of a 
linear grain-size dimension. If R,,, is the effective root-mean-square radius of the 
roughly equiaxed grains, 

(15.40) 

and, therefore, upon integrating, 

(15.41) 

The growth laws expressed by Eqs. 15.35 and 15.41 are consistent with the be- 
havior of a wide variety of experimental systems and models as well as computer 
simulation [21]. 

C 
R;ms ( t )  - R;ms (0) = - t 

./r 
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Finally, it should be noted that during grain growth in thin polycrystalline films, 
two-dimensional grain growth may be seriously impeded if surface grooves form at 
the intersections of the boundaries and the specimen surface(s) as described in 
Section 14.1.2 [21, 291. The boundaries can then become trapped at  these grooves 
leading to growth stagnation (see Exercise 14.3). 

15.2.2 Grain Growth in Three Dimensions 

Topological Aspects. The geometry of grain growth in three dimensions is more 
difficult to visualize and to analyze than in two dimensions, and only limited success 
has been achieved. Figure 15.15 shows the relatively simple structure of an idealized 
polycrystal in which all the grains are identical. Each grain is a tetrakaidecahedron 
(possessing 14 faces) arranged on a b.c.c. lattice. The three-dimensional grain 
structure can be described in terms of grains, boundaries, edges, and vertices. 
Boundaries are the interfaces where two grains meet, edges are the lines along 
which three grains meet, and vertices are the points where four edges (and also 
four grains) meet. 

Figure 15.15: 
tetrakaidecahedron with 6 square and 8 hexagonal faces. 

Three-dimensional polycrystal with all grains identical. Each grain is a 

When the boundaries are equilibrated with respect to one another locally at 
all edges and vertices, the net capillary force exerted on each junction will be 
zero. When Y~ is isotropic and the same for all boundaries, this condition is sat- 
isfied when there is trihedral symmetry along each edge and tetrahedral symmetry 
a t  each vertex [i.e., at  three-boundary junctions, two faces have a dihedral angle 
cos-l(-1/2) = 120", and at  four-edge junctions, each pair of edges makes an an- 
gle cos-'(-1/3) = 109'28'1. It is expected that these local equilibrium symmetry 
conditions, known as Plateau's laws, will be closely satisfied during grain g r ~ w t h . ~  

However, Plateau's laws are not obeyed by the grain boundary structure in the 
special polycrystal in Fig. 15.15. To achieve local equilibrium at all grain junctions. 
so that Plateau's laws are obeyed, the faces of each grain must be curved [31]. 
A boundary structure in which all junctions obey Plateau's laws is presented in 
Fig. 15.16, which shows a polycrystal consisting of six grains that meet at  four 
vertices. Each grain fully occupies one face of the polycrystal. As in Fig. 15.15, 

3These conditions are Young's equation, ~l /s inc#q = y ~ /  sin42 = y3/sin@3, which requires all 
grain-boundary angles to be 2 ~ / 3  for the uniform boundary-energy cme and the requirement that 
quad- and higher-order junctions are unstable in two dimensions [30]. 
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Figure 15.16: An ort,horhombic-shaped polycrystal composed of six grains that meet 
at  four vertices. Each grain occupies one face of the polycrystal. Each vertex is shared by 
four grains. Three grains meet at each edge (triple line). Four edges meet at  each vertex. 
All edges and vertices are in local equilibrium and t.he system obeys Plateau’s laws. All 
boundary energies are isotropic and equal. Figure was computed with Surface Evolver [22]. 

three grains meet at each edge, four grains meet at  each vertex, and four edges 
meet at each vertex. 

The grain structure during growth will generally consist of a distribution of 
grains possessing a range of sizes (volumes) and various numbers of faces and edges. 
Plateau’s laws will be obeyed at all junctions. To characterize the distribution of 
grain shapes and sizes in a large three-dimensional polycrystalline system, we take 
w, e, and f as the volume, number of edges, and number of faces, respectively, 
possessed by any particular grain. If E is the number of grain edges in the system, 
Euler’s theorem states that  

B - E + V = G  (15.42) 

Each boundary in the system provides two faces for grains. Therefore, the average 
number of faces per grain, (f)syst ,  is 

2B 
G (f),,,t = - (15.43) 

where the symbol (0)syst indicates an average over the system. Because three 
grains meet at each edge, each edge in the system provides three edges for grains. 
Therefore, the average number of edges per grain, (e)syst, is 

3 E  
G (e)syst = - (15.44) 

Also, because four edges emanate from each vertex and every edge connects two 
vertices, 

4v E = - = 2 V  2 (15.45) 

By combining Eqs. 15.42-15.45, 

6 (15.46) 

Because each edge on a grain provides two edges for faces on that grain, the average 
number of edges per face on grains is (ef)syst = 2(e)syst/(f)syst. Combining this 
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result with Eq. 15.46 yields 
,n 

(15.47) 

It is readily verified by inspection that Eqs. 15.46 and 15.47 are obeyed for the 
grain structure in Fig. 15.15. 

Rate of Grain G r ~ w t h . ~  The ( N  - 6)-rule for two-dimensional grain growth in 
a system with isotropic and uniform boundary energies (Eq. 15.33) is an exact 
example of a principle which states that equivalent grains grow at identical rates. 
Equivalent grains are grains that belong to  an equivalence class (i.e., grains having 
at least one topological feature in common). In the two-dimensional case, the 
equivalence class consists of grains with the same number of sides, N ,  and grains 
with the same number of sides grow at the same rate. The (N-6)-rule's derivation is 
simple because there are no out-of-plane contributions to the boundary c ~ r v a t u r e . ~  

No known simple equivalence class describes grain growth in three dimensions. 
Although no exact growth law for an equivalence class exists, approximate laws 
can be found that are obeyed on average for grains of the same equivalence class. 
Any particular grain will obey a growth law that depends on the curvature of its 
boundaries, subject to Plateau's laws, as well as a statistical growth law applicable 
for all members of its equivalence class. In two-dimensional growth, the particular 
growth law is identical to the statistical law when the topological feature defining 
the class is chosen to be the number of grain sides, N .  

For three-dimensional growth, a statistical growth law can be justified if v and 
e are chosen as the characteristic topological features that define the equivalence 
class. The choice of e is favored because all edges terminate at vertices and have 
similar topologies. For symmetric grains of volume v and number of faces f, the 
average growth rate, ( d v / d t ) r , , f } ,  varies as 8 as f becomes large [32]. Here, the 
symbol {v, f} indicates an average over all grains in the equivalence class possessing 
volume v and number of faces f. Equation 15.46, where (e)syst  is approximately 
proportional to  (f),,,, for large f and e, indicates possibly similar behavior on 
average if e is chosen rather than f, and this suggests the expansion 

( 2){e,w} = (:)o (aE1l2 + b + c E - ' / ~  + . . . ) (15.48) 

where (dv/dt)( , , , )  is the average volumetric growth rate of grains belonging to the 
equivalence class {e, w} and the quantity ( d v / d t ) o  is the shrinkage rate of a sphere 
of the same volume embedded in a matrix grain. The undetermined coefficients, 
a ,  b, c, . . ., have no explicit dependence on e. To obtain the behavior for e >> 1, the 
third- and higher-order terms are neglected, and in analogy with soap froths in two 
dimensions, b is set equal to 1. This represents an offset from the mean pressure of 
the froth. By enforcing conservation of total volume by summing over all classes, 

(15.49) 

4We are grateful to David T. Wu for content and sharing his recent results in this section. 
5The Gauss-Bonnet theorem, which relates integrals of Gaussian curvature ( l I (RlR2) in three 
dimensions) over a surface to integrals of mean curvature (1/R1 + 1/Rz in three dimensions) 
over boundaries of the surface, is particularly simple in two dimensions. In two dimensions, the 
(N - 6)-rule is equivalent t o  the Gauss-Bonnet theorem. 
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A statistical growth law follows for grains with large edge number, e, given by 

(15.50) 

where the critical edge number, ecrit, is given by 

(15.51) 

Comparisons to direct simulations of grain growth by Wu et al. show that Eq. 15.50 
is correct for small as well as large e [33, 341. Unlike two-dimensional growth, the 
critical topological feature controlling the growth rate (in this case e rather than 
N )  is not constant but depends upon the state of the grain-boundary structure. 

Little progress has been made in analyzing the complicated problem of grain 
switching in three dimensions. In view of this, extensive recourse has been made 
to computer simulation. This work requires extensive computer power, and the re- 
sults have not been as definitive as for two-dimensional grain growth. Evidence for 
statistical self-similarity has been obtained, and reasonable agreement with experi- 
ment has been found in certain cases. In experiments and in simulations, agreement 
with Eq. 15.41 has been found (see Thompson’s review [21]). 
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EXERCISES 

15.1 

15.2 

15.3 

Consider how the particle-size distribution changes with time for source- 
limited kinetics. Suppose that at t = to ,  the particle-size distribution is given 
by f ( R ,  t = to) = AR(R,,, - R), where R,,, is the maximum radius of any 
particle. Calculate the rate at which f ( R , t  = to) is increasing at R = Rmax. 
At what particle size is the value of f ( ~ ,  t = to) constant? 

Solution. First calculate expressions for (R) and (R') for the growth rate: 

and 

Putt ing these results into Eq. 15.22, 

where A4 = constant. Using Eq. 15.16, we can now find how f changes in time: 

af - - a 
f ( R , t ) -  = - 2AM (5R - 4Rma,) 

- dt -- dR [ E] 3Rmax 

Therefore, a t  R = R,,,, af/& = (2/3)AM, and the distribution is constant a t  R = 

4Rmax /5. 

In Section 15.1.1 we pointed out that during diffusion-limited coarsening a 
final steady-state particle distribution corresponding to  Fig. 15.5 is expected 
to  develop after initial transients die away. Derive the particle growth law 
given by Eq. 15.18 using only Eq. 15.13 and the fact that  no particles larger 
than 1.5(R) appear in the steady-state particle distribution, as is evident in 
Fig. 15.5. 

Solution. In the distribution, the size of the largest particles in the distribution, 
Rcut-off, always corresponds t o  1.5(R). The rate of growth of the largest particles is 
therefore given by Eq. 15.13: 

(15.52) dRcut-off - 2&aceq(w) ( 1 
1 ) - 

dt kTRcut-off (R) &-off 

Substituting (R) = (2/3)RcutPoff into Eq. 15.52 and integrating yields 

t (15.53) 
3E,ynceq(m) 

RL-os( t )  - RX,t-,ff(O) = kT 

or, again using (R) = (2/3)R,ut-os, 

t (15.54) 

The ( N  - 6)-rule was derived for two-dimensional grain growth in a thin film. 
However, only the interior grains were treated. What is the rule for the growth 

8 5 , y R P ( W )  
(R(tN3 - (R(0N3 = 9kT 



EXERCISES 385 

of the edge and corner grains? Under the same assumptions that apply for 
the (N - 6)-rule, find how the growth of a side grain and a corner grain in 
a square specimen such as shown in Fig. 15.17 depends on the number of 
neighboring grains, N. It is reasonable to assume that the grain boundaries 
are maintained perpendicular to the edges of the sample at  the locations of 
their intersections, as shown. Local interface-tension equilibration obtains 
and Young’s equation is satisfied. 

Corner 

Side 

grain 

grain 

Figure 15.17: Two-dimensional grain growth on a square domain. 

Solution. As shown in Fig. 15.17, for side grains and corner grains the number of triple 
junctions is one less than the number of neighboring grains, N .  For the side grains, the 
inclination o f  the boundary normal changes by 7r from one end t o  the other: 

- - ( N - 4 )  7r 

1 - 3  
(15.55) 

Side grains with more than four neighboring grains therefore grow. For the corner grains, 
the change is 7r/2: 

(15.56) 

Since there is no integer number of neighbors that can produce constant area for a 
corner grain, it is impossible t o  stabilize grain growth on a rectangular domain. 

15.4 (a) A cylindrical grain of circular cross section embedded in a large single- 
crystalline sheet is shrinking under the influence of its grain-boundary 
energy. Find an expression for the grain radius as a function of time. 
Assume isotropic boundary energy, y, and a constant grain-boundary 
mobility, M B .  

(b) Derive a corresponding expression for a shrinking spherical grain embed- 
ded in a large single crystal in three dimensions. 

Solution. 

(a) The grain area, A ,  is related t o  its radius, R, by A = 7rR2. Therefore, using 

(15.57) 

Eq. 15.30, 
d A  dR 
d t  d t  - = -27ThfB’)’ = 2rR- 

Integration o f  Eq. 15.57 then yields 

R2(t )  - R2(0) = - 2 M ~ y t  (15.58) 
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(b) Here, the velocity o f  the spherical interface normal t o  itself is given by Eq. 15.28 

(15.59) 

and, therefore, 
2 dR 
R v = M B ~ K  = MBY-  = -x 

Integration of Eq. 15.59 then yields 

(15.60) 

and the spherical grain shrinks twice as fast as the cylindrical grain because of i t s  
larger curvature. 



CHAPTER 16 

MORPHOLOGICAL EVOLUTION DUE TO 
CAPILLARY AND APPLIED FORCES: 
DIFFUSIONAL CREEP AND SlNTERlNG 

Capillary forces induce morphological evolution of an interface toward uniform dif- 
fusion potential-which is also a condition for constant mean curvature for isotropic 
free surfaces (Chapter 14). If a microstructure has many internal interfaces, such 
as one with fine precipitates or a fine grain size, capillary forces drive mass between 
or across interfaces and cause coarsening (Chapter 15). Capillary-driven processes 
can occur simultaneously in systems containing both free surfaces and internal in- 
terfaces, such as a porous polycrystal. 

Applied forces can also induce mass flow between interfaces. When tensile forces 
are applied, atoms from an unloaded free surface will tend to diffuse toward internal 
interfaces that are normal to the loading direction; this redistribution of mass causes 
the system to expand in the tensile direction. Applied compressive forces can 
superpose with capillary forces to cause shrinkage. In this chapter, we introduce a 
framework to treat the combined effects of capillary and applied mechanical forces 
on mass redistribution between surfaces and internal interfaces. 

Applications of this framework include diffusional creep in dense polycrystals and 
sintering of porous polycrystals. Diffusional creep and sintering derive from similar 
kinetic driving forces. Diffusional creep is associated with macroscopic shape change 
when mass is transported between interfaces due to capillary and mechanical driving 
forces. Sintering occurs in response to the same driving forces, but is identified 
with porous bodies. Sintering changes the shape and size of pores; if pores shrink, 
sintering also produces macroscopic shrinkage (densification) . 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 387 
Copyright @ 2005 John Wiley & Sons, Inc. 
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Microstructures are generally too complex for exact models. In a polycrystalline 
microstructure, grain-boundary tractions will be distributed with respect to an 
applied load. Microstructures of porous bodies include isolated pores as well as 
pores attached to grain boundaries and triple junctions. Nevertheless, there are 
several simple representative geometries that illustrate general coupled phenomena 
and serve as good models for subsets of more complex structures. 

16.1 MORPHOLOGICAL EVOLUTION FOR SIMPLE GEOMETRIES 

Both capillarity and stresses contribute to the diffusion potential (Sections 2.2.3 
and 3.5.4). When diffusion potential differences exist between interfaces or between 
internal interfaces and surfaces, an atom flux (and its associated volume flux) will 
arise. These driving forces were introduced in Chapter 3 and illustrated in Fig. 3.7 
(for the case of capillarity-induced surface evolution) and in Fig. 3.10 (for the case 
of shape changes due to capillary and applied forces). 

For pores within an unstressed body, the diffusion potential at  a pore surface 
will be lower than a t  nearby grain boundaries if the surface curvature is negative.' 
In this case, the material densifies as atoms flow from grain boundaries to the pore 
surfaces. Conversely, macroscopic expansion occurs if the pore surface has average 
positive curvature. 

An applied stress, as in Fig. 16.1, can reverse the situation by modifying the diffu- 
sion potential on interfaces if their inclinations are not perpendicular to the loading 
direction. With applied stress and capillary forces, the flux equations for crystal 
diffusion and surface diffusion are given by Eqs. 13.3 and 14.2. For grain-boundary 

A 

L 
t 

Figure 16.1: A bundle of parallel wires bonded with grain-boundary segments. An 
applied force per unit length of wire fapp is applied to  each wire in the bundle. The system 
shrinks if mass is transported from the boundaries of width 2w into the pores. 

'The sign of the average pore-surface curvature will generally be negative if the dihedral angles 
are large and the number of neighboring grains is small. In two dimensions-if the pore-surface 
tension is equal to the grain-boundary surface tension-the average pore-surface curvature will 
be positive if there are more than six neighbors, and the pore can grow by absorbing vacancies 
from its abutting grain boundaries. This is equivalent to the ( N  -6)-rule (Eq. 15.33). If the grain 
boundaries have variable tensions, pore growth or shrinkage will depend on the particular abutting 
grain boundary energies. However, two-dimensional pores with more than Ncrit = ~ T / ( T  - ($)) 
abutting grains (where ($) is the average dihedral angle (2cos-' r B / ( 2 r S ) ) )  will grow on the 
average. 
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diffusion, the flux along a boundary under normal stress, u,,, is determined from 
Eqs. 2.21, 3.43, and 3.84, 

As in surface diffusion (Eq. 14.6), flux accumulation during grain-boundary dif- 
fusion leads to atom deposition adjacent to  the grain boundary. The resulting 
accumulation causes the adjacent crystals to  move apart at the rate’ 

(16.2) 

Three conditions are required for a complete solution to the problems illustrated 
in Figs. 3.10 and 16.1. If the grain boundary remains planar, d L / d t  in Eq. 16.2 
must be spatially uniform-the Laplacian of the normal surface stress under quasi- 
steady-state conditions must then be constant: 

V2unn = constant = A (16.3) 

Continuity of the diffusion potential at the intersection of the grain boundary and 
the adjoining surface requires that 

lbndy int = -7 S lbndy int (16.4) 

Finally, the total force across the boundary plane must be zero: 

1 yScos8ds (16.5) 

The physical basis for the three terms in Eq. 16.5 is illustrated by Fig. 16.2 for the 
geometry indicated by Fig. 3.10.3 

bndy int 
~ a p p  = /lndy 0nndA + 

16.1.1 

For this case of an isotropic polycrystalline wire loaded parallel to its axis as illus- 
trated in Fig. 3.10b1 Eqs. 16.3 and 16.4 become4 

Evolution of Bamboo Wire via Grain-Boundary Diffusion 

d2ann lda,, 
V’a,, = + -- = A = constant dr2 r dr  

Solving Eqs. 16.6 subject to the symmetry condition (dann/drJr,o = 0), 

A 
4 

rT,,(T) = -(r2 - RE) - 7% 

(16.6) 

(16.7) 

’This could be measured by observing the separation of inert markers buried in each crystal 
opposite one another across the boundary. 
3The justification for the projected interface contribution is presented elsewhere [l-41. The total 
force Fapp is that measured by a wetting balance [5]. 
4By symmetry, there is no angular dependence of unR. 
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Figure 16.2: Force-balance diagram for a body with capillary forces and applied load 
Fapp. The plane cuts the body normal.to the applied force. There are two contributions 
from the body itself. One is the projection of the surface capillary force per unit length 
(rS) onto the normal direction and integrated over the bounding curve. The second is the 
normal stress onn integrated over the cross-sectional area-in the case of fluids bounded by 
a surface of uniform curvature K’, onn = ySnS [4]. 

The constant A is determined from the force balance in Eq. 16.5, 

(16.8) 

Using Young‘s force-balance equation (Eq. 14.18), 

(16.9) 

at the grain boundary/surface intersection and the elongation rate (Eq. 16.2) be- 
comes 

( 16.10) 

When the grain boundaries are not spaced too closely, the quantity Tbamboo is 
generally negative because Rbn % 1 is less than 2J1 - [yB/(2rS)I2 and yB/(2yS) M 

1/6 for metals. T, the capillary shrinkage force,  arises from a balance between 
reductions of surface and grain-boundary area. If Fapp is adjusted so that the 
elongation rate goes to  zero, Fapp = - r b a m b o o ,  and this provides an experimental 
method to  determine yB/yS, and thus y” if + is measured. This is known as the 
Udin-Schaler-Wulff zero-creep method [6]. 

Scaling arguments can be used to estimate elongation behavior. Because K and 
1/Rb will scale with Jm and the grain volume, V, is constant, Eq. 16.10 implies 
that  

d L  
- d t  cc L2 ( Fapp - ys@) (16.11) 
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where ?“bamboo M -.irySRb is replaced by a term that depends on L alone. Elonga- 
tion proceeds according to5 

16.1.2 

For the boundary of width 2w in Fig. 16.1, Eq. 16.4 becomes 

Evolution of a Bundle of Parallel Wires via Grain-Boundary Diffusion 

ann(Z = * W )  = -7 S K (16.13) 

where K is evaluated at  the pore surface/grain boundary intersection. 
Eq. 16.3 subject to Eq. 16.13 and the symmetry condition (da,,/dz)l,=o = 0, 

Solving 

a,,(x) = -(x A 2  - w2) - 7% (16.14) 2 

where the grain-boundary center is located at x = 0. The constant A can be 
determined from Eq. 16.5, 

S - 27 KW - fapp (16.15) 

The shrinkage rate, Eq. 16.2, becomes 

dL RAG*D~A 3R.46*DB 

d t  kT  2w3kT (16.16) 
(fapp + r w i r e s )  - - _ -  - - 

$ 
rwires = 2y’(~w - sin -) 2 

If surface diffusion or vapor transport is rapid enough, the pores will maintain their 
quasi-static equilibrium shape, illustrated in Fig. 16.1 in the form of four cylindrical 
sections of radius R.6 The dihedral angle at the four intersections with grain 
boundaries, $, will obey Young’s equation. $ is related to 8 by sin($/2) = cos 8. 

An exact expression can be calculated for the quasi-static capillary force, Ywires, 
as a function of the time-dependent length L( t ) .  Young’s equation places a geomet- 
ric constraint among L ( t ) ,  the cylinder’s radius of curvature R(t),  and boundary 
width w(t ) ;  conservation of material volume provides the second necessary equa- 
tion. With Twire(L) and w ( L ) ,  Eq. 16.16 can be integrated. This model could 
be extended to general two-dimensional loads by applying different forces onto the 
horizontal and vertical grain boundaries in Fig. 16.1. The three-dimensional case, 
with sections of spheres and a triaxial load, could also be derived exactly. 

5An exact quasi-static [e.g., surfaces of uniform curvature (Eq. 14.29)] derivation exists for this 
model [4]. 
6The Rayleigh instability (Section 14.1.2) of the pore channel is neglected. Pores attached to 
grain boundaries have increased critical Rayleigh instability wavelengths [7]. 
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16.1.3 

Morphological evolution and elongation can also occur by mass flux (and its associ- 
ated volume) from the grain boundary through the bulk to  the surface as illustrated 
in Fig. 3 .10~ .  For elongation of a crystalline material, vacancies could be created at 
the grain boundary and diffuse through the grain to the surface, where they would 
be removed. The quasi-steady-state rate of elongation can be determined by solv- 
ing the boundary-value problem described in Section 3.5.3 involving the solution to 
Laplace’s equation V 2 @ ~  = 0 within each grain of the idealized bamboo structure. 
For isotropic surfaces and grain boundaries, @ A  is given by Eqs. 3.76 and 3.84. The 
expression for bulk mass flux is given by Eq. 13.3, and using the coordinate system 
shown in Fig. 3.10, symmetry requires that 

Evolution of Bamboo Wire by Bulk Diffusion 

(16.17) 

If the grain boundary remains planar, the flux into the boundary must be uniform, 

= C = constant (%) z=o 

Laplace’s equation in cylindrical coordinates is 

(16.18) 

(16.19) 

Assuming that the solution to Eq. 16.19 is the product of functions of z and r and 
using the separation-of-variables method (Section 5.2.4), 

@ A  = [c1 sinh(kz) + cz cosh(kz)][c~J0(kr) + c4Yo(kr)] (16.20) 

where clrc2,c3,c4, and k are constants to be determined, and Jo and Yo are the 
zeroth-order Bessel functions of the first and second kinds. Because @A(?- = 0) 
must be bounded, c4 = 0. Introducing a new variable p(r ,  z )  that will necessarily 
vanish on the free surface, 

(16.21) 

The general solution to Eq. 16.19 is the superposition of the homogeneous solutions, 

p ( r ,  z )  = Jo(k,r) [b, sinh(k,z) + c, cosh(k,z)] (16.22) 
n 

The bamboo segment can be approximated as a cylinder of average radius Re, 
where 

L 

nRZL = 1 nR2(z) dz 

The boundary condition (Eq. 3.76) is then approximated by 

@A=po+-  or, equivalently, p ( r  = R,, z )  = o 
Re 

(16.23) 

(16.24) 
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The knR, quantities are the roots of the zeroth-order Bessel function of the first 
kind, 

Jo ( k R c )  = 0 (16.25) 

The symmetry condition Eq. 16.17 is satisfied if b, cosh(k,l/2) + c, sinh(knl/2) = 
0, and therefore, 

~ ( r ,  2 )  = C bnJo(knr) sinh(k,z) - coth ( y )  cosh(k,r)] (16.26) 
n 

The planar grain-boundary condition given by Eq. 16.18 is satisfied if 

The coefficients, b,kn, of Jo in this Bessel function series can be determined [8]: 

(16.28) 

The constant C can be determined by substituting Eqs. 16.26 and 16.28 into the 
force-balance condition (Eq. 16.5), 

where 

(16.29) 

The total atom current into the boundary is I A  = -27rRz J A ;  therefore, 

(16.31) 

coth(k,l/2) 

B z  [T k2R2 

B M 12 for L/Rc M 2 [9]. 
The elongation-rate expressions for grain-boundary diffusion (Eq. 16.10) and 

bulk diffusion (Eq. 16.31) for a bamboo wire are similar except for a length scale. 
The approximate capillary shrinkage force 'Yapprox c y ~  reduces to the exact force 
rbamboo  as the segment shapes become cylindrical, Rb % R, % l/&. However, 
because the grain-boundary diffusion elongation rate is proportional to *DB/R;f, 
while the bulk diffusion rate is proportional to *DXL/R2, grain-boundary transport 
will dominate at low temperatures and small wire radii. 
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16.1.4 

Figure 16.3 illustrates neck growth between two particles by surface diffusion. Sur- 
face flux is driven toward the neck region by gradients in curvature. Neck growth 
(and particle bonding) occurs as a result of mass deposition in that region of small- 
est curvature. Because no mass is transported from the region between the particle 
centers, the two spheres maintain their spacing at  2R as the neck grows through 
rearrangement of surface atoms. This is surface evolution toward a uniform po- 
tential for which governing equations were derived in Section 14.1.1. However, the 
small-slope approximation that was used to obtain Eq. 14.10 does not apply for the 
sphere-sphere geometry. Approximate models, such as those used in the following 
treatment of Coblenz et al., can be used and verified experimentally [lo]. 

Neck Growth between Two Spherical Particles via Surface Diffusion 

Overcut / -  volume 
I 

Figure 16.3: (a) Model for formation of a neck between two spherical particles due to 
surface diffusion. (b) Approxiniation in which the surface diffusion zone within the saddle- 
shaped neck regioii of (a) is mapped onto a riglit circular cylinder of radius 2. t is the distance 
parameter in the diffusion direction. Arrows parallel to the surface indicate surface-diffusion 
directions in hoth (a) and (11). From Coblenz et al. [lo]. 

Because of the proximity effect of surface diffusion, the flux from the regions 
adjacent to the neck leaves an undercut region in the neck ~ i c i n i t y . ~  Diffusion 
along the uniformly curved spherical surfaces is small because curvature gradients 
are small and therefore the undercut neck region fills in slowly. This undercutting 
is illustrated in Fig. 1 6 . 3 ~ .  Because mass is conserved, the undercut volume is equal 
to the overcut volume. Conservation of volume provides an approximate relation 
between the radius of curvature, p, and the neck radius, x: 

1/3 
p = 0 . 2 6 ~  ( G )  (16.32) 

This surface-diffusion problem can be mapped to a one-dimensional problem by 
approximating the neck region as a cylinder of radius x as shown in Fig. 16.3b. 
The fluxes along the surface in the actual specimen (indicated by the arrows in 
Fig. 1 6 . 3 ~ )  are mapped to a corresponding cylindrical surface (indicated by the 
arrows in Fig. 16.3b). The zone extends between z = 1 2 ~ ~ 1 3 .  The flux equation 
has the same form as Eq. 14.4, so that' 

J S  x *Dsys dr; 
kT dz 

(16.33) 

7The proxiniity effect is reflected in the strong wavelength dependence of surface smoothing (i.e., 
l / X 4  in Eq. 14.12). 
sEquation 16.33 ignores the relatively small effect of the increase in energy due to the growing 
grain boundary. 
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The curvature has the value 2/R at  z = f2rrp/3 and approximately - l / p  at  z = 0 
(neglecting terms of order p/R) .  The average curvature gradient -3/(2.irp2) can be 
inserted into Eq. 16.33 for an approximation to the total accumulation at  the neck 
(per neck circumference), 

3 6 *Dsys 
.irkTp2 

I s  M 26Js M (16.34) 

The corresponding neck surface area is approximately p (per neck circumference), 
and therefore the neck growth rate is approximately 

d x  3 6 * D S y S R ~  
dt  .irkTp3 
_ N  N (16.35) 

Putting Eq. 16.32 into Eq. 16.35 and integrating yields the neck growth law, 

(16.36) 

Equation 16.36 predicts that x ( t )  K t1I5 and that the neck growth rate will 
therefore fall off rapidly with time. The time to produce a neck size that is a given 
particle-size fraction is a strong function of initial particle size-it increases as R4. 
Equation 16.36 agrees with the results of a numerical treatment by Nichols and 
Mullins [ 111 .’ 

16.2 DIFFUSIONAL CREEP 

Mass diffusion between grain boundaries in a polycrystal can be driven by an ap- 
plied shear stress. The result of the mass transfer is a high-temperature permanent 
(plastic) deformation called diffusional creep. If the mass flux between grain bound- 
aries occurs via the crystalline matrix (as in Section 16.1.3), the process is called 
Nabarro-Herring creep. If the mass flux is along the grain boundaries themselves 
via triple and quadjunctions (as in Sections 16.1.1 and 16.1.2), the process is called 
Coble creep. 

Grain boundaries serve as both sources and sinks in polycrystalline materials- 
those grain boundaries with larger normal tensile loads are sinks for atoms trans- 
ported from grain boundaries under lower tensile loads and from those under com- 
pressive loads. The diffusional creep in polycrystalline microstructure is geomet- 
rically complex and difficult to analyze. Again, simple representative models are 
amenable to rigorous treatment and lead to an approximate treatment of creep in 
general. 

16.2.1 

A representative model is a two-dimensional polycrystal composed of equiaxed 
hexagonal grains. In a dense polycrystal, diffusion is complicated by the necessity 

Diffusional Creep of Two-Dimensional Polycrystals 

gDifferent growth-law exponents are obtained for other dominant transport mechanisms. Coblenz 
et  al. present corresponding neck-growth laws for the vapor transport, grain-boundary diffusion, 
and crystal-diffusion mechanisms [lo]. 
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of simultaneous grain-boundary sliding-a thermally activated shearing process by 
which abutting grains slide past one another-to maintain compatibility between 
the grains. In the absence of sliding, gaps or pores will develop. Sliding is confined 
to  the grain-boundary region and occurs by complex mechanisms that are not yet 
completely understood [12]. 

The need for such sliding can be demonstrated by analyzing the diffusional creep 
of the idealized polycrystal illustrated in Fig. 16.4 [12-151. The specimen is sub- 
jected to  the applied tensile stress, u, which motivates diffusion currents between 
the boundaries at differing inclinations and causes the specimen to  elongate along 
the applied stress axis. Figure 16.4 shows the currents associated with Nabarro- 
Herring creep. Currents along the boundaries can occur simultaneously, and if 
these dominate the dimensional changes, produce Coble creep. For the equiaxed 
microstructure in Fig. 16.4, there are only three different boundary inclinations 
with respect to  a general loading direction; these are exhibited by the boundaries 
between grains A ,  B ,  and C indicated in Fig. 16.4. Mass transport between these 
boundaries will cause displacement of the centers of their adjoining grains. The 
normal displacements are indicated by L A ,  L B ,  and Lc in Fig. 16.4 and the shear 
displacements by S A ,  S B ,  and Sc. These combined grain-center displacements 
produce an equivalent net shape change of the polycrystal. 

Compatibility relationships between the displacements must exist if the grain 
boundaries remain intact. Along the 1 axis, the displacement of grain C relative to  
grain B must be consistent with the difference between the displacement of grain 
C with respect to grain A and with that of grain B with respect to  grain A .  This 
requirement is met if 

LA + LB - 2LC = v5sA - d 3 s B  

Similarly, along the 2 axis, 

Also, the volume must remain constant. Therefore, 

El1 + E 2 2  = 0 

2 

t 

(16.37) 

( 16.38) 

(16.39) 

Figure 16.4: 
subjected to uniaxial applied stress, g, giving rise to an axial strain rate t .  From Beer6 [14]. 

Two-dimensional polycrystal consisting of identical hexagonal grains 
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where ~ 1 1  and ~ 2 2  are the normal strains of the overall network connecting the 
centers of the grains in the (1 ,2)  coordinate system in Fig. 16.4. 

These strains are related to the displacements through ~ 1 1  = dul/dzl, ~ 2 2  = 
duz/dzz, and ~ 1 2  = (1/2)(dul/dz2 $duz/dzl), where the ui are the displacements 
produced throughout the network of grain centers. For the representative unit cell 
PQRS in Fig. 16.4, 

AC1- AB1 
d E l 1  = 

(16.40) 

where d is the width of a hexagonal grain, and ABi and ACi are the components of 
the displacements of the centers of the grains B and C relative to A and are given 
bY 

2AB1= - -asB - LB 
2AB2 = -SB + & LB 

2AC2 = S A  + & L A  

(16.41) 2ac1 = -&sA + L~ 

Therefore. 

8 (SB - SA) LA + LB 
2d -k 2d E l 1  = 

Substituting Eqs. 16.42 into Eq. 16.39 yields 

Combining Eqs. 16.38, 16.37, and 16.43, 

and 
L~ + L~ + L~ = o 

(16.42) 

(16.43) 

(16.44) 

(16.45) 

which is equivalent to the constant-volume condition. 
To show that boundary sliding must participate in the diffusional creep to main- 

tain compatibility, suppose that all of the S A ,  S B ,  and Sc sliding displacements are 
zero. Equations 16.44 require that the LA,  L B ,  and Lc must also vanish. There- 
fore, nonzero Si 's (sliding) are required to  produce nonzero grain-center normal 
displacements. 
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This result can be demonstrated similarly by solving for the strain, E ,  along the 
applied tensile stress axis shown in Fig. 16.4 in terms of only the Lz’s or only the 
9’s :  

E = cos 2 e E l l  + sin2 e~~~ + 2 sin e cos e~~~ (16.46) 

or, using Eq. 16.40-16.44, 

1 LA - LB 
v5 2 sin 8 cos 0 ( L ~  + L ~ ) ( I  - 2cos2e) + 

d 
(16.47) 

] (16.48) 2 sin 0 cos 0 2sc - SA - SB 1 S A - S B  
d v 5  3 

& = - [  (1 - 2 C O S ~  e )  + 
Equation 16.47 indicates that the creep strain may be regarded as diffusional trans- 
port accommodated by boundary sliding, and Eq. 16.48 indicates that it may 
equally well be regarded as boundary sliding accommodated by diffusional trans- 
port.l0 The creep rate, t ,  can be obtained by taking time derivatives of E in 
Eqs. 16.47 and 16.48. The applied tensile stress, 0, shown in Fig. 16.4 will generate 
stresses throughout the polycrystal, and each boundary segment will, in general, 
be subjected to  a shear stress (parallel to the boundary) and a normal stress (per- 
pendicular to the boundary). The shear stresses will promote the grain-boundary 
sliding displacements, S A ,  S B ,  and Sc, while the normal stresses will promote 
the diffusion currents responsible for the L A ,  L B ,  and Lc displacements. A de- 
tailed analysis of the shear and normal stresses at the various boundary segments 
is available (see also Exercise 16.2) [12-141. 

16.2.2 

The analysis can be extended to a three-dimensional polycrystal with an equiaxed 
grain microstructure. As in two-dimensional creep, grain-boundary sliding must 
accompany the diffusional creep, and because these processes are interdependent, 
either sliding or diffusion may be rate limiting. In most observed cases, the rate 
is controlled by the diffusional transport [14, 15, 18, 191. Exact solutions for cor- 
responding tensile strain rates are unknown, but approximate expressions for the 
Coble and Nabarro-Herring creep rates under diffusion-controlled conditions where 
the boundaries act as perfect sources may be obtained from the solutions for the 
bamboo-structured wire in Section 16.1.1. The equiaxed polycrystal can be approx- 
imated as an array of bonded bamboo-structured wires with their lengths running 
parallel to the stress axis and with the lengths of their grains (designated by L in 
Fig. 3.10) equal to the wire diameter, 2R. This produces a polycrystal with an 
approximate equiaxed grain size d = L = 2R. The Coble and Nabarro-Herring 
creep rates of this structure can be approximated by those given for the creep rates 
of the bamboo-structured wire by Eqs. 16.10 and 16.31 with L = 2R = d and the 
sintering potential set to zero. In this approximation, the effects of internal normal 
stresses generated along the vertical boundaries (between the bonded wires) may 
be neglected because these stresses are zero on average. Using this approximation, 
for diffusion-controlled Coble creep, 

Diffusional Creep of Three-Dimensional Polycrystals 

(16.49) 

‘OThis duality has been recognized (e.g., Landau and Lifshitz [16] and Raj and Ashby [17]). 
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0.0 
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with A1 = 32, and for diffusion-controlled Nabarro-Herring creep, 

Theoretical shear stress 
Dislocation glide 

Dislocation creep . 

Elastic 

(16.50) 

with A2 = 12." Because the Coble creep rate is proportional to *DB/d3 and the 
Nabarro-Herring rate to *DXL/d2 ,  Coble creep will be favored as the temperature 
and grain size are reduced. 

Figure 16.5 shows a deformation map for polycrystalline Ag possessing a grain 
size of 32 pm strained at a rate of 10-8s-1 [20]. Each region delineated on the 
map indicates a region of applied stress and temperature where a particular ki- 
netic mechanism dominates. Experimental data and approximate models are used 
to  produce such deformation maps. The mechanisms include elastic deformation 
at  low temperatures and low stresses, dislocation glide at  relatively high stresses, 
dislocation creep at  somewhat lower stresses and high temperatures, and Nabarro- 
Herring and Coble diffusional creep at high temperatures and low stresses. Coble 
creep supplants Nabarro-Herring creep as the temperature is reduced. An analysis 
of diffusional creep when the boundaries do not act as perfect sources and sinks has 
been given by Arzt et al. [19] and is explored in Exercise 16.1. 

The creep rate when boundary sliding is rate-limiting has been treated and 
discussed by Beer6 [13, 141. If a viscous constitutive relation is used for grain- 
boundary sliding (i.e., the sliding rate is proportional to the shear stress across the 
boundary), the macroscopic creep rate is proportional to  the applied stress, and 
the bulk polycrystalline specimen behaves as a viscous material. An analysis of 
the sliding-controlled creep rate of the idealized model in Fig. 16.4 is taken up in 
Exercise 16.2. 

Variable boundary behavior complicates the results derived from the uniform 
equiaxed model presented above. Nonuniform boundary sliding rates may cause 

cases by factors as large as three. See Ashby [20], Burton [18], Arzt et al. [19], and Pilling and 
Ridley [15]. 
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individual grains to rotate. Also, grain-boundary migration and the formation of 
new grains by recrystallization will affect both microstructure and creep rate.12 

Finally, mechanisms besides diffusional transport of mass between internal in- 
terfaces can contribute to diffusional creep. For instance, single crystals containing 
dislocations exhibit limited creep if the dislocations act as sources and sinks, de- 
pending on their orientation with respect to an applied stress (see Exercise 16.3). 

16.3 SlNTERlNG 

Sintering is a kinetic process that converts a compacted particle mass (or powder) 
or fragile porous body into one with more structural integrity. Increased mechan- 
ical integrity stems from both neck growth (due to mass transport that increases 
the particle/particle “necks”) and densification (due to mass transport that reduces 
porosity). The fundamental sintering driving force-capillarity-derives from re- 
duction of total surface energy and is often augmented by applied pressure. 

The kinetic transport mechanisms that permit sintering are solid-state processes, 
and therefore sintering is an important forming process that does not require melt- 
ing. Materials with high melting temperatures, such as ceramics, can be molded 
into a complex shape from a powder and subsequently sintered into a solid body.I3 

16.3.1 Sintering Mechanisms 

Neck growth can occur by any mass transport mechanism. However, processes that 
permit shrinkage by pore removal must transport mass from the interior of the 
particles to the pore surfaces-these mechanisms include grain-boundary diffusion, 
volume diffusion, and viscous flow. Other mechanisms simply rearrange volume at 
the pore surfaces and contribute to particle/particle neck growth without reduction 
in porosity and shrinkage-t hese mechanisms include surface diffusion and vapor 
transport. Particle compacts and porous bodies have complex geometries, but 
models for sintering and shrinkage can be developed for simpler geometries such as 
the one captured in Fig. 16.6.14 These models can be used to infer behaviors of 

-Time- 

Figure 16.6: h’Iodel sint,rririg cxpcriiricrit drrrioristratirig neck growth during sint,ering 
by viscous flow of iiiitially splierical 3 imri diameter glass beads at 1000°C over 30 iriiiiutes. 
Courtesy of Hans-Eckart Exner. 

I2These phenomena, and their effects on the creep rate, are described in more detail by Sutton 
and Balluffi [12], Beer6 [13, 141; and Pilling and Ridley [15]. 
13General reviews of sintering appear in introductory ceramics texts [21, 221, and a more complete 
exposition is given in German’s book on sintering [23]. 
14Further details about such models can be found in Reviews in Powder Metallurgy and Physical 
Ceramics or in Physical Metallurgy [24, 251. 



163 SlNTERlNG 401 

complex systems of which these simpler geometries are component parts. 
Figure 16.7 summarizes the atom-transport paths that can contribute to neck 

growth and also, in some cases, densification. If the particles are crystalline, a grain 
boundary will generally form at the contact region (the neck). A dihedral angle y 
will form at the neck/surface junction, and for the isotropic case, conform to Young’s 
equation, y B  = 27’ cos($/2). The seven different transport paths in Fig. 16.7 are 
listed in Table 16.1 with their kinetic mechanisms. Atoms generally flow to the neck 
region, where the surface has a large negative principal curvature and therefore a low 
diffusion potential compared to neighboring regions. Densification will accompany 
neck growth if the centers of the abutting spheres move toward one another. For 
example. with mechanism BS.B, atoms are removed from the boundary region 
causing such motion. 

The dominant mechanism and transport path-or combinations thereof-depend 
upon material properties such as the diffusivity spectrum, surface tension, temper- 
ature, chemistry, and atmosphere. The dominant mechanism may also change as 
the microstructure evolves from one sintering stage to another. Sintering maps 
that indicate dominant kinetic mechanisms for different microstructural scales and 
environmental conditions are discussed in Section 16.3.5. 

Figure 16.7: (a) Sintering of two abutting single-crystal spherical particles of differing 
crystal orientations. A grain boundary has formed across the neck region. (b) Detail of neck 
perimeter. Seven possible sintering mechanisms for the growth of the neck are illustrated 
(see the text and Table 16.1). 

16.3.2 Sintering Microstructures 

Powder compressed into a desired shape at  room temperature provides an initial 
microstructure for a typical sintering process. Such a microstructure may be com- 
posed of equiaxed particles or the particles may vary in size and shape. Particle 
packing may be regular and nearly ‘krystalline,” highly irregular, or mixtures of 
both. Sintering microstructures are generally complex, but some aspects of their mi- 
crostructural evolution can be understood by investigating primary process models 
such as those described in Section 16.1 and the simple neck-growth models presented 
in Section 16.1.4. However, some microstructural evolution processes are not eas- 
ily captured by simple models. Additional modeling difficulties arise for irregular 
packings, variability in particle size and shape, and inhomogeneous chemistry. 
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Table 16.1: Mass Transport Mechanisms for Sintering 

Transport Densifying or 
Mechanism Source Sink Mechanism Nondensifying 

SS.XL Surface Surface Crystal diffusion Nondensifying 
Atoms diffuse through the crystal from larger-curvature surface regions to lower- 
curvature regions. 

BS.XL Boundary Surface Crystal diffusion Densifying 
Atoms diffuse through the crystal from the grain boundary to low-curvature sur- 
face regions. 

~~ ~ 

BS.B Boundary Surface Boundary diffusion Densifying 
Atoms diffuse along the boundary to the surface; subsequently, they are trans- 
ported along the surface by one or more of the SS.XL, SS.S, or SS.V paths. 

DS.XL Dislocation Surface Crystal diffusion Either 
Atoms diffuse through the crystal from climbing dislocations. Equivalently, va- 
cancies diffuse from the surface. 

~~~~~ ~~ 

ss.s Surface Surface Surface diffusion Nondensifying 
Atoms diffuse along the surface from larger-curvature surface regions to lower- 
curvature surface regions. 

ss.v Surface Surface Vapor transport Nondensifying 
Atoms are transported through the vapor phase from larger-curvature surface 
regions to lower-curvature surface regions. 

VF - - Viscous flow Either 
Atoms are transported by viscous flow by differences in the capillary pressure at  
nonuniformly curved surfaces. 

Nevertheless, there are parallel stages in any powder sintering process that can 
be used to catalog behavior. Each powder sintering process begins with parti- 
cle/particle neck formation and a porous phase between the weakly attached par- 
ticles. As these necks grow, the particle/pore interface becomes more uniformly 
curved but remains interconnected throughout the compact. Before the porous 
phase is removed, it becomes disconnected and isolated at  pockets where four grain 
boundaries intersect. 

Initial, Intermediate, and Final Stages of Powder Sintering. Following Coble’s pio- 
neering work, the microstructural evolution of a densifying compact is separated 
into an ini t ia l  stage,  an intermediate  stage,  and a f inal  stage of sintering [26]. Fig- 
ure 16.8 illustrates some of the microstructural features of each stage. 

The initial stage comprises neck growth along the grain boundary between abut- 
ting particles. The intermediate stage occurs during the period when the necks 
between the particles are no longer small compared to the particle radii and the 
porosity is mainly in the form of tubular pores along the three-grain junctions in 
the compact. The geometries of both the initial and intermediate stages therefore 
have intergranular porosity percolating through the compact. 
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Initial powder Initial stage Intermediate stage Final stage Dense polycrystal- 
compact of sintering of sintering of sintering line compact 

Figure 16.8: Stages of powder sinterin . Initial stage involves neck growth. Intermediate 
state is marked by continuous porosity j o n g  three-grain junctions. Final stage involves 
removal of isolated pores at four-grain junctions. Figure calculated using Surface Evolver [27] ; 
figure concept by Coble [26] .  Courtesy of Ellen J. Siem. 

The transition from the intermediate to the final stage occurs when the intercon- 
nected tubular porosity along the grain junctions (edges) breaks up because of the 
Rayleigh instability (see Section 14.1.2) and leaves isolated pores of equiaxed shape 
at  the grain corners [7]. The final stage occurs when the porosity is isolated and 
located at  multiple-grain junctions. Final pore elimination occurs by mass transfer 
from the grain boundaries to the pores attached to the grain boundaries. similar to 
the transport in the wire-bundle model treated in Section 16.1.2. If grain growth 
occurs during any stage, the pores may break away from the grain boundaries. In 
such cases, the pores will be isolated from the grain boundaries in the final stage. 
and further densification will be limited by the rate of crystal diffusion of atoms 
from dislocation sources by the mechanism DS.XL illustrated in Fig. 16.7. Failure 
to reach full density is often caused by such pore breakaway. 

16.3.3 Model Sintering Experiments 

Experiments have been designed to reveal details of the sintering mechanisms indi- 
cated by Fig. 16.7 and the sintering stages illustrated by Fig. 16.8. Such sintering 
experiments include sphere-sphere model experiments similar to that depicted in 
Fig. 16.6 [28], sintering of rows of spheres [29], sintering of spheres and wires to flat 
plates [30], and sintering of bundles of wires such as that depicted in Fig. 16.9 [31]. 

With their simple geometry, these model experiments reveal fundamental pro- 
cesses during the various stages of sintering. Initial-stage processes are illuminated 
by the sphere-sphere experiments, and transitions between the intermediate and 
final stages are captured in the wire-bundle experiments. Figure 16.9d, in par- 
ticular, demonstrates the important role of grain-boundary attachment for pore 
removal-essentially all of the grain-boundary segments trapped between the pores 
have broken free and left the specimen. However, one boundary remains and con- 
tinues to feed atoms to  the pores to which it is connected. 

16.3.4 Scaling Laws for Sintering 

Because the surface energy per volume is larger for small particles and because 
the fundamental driving force for sintering is surface-energy reduction, compacts 
composed of smaller powders will typically sinter more rapidly. Smaller powders 
are more difficult to produce and handle; therefore, predictions of sintering rate 
dependence on size are used to make choices of initial particle size. Herring’s 
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(c )  

Figure 16.9: 
at 900°C: (a) 50 11. (b) 100 h, (c) 300 h; and at 1075°C: (d) 408 h. 
Balluffi [31] 

Cross section of bundle of parallel 128 p n  diameter Cu wires after sintering 
From Alexander and 

scaling laws provide a straightforward method to predict sintering rate dependence 
on length scale [32]. 

Suppose that two sintering systems, S and B. are identical in all aspects ex- 
cept their size.15 Each length dimension of system B is X times as large as the 
corresponding dimension of system S .  Under identical conditions and provided 
that the same sintering mechanism is operative. the ratio of sintering rates can be 
determined from the relative sizes of the specimens. 

In general, a sintering rate is proportional to  the mass-transport current, I ,  due 
to  sintering driving forces and is inversely proportional to  the transported material 
volume, AV. required to  produce a given shape change (e.g., the volume associated 
with neck growth). The current I is the vector product of the atoniic flux :and 
the area A’ through which the current flows during sintering. Therefore, the rates 
at which bodies S and B undergo geometrically similar changes will be in the ratio 

(16.51) 
rateB IB  AVs 
rates AVB I S  

The current, I ,  is proportional to  the diffusion potential gradient, V@* and to the 
cross-sectional area. A, through which this flux flows. Therefore, 

-=-- 

(16.52) 

Suppose that the plane A’ is the bisector between the source of atoms and their 
sink (i.e.. the sources and sinks listed in Table 16.1). The component of diffusion 

I5The systems may be similar powder compacts of the same powder material but differing particle 
sizes, or they may be model systems such as those illustrated in Figs. 16.6 arid 16.9 but with all 
corresponding length dimensions scaled similarly. 
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potential gradient normal to the plane A’ (the component projected onto the normal 
A of A) is proportional to the difference in diffusion potential between the source and 
the sink, A@, divided by the distance A1 between the source and sink. Therefore, 

Combining these relationships with Eq. 16.51, 

rate’ A@’ Als AB AVs 
rates A@s A ~ B  As AV’ 
-- 

(16.53) 

(16.54) 

For free sintering, the diffusion potential is proportional to curvature; A@’/A@s 
will scale as 1/X. The ratio Als/AlB also scales as 1/X.  

For surface diffusion, one of the cross-sectional area’s dimensions is 6, the thick- 
ness of the high-diffusivity surface layer, independent of system size. The remain- 
ing cross-sectional area length scales as A, and therefore A B / A s  must scale as A. 
AVSIAVB scales as l / X 3 .  Therefore, substituting into Eq. 16.54, 

rateB 1 1 1 
rates X X A3 

(16.55) -- - - x - x X x - = (surface diffusion) 

If sintering occurs by diffusion through the bulk crystal (mechanism BS.XL), 
all the ratios will be the same as for surface diffusion except for the cross-sectional 
area A B / A ~ ,  which will scale as X2. Therefore, 

rateB 1 1 1 
-- - - x - x X2 x - = 
rates X X X3 

(16.56) (crystal diffusion) 

If sintering occurs by grain-boundary diffusion, the ratio of rates will be the same 
as for the surface-diffusion case, A X-’ scaling law can be derived for viscous 
flow and a 

To show that the rate of two-particle neck growth by surface diffusion in Sec- 
tion 16.1.4 is consistent with the XP4 scaling law, Eq. 16.36 can be written in terms 
of its fundamental length scales and differentiated: 

law applies for vapor transport [32]. 

1 dx R 
x dt  x5  0; -  -- (16.57) 

Therefore, 

A similar result may be obtained (Exercise 16.6) using the result derived in Eq. 16.16 
for the neck growth for a bundle of parallel wires by grain-boundary diffusion. 

16.3.5 Sintering Mechanisms Maps 

Any of the various mechanisms for sintering identified in Table 16.1 may contribute 
to the sintering rate. Which of the mechanisms contributes most to sintering de- 
pends on, among other things, particle size and temperature. Sometimes certain 
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mechanisms can be ruled out immediately. For example, viscous flow (VF) cannot 
contribute for crystalline materials, and the nondensifying mechanisms (e.g., SS.S 
and SS.V) cannot contribute to pore removal in the final stages of sintering. 

Processing decisions depend on the particular mechanism, or combination of 
mechanisms, that contribute to sintering. Sintering maps such as Fig. 16.10 pro- 
vide information for such decisions. These plots can be created by employing ap- 
proximate models for the sintering rates for specific systems by the various mecha- 
nisms. These models, combined with experimental data, can be used to plot regimes 
for which a particular mechanism makes the largest contribution to the sintering 
rate [33]. 

Sintering maps for different systems vary considerably-even for the same mate- 
rial, but having different initial particle sizes. For example, a map corresponding to 
Fig. 16.10 for silver particles of a smaller radius (i.e., 10 pm) shows a considerably 
reduced field for the BSsXL mechanism. On the other hand, a map for 10 pm UOZ 
particles shows a vapor-transport (SSsV) regime [33]. Scaling laws are limited to 
regions of the sintering map where the dominant mechanism is unchanged (Sec- 
tion 16.3.4). Although sintering mechanism maps are no better than the models 
and data used to construct them, they provide useful insights. 

Temperature (“C) 
400 500 600 700 800 900 

Full density reached 

0.50 0.60 0.70 0.80 0.90 1.0 

Homologous temperature, T/T, 

Fi ure 16.10: Sintering mechanism map for silver powder of radius 100 p,m plotted 
w i k  coordinates of reduced temperature and neck radius. The assumed conditions are that 
grain boundaries remain between abutting particles and that no trapped gases are 
to impede isolated pore shrinkage. Each region represents the regime where the in%%:: 
mechanism is dominant (see Table 16.1). The dashed line indicates transitions between 
initial-stage and intermediate- and final-stage sinterine. Although all possible mechanisms 
were considered, the three shown were dominant in their respective regimes. From Ashby [33]. 
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EXERCISES 

16.1 An analysis of the rate of elongation of a wire possessing a bamboo-type grain 
structure is given in Section 16.1.3. An essential aspect of the analysis is the 
assumption that the stress-induced atomic transport producing the elongation 
is diffusion-limited. Now, construct the main framework of a model for the 
same system in which the atomic transport is source-limited, as indicated 
below, and explain how the model works. 

0 Assume that the grain boundaries are much poorer sources than the 
wire surface and that it is the poor source action of the boundaries that 
causes the process to be source-limited. 

0 Use the simple rate-constant type of formulation employed in Sections 
13.4.2 and 15.1.1 to analyze source-limited precipitate growth and par- 
ticle coarsening, respectively. 

0 Assume, as in Section 16.1.1, that the diffusion occurs via vacancies and 
that the rate-limiting process is the rate of creation and destruction of 
vacancies at the grain boundaries. 

Solution. When the process is diffusion-limited and the rate-constant formalism is 
used, the net rate a t  which vacancies are destroyed at  a boundary (i.e,, the rate of 
destruction minus the rate of creation) is 

IB = 2 lR K B  [c;(r)  - C E . ~ ~ ( ~ ) ]  27rr dr 

The corresponding rate at the free surface o f  the cell, which is of length L ,  is 

I s  = lL K S  [c; - c $ ~ ~ ]  27rRd.z 

(16.59) 

(16.60) 
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I B  is negative, since c F , ~ ~  > c; and vacancies are being created, whereas I s  is positive, 
since c$ > c $ ~ ~  and vacancies are being destroyed. The crystal diffusive current at each 
interface is equal t o  the net destruction rate, and therefore 

,I& = I B  and Iiff = I s  (16.61) 

In addition, in the quasi-steady state, 

B B  S S I = Idiff = -I = --Idiff 

and the elongation rate, 1, is given by 

(16.62) 

(16.63) 

The diffusion within the grains is relatively slow, so that I& = IB and I& = I s  are 
small compared t o  the vacancy creation and destruction rates in the equations above. 
Therefore, c; 2 ~ t ' ~ ~  and c$ E cZeq and the rate is diffusion-limited, 

When the rate is source-limited, the vacancy diffusion rate within the grains is relatively 
large. K B  << K S  and the relatively slow source action at  the boundary has a negligible 
efFect on the vacancy gradients within the grains. The vacancy concentration is then 
maintained everywhere at an essentially constant level corresponding t o  cZeq as a result 
of the relatively f a s t  source action at  the wire surface. I B  is then given by Eq. 16.59 
with c; E cZeq. Because the stress and the concentration cFSeq are uniform over the 
boundary, the elongation rate is 

(16.64) 

The equilibrium vacancy concentration is given, in general, by Eq. 3.65, which for present 
purposes may be written in the form 

(16.65) 

where Gfv(m) is the work required t o  form a vacancy at  a flat stress-free surface and 
AGf, is any additional work. The wire volume is increased when a vacancy is formed, 
and in the present model AGG is negative when a vacancy is formed at  the grain 
boundary because of the work done by the applied tensile stress during i t s  formation. 
On the other hand, AGf, is positive at  the wire surface because of the work that must 
be done t o  increase the surface area. Therefore, c F ' ~ ~  > c ? ~ ~  and d L / d t  is positive. 

16.2 Consider the diffusional creep of the idealized two-dimensional polycrystal 
illustrated in Fig. 16.4 and discussed in Section 16.2. Each boundary will 
be subjected to a normal stress, on, and a shear stress, us, as illustrated 
in Fig. 16.11. Suppose that all boundaries shear relatively slowly at a rate 
corresponding to 

- _  dS - Ka,  
d t  

(16.66) 

where K is a boundary shear rate constant, whereas diffusional transport 
between the different boundary segments is extremely rapid. The creep will 
then proceed at a rate controlled by the rate of the grain-boundary sliding and 
not by diffusional transport through the grains or along the grain boundaries. 
Using the results in Section 16.2, find an expression for the sliding-limited 
creep rate of the specimen illustrated in Figs. 16.4 and 16.11. 
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Figure 16.11: 
subjected to uniaxial applied stress, 0.  The geometry is the same as in Fig. 16.4. 

Normal stresses and shear stresses present in two-dimensional polycrystal 

Determine the shear stresses acting on the three types of boundary segments 
present. When diffusion is extremely rapid, all differences in the diffusion 
potential will be eliminated, and all three normal stresses at  the three different 
types of boundary segments will be uniform along each segment and equal to 
one another. Therefore, 

on A =  f-‘n B =  on C =  c n  (16.67) 

Also, if each grain is not to rotate, 

0,” + u,” +a: = 0 (16.68) 

Since the stresses in each grain are the same, the normal and shear stresses 
along planes PQ and RS can be found from the forces exerted on them by 
the applied stress, u, with the results 

uf = s inecosea  

u,” = sin2 e cr 

4 2 1 “ I  4 
cos2 e + - sinecose + - sin2 e u ” ( 16.69) 

1 c r t  = [Icos2e+ 3 -s inecose+ fl -sin20 1 u 

2 4 

Next, each triangular shaded region in Fig. 16.11 must be in mechanical equi- 
librium (i.e., the sum of the forces on it parallel and normal to PQ, or RS, 
must be zero). This leads to the conditions 

0 = - 2&u,” - u,B +2&u, +u,” 

0 =2u,D +u,B +a,” 
o =  - 2 u , E + u , ” + a ~  

0 = 2&,” + u,” - 2&an - us c 

(16.70) 

These linear equations are sufficient to allow the determination of the shear 
stress acting on each boundary segment. 
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Solution. Expressions for the shear stresses at the three types o f  boundary segments 
may be obtained by the simultaneous solution of the equations given above for the 
boundary stresses. The results are 

a: = [A cos20 -sinOcose - - u “I 2 
(16.71) 

UF = 2 s i n e c o s ~ a  

The expression for the creep rate due t o  boundary sliding is obtained by differentiating 
Eq. 16.48, 

Substituting Eqs. 16.66 and 16.71 into Eq. 16.72 then produces the surprisingly simple 
result 

(16.73) . K  
d 

The creep rate is therefore proportional t o  the applied stress, and the polycrystal acts 
effectively as an ideally viscous material. 

E = - u  

16.3 Diffusional creep can also occur by means of the stress-motivated transport 
of atoms between climbing dislocations in a material. This is illustrated in a 
highly idealized manner in Fig. 16.12, where a regular array of edge disloca- 
tions possessing four different Burgers vectors is present in a stressed material. 
The net Burgers vector content is zero. The stress exerts climb forces on the 
dislocations so that dislocations with Burgers vectors lying along &x and &g 
directions act alternately as sources and sinks. The arrows indicate the atomic 
fluxes associated with the climb. Each source dislocation is surrounded by 
four nearest-neighbor sink dislocations, and vice versa for the sink disloca- 

Y 

t 
f 
U 

Figure 16.12: 
show stress-induced diffusion current around each climbing dislocation. 

Idealized array of edge dislocations subjected to applied stress, u. Arrows 
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tions. The climb of the dislocations in this arrangement adds atomic planes 
lying perpendicular to x and removes an equal number of planes lying perpen- 
dicular to y ,  causing the specimen to lengthen and shorten in the direction of 
the applied stresses. Find an expression for the instantaneous quasi-steady- 
state creep rate of this idealized structure, assuming that the dislocations act 
as perfect sources or sinks. 

Surround each dislocation by a cylindrical cell in which the diffusion 
to/from the dislocation is assumed to be cylindrical (see Fig. 16.12), and 
use a mean-field approximation similar to the one used in the analysis 
of particle coarsening. 

Solution. The flux equation is given by Eq. 13.3, and the diffusion equation in the 
quasi-steady state is V 2 @ ~  = 0. The derivation o f  Eq. 13.4 shows that the climb force 
exerted on the sink dislocations will cause the value o f  @ A  at their core radii, R,, t o  
have the value 

@:(sinks) = p i  - u i2 (16.74) 

while at the source dislocations, 

@:(sources) = p i  + u R (16.75) 

A t  the surface of the cell a t  r = L/2,  we use the mean-field boundary value 

@ A  (g) = b i  (16.76) 

The general solution of the diffusion equation in cylindrical coordinates is @ A  = a1 l n r+  
a z ,  and using the boundary conditions above t o  determine the constants a1 and a2, 

(16.77) 

Using the flux equation, the diffusion current into a dislocation (per unit length) is 

27r *Du 
f kT  ln[L/(2Ro)]  I = kt27rrJ~ = =k (16.78) 

and after taking account o f  the density of dislocations, the creep rate along z is 

. I R  7r *DR 
E = - =  

2LZ f k T L z  ln[L/(2Ro)]  (16.79) 

The creep rate is therefore proportional t o  the stress and also closely proportional t o  
the dislocation density (i.e., L - 2 ) .  

16.4 A thin-walled pure-metal pipe of inner radius R'" and outer radius Rout is 
heated. 

(a) Find an expression for the quasi-steady-state rate at which it will shrink. 
Assume that the surfaces act as perfect sources for atoms and that the 
interior is free of internal sources. 

(b) An inert insoluble gas is introduced in the pipe at a pressure P.  Find the 
value of P that will stop the pipe from shrinking. The external pressure 
is small enough so that it may be ignored. 
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Solution. 

(a) In the quasi-steady-state Laplace equation, V 2 @ ( r )  = 0 holds for the diffusion 
potential and Eq. 13.3 holds for the diffusion flux. The boundary conditions on @ 
at  the surfaces are 

(16.80) 

Using the solution o f  the Laplace equation for diffusion in cylindrical coordinates 
given by Eq. 5.10, f i t t ing it t o  the boundary conditions given by Eq. 16.80, and 
employing Eq. 13.3 for the flux, the total diffusion current of atoms (per unit pipe 
length) passing radially from R'" t o  Rout is 

27r*D(@'" - @Out) 

RkTf  In( Rout/Rin) 
I =  

which may be compared with Eq. 5.13. Now, 

R I  -- - dRout 
dt 27rRoUt 

(16.81) 

(16.82) 

and for the thin-walled pipe, 1n(Rout/Rin) = ln(1 + AR/Rin) x AR/(R),  where 
AR = Rout - Rin and Rout - - Rin x (R). Using these results and Eq. 16.81, 

(16.83) 

(b) The internal pressure causes the diffusion potential at R'" t o  be @" = p o  - 
RyS/Rin + R P .  Equation 16.81 then becomes 

(16.84) 
27r*D(ain - @Out) - 27r*D(P - 2ys/(R)) 

RkTf  ln(Rout/Rin) kTf ln(Rout/Rin) 
- I =  

and shrinkage will stop when P = 2yS/(R). 

16.5 Suppose that a body made up of fine particles can sinter by either the crystal 
diffusion mechanism BS . XL or the grain-boundary diffusion mechanism 
BS . B as illustrated in Fig. 16.7. How will the relative sintering rates due 
to these two mechanisms vary as: 

(a) The particle size is decreased? 

(b) The temperature is decreased? 

Solution. 

(a) Let 
sintering rate due t o  grain-boundary diffusion 

sintering rate due t o  crystal diffusion 
Ratio = 

The sintering rate due t o  boundary diffusion and crystal diffusion will be propor- 
tional t o  *DB and *DxL, respectively. The scaling laws show that the sintering 
rate due t o  boundary diffusion will decrease by the factor A-4 when the particle 
size is increased by the factor A. The corresponding factor for sintering by crystal 
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difFusion is X3. Therefore, 

(16.85) 

Sintering by boundary diffusion will become more important as the particle size 
decreases. 

(b) Because *DB increases relative t o  *DxL as the temperature decreases, sintering 
by boundary diffusion will become more important as the temperature decreases. 

scaling law holds for the sintering of a bundle of parallel wires 
by means of grain-boundary diffusion, which was analyzed in Section 16.1.2. 

Solution. The rate of sintering is given by Eq. 16.16. Using the formalism o f  Sec- 
tion 16.3.4, where all dimensions in the B system are X times larger than in the S 
system, 

16.6 Show that a 

-- rateB ( ~ / L B )  + c( [ ~ / ( L B w ~ ) I  [ j a p p  + 2yS(nBwi3 - sin 91 
rates (1,'~s) % [ ~ / ( L s w ; ) ]  [japp + 2ys(nsws  - sin f)] 

- 

(16.86) 
- - [~/ (XLSX~W; ) ]  { j a p p  + 2 y S [ ( n s / ~ )  xws - sin f]} = A-4 

[ ~ / ( L S W ; ) ]  [ j a p p  + 2yS(nsws - sin f)] 

16.7 Consider a grain boundary containing a uniform distribution of small pores 
(as shown in Fig. 16.13) that is subjected to a normal tensile stress 0% at a 
large distance from the boundary. 

The pores will either grow or shrink by transferring atoms via grain-boundary 
diffusion to or from the grain boundary acting as a sink or source, respectively, 
depending upon the magnitude of the applied stress. Find an expression for 
the rate of growth of the pore volume in a form proportional to the quantity 
(Fapp + T), where F a p p  is the force applied to each pore cell (shown dashed 
in Fig. 16.13) and T is the corresponding capillary force given by 

( 16.87) 
27rySR2 T=-- 

R 
0 Construct a cylindrical cell of radius R, centered on a single pore as 

illustrated in Fig. 16.13 and solve the diffusion problem within it using 
cylindrical coordinates and the same basic method employed to obtain 

0: 

t t t f t t t t t t t t t t t  
I I 

Grain I R, I 
boundary I ?I 

I l l  

I l l  
I l l  
I l l  
I I 

r\ W w , w , u  

wircciwiicc 
0: 

Figure 16.13: Distribution of pores in grain boundary subjected to tensile stress CT,"~. 
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the sintering rate of a bundle of parallel wires in Section 16.1.2. Assume 
that the pore maintains the equilibrium shape illustrated in Fig. 16.14. 
The upper and lower surfaces are spherical with curvature -2/R. 

Figure 16.14: Cross section of equilibrium shape of pore on grain boundary as in 
Fig. 16.13, assuming that yB/ys = 1/3, so that 6' = 9.6". R is the radius of curvature 
of the top and bottom surfaces. The cross section in the grain-boundary plane is a circle of 
radius R cos 6'. 

Solution. Equation 16.3 applies and therefore 

1 d da,, r - r dr ( dr ) V2unn = constant = A = - - 

Integrating twice and applying the boundary conditions corresponding t o  

[%I r=R, 

(16.88) 

(16.89) 

and Eq. 16.4 

u n n = A  4 [ ( r 2 - R 2 c o s 2 8 ) + 2 R ~ l n  (16.90) 

A is now obtained by applying the integral force condition given by Eq. 16.5 and using 
the curvature relation n = -2/R. Therefore, 

A = -  8(Faw + (16.91) 
T { R: [41n (&) - 31 + R2 cos2 8(4R," - R2 cos2 O) }  

with T given by 

(16.92) 

and Fapp = ~Rza:. The rate at  which volume is transferred t o  the pore by grain- 
boundary diffusion is then 

_ _  dV - - 
d t  k T  

02GDB~(Rz - R2 cos2 6') A 
(16.93) 
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and dV/dt is seen t o  be proportional t o  (Fapp + T). 
16.8 Since pore shrinkage is driven by a decrease in interfacial energy, it may be 

expected on general principles that the capillary force, T, must correspond 
to 

dGI T=-- 
dL 

(16.94) 

where dGI is the change in the total interfacial energy of the system and dL is 
the corresponding change in its length produced by the pore shrinkage. Now 
demonstrate that Eq. 16.94 is indeed obeyed for the shrinkage of the pores on 
the grain boundary considered in Exercise 16.7, where T was found to equal 
- 27rySR,2/ R. 

0 The volume and area of the pore (shown in detail in Fig. 16.14) are given 
by 

(2 - 3cose + sin3 e)  2 n ~ 3  V = -  
3 (16.95) 

A =4.rrR2(1 -sine) 

Solution. Focus on one cell as illustrated in Fig. 16.13 and take the cell height t o  be 
L. Using Eq. 16.95, the total interfacial energy of the cell is given by 

Gr = 4.rrR2(1 - sinB)yS + .x(RZ - R2 cos2 B ) y B  (16.96) 

Then, since sine = yB/(2yS), 

(16.97) 
dR 

dL dL 
-- dGr = 27rySR[2 sin 0 cos2 0 - 4( 1 - sin e ) ]  - 

However, the volume in the cell must remain constant, so 

and 

.rrR~L-*(2-3cosB+sin30) = O  
3 1 

- R: - dR 
dL 
- 

2R2(2 - 3cosQ + sin3 0) 

(16.98) 

(16.99) 

Substituting Eq. 16.99 into Eq. 16.97 and employing Eq. 16.94, 

dGI 2nySR:[sin8cos28 - 2(1  -sine)] - 27rySR,2 (16,100) _- - f=--= - 
dL R(2 - 3 cos 0 + sin3 0) R 

in agreement with Eq. 16.92. 



PART IV 

PHASE TRANS FORMATI 0 N S 

Phase transformations are of central importance in materials science and en- 
gineering. An understanding of the thermodynamics of phase equilibria is the 
foundation for understanding their kinetics. Necessary conditions for equilibrium 
include: uniformity and equality of the diffusion potential for each chemical species 
that can be exchanged between the phases; equality of temperature; and equality 
of pressure if the two phases can freely exchange volume.16 Deviations from these 
equilibrium conditions set the stage for kinetic processes. Parts I1 and I11 chiefly 
treated kinetic processes that derived from nonuniformity of a potential, such as 
chemical potential or temperature, within a single phase. Phase transformations 
occur when a region of the material can reduce the total free energy by changing 
its symmetry, equilibrium composition, equilibrium density, or any other quantity 
that defines a phase. 

The transforming material portion may be adjacent to its prospective phase, 
which is the case for growth of a new phase; or the portion may be isolated, which 
is the case for nucleation of a new phase. In any case, the spatial variation of 

'%rict equality of pressure is required absent capillarity effects: if a deforming heterophase 
interface stores energy during volume transfer, the two phases will have an equilibrium pressure 
difference. 



the phase-defining quantities-order parameters-permit a convenient means to 
identify heterophase interfaces. 

The definition of what constitutes a phase is troublesome. Gibbs required 40 
pages of preamble before introducing phase with ‘‘such bodies as differ in com- 
position or state, different phases of the matter considered, regarding all bodies 
which differ only in quantity and form as different examples of the same phase’’ [l]. 
This clearly eliminates two bodies that are identical except for their morphology 
and size-and perhaps one may credit Gibbs with the foresight to exclude crys- 
tallographic misorientation and symmetry operations from distinguishing phases. 
However, special cases, such as the distinction of a nearly cubic tetragonal variant 
from a strained cubic phase, must be handled carefully. 

Contiguous phases must be separated by an interface, and therefore consider- 
ations of interface and morphological evolution play a role in phase transforma- 
tion kinetics. However, every interface need not separate two phases-grain and 
antiphase boundaries separate crystallographic or symmetric variants of a single 
phase. Nevertheless, it is instructive to treat such interface motion-where a sin- 
gle phase alters its orientation-analogously with phase transformations. Such a 
treatment naturally introduces two different kinds of order parameters. Regions 
of material defined by one kind of order parameter-such as spin density, sym- 
metry, and orientation-may alter without a corresponding flux. Such flux-less 
order parameters are called nonconserved variables. Conserved variables, such as 
composition, require flux for a material to change locally. 

The thermodynamics of phase equilibria is reviewed in Chapter 17 and the fun- 
damental thermodynamic differences between conserved and nonconserved order 
parameters are reinforced with a geometrical construction. These order parameters 
are used in the kinetic analyses of continuous and discontinuous phase transforma- 
t ions. 

Continuous transformations are treated in detail in Chapter 18. Spinodal de- 
composition and certain types of order-disorder transformations follow from similar 
principles but differ only in the kinetics of conserved and nonconserved variables. 

The remainder of the book treats discontinuous transformations. Nucleation, 
which is necessary for the production of a new phase, is treated in Chapter 19. The 
growth of new phases under diffusion- and interface-limited conditions is treated 
in Chapter 20. Concurrent nucleation and growth is treated in Chapter 21. Spe- 
cific examples of discontinuous transformations are discussed in detail; these in- 
clude solidification (Chapter 22), precipitation from solid solution (Chapter 23), 
and martensite formation (Chapter 24). 
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CHAPTER 17 

GENERAL FEATURES OF PHASE 
TRANS FORMAT10 NS 

The conditions under which a portion of a material system will undergo a phase 
transformation are determined by the system’s current and equilibrium thermody- 
namic states. The equilibrium state is distinguished by the minimum of an energy 
function that is particular to physical constraints imposed on the system. For in- 
stance, under conditions of constant temperature, T, and applied pressure, P, if 
the total energy quantity 

Q U - TS + PV F +  PV 3-1 - TS (17.1) 

can be decreased via any internal change in the system, the system is thermody- 
namically unstable with respect to that change, however large. If Q cannot be 
decreased by any possible small variation, the system is in local equilibrium; if Q 
achieves its global minimum, the system will remain in complete equilibrium as long 
as it is constrained to the same constant P and T. Under different constraints, other 
minimizing energy functionals can be derived through Legendre transformations. 

The necessary conditions for a spontaneous phase transformation relate directly 
to the system’s energy differences upon transformation. In addition to the trans- 
formed volume’s chemical-energy change, its interfacial energy and the elastic en- 
ergy to accommodate interfacial misfit contribute to the total free-energy change. 
Calculations of energy differences are simplified when the host material can be a p  
proximated as a reservoir with constant properties, so that the transformed volume 
and its interface need to be considered. 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 419 
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If in addition to a thermodynamic driving force, a system has kinetic mechanisms 
available to produce a phase transformation (e.g., diffusion or atomic structural re- 
laxation), the rate and characteristics of phase transformations can be modeled 
through combinations of their cause (thermodynamic driving forces) and their ki- 
netic mechanisms. Analysis begins with identification of parameters (i.e., order 
parameters) that characterize the internal variations in state that accompany the 
transformation. For example, site fraction and magnetization can serve as order 
parameters for a ferromagnetic crystalline phase. 

Analysis proceeds by considering the temporal evolution of small variations in 
order parameter fields. However, a variation may be “small” in different ways. 
J. Willard Gibbs distinguished between a variation that “initially is small in degree, 
but may be great in its extent in space” and one that is “initially small in extent but 
great in degree” [l]. In the context of phase transformations, degree applies to the 
magnitude of an order parameter that characterizes a phase-specifically, whether 
it may vary continuously or not. Extent refers to the spatial region over which such 
variation occurs-specifically, whether the change is confined to a (typically small) 
finite material portion or throughout the entire material system. 

Gibbs’s classification serves as the fundamental basis for division of phase trans- 
formation processes into two broad categories: continuous phase transformations 
and discontinuous phase transformations. During a continuous transformation, or- 
der parameter fields evolve smoothly in time and evolution is not confined to a small 
region. Discontinuous transformations initiate with an abrupt variation in an order 
parameter field and are localized events (i.e., they involve nucleation). Subsequent 
to initiation, phase transformations can continue by growth, which occurs as host 
material adjacent to the interface transforms into the new phase. Growth is treated 
in Chapter 21. After driving forces for growth have been exhausted, the system 
can continue to evolve by coarsening through reducing the energetic contribution 
from interfaces at constant phase fraction (Chapter 15). 

Model energy functionals will be obtained through consideration of the energetic 
contribution of order parameter fields, and this is preceded by a survey of order 
parameters . 

17.1 ORDER PARAMETERS 

17.1.1 One-Component or Fixed Stoichiometry Systems 

Figure 17.1 shows the molar free energy, F ,  as a function of temperature for a 
pure, or stoichiometric, material at fixed volume. The material has a first-order 
phase transformation at the temperature where the molar free energies cross. The 
equilibrium free energy is a function of temperature only. The corresponding order 
parameter, E ,  which is also a function of T as illustrated in Fig. 17.lb, is a subsidiary 
parameter introduced by the series expansion 

(17.2) 

commonly known as a Landau expansion [2 ,3] .  The physical quantity corresponding 
to E might be a molar heat capacity, enthalpy density, or any derivative of the molar 
free energy and its metastable extensions. F is taken as a function of both T and 
E .  At any temperature, the equilibrium value of 5, Eeq(T), is determined from the 
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Figure 17.1: 
(b) Temperature dependence of an order parameter 5 for the transition in (a). 

(a) Molar free energy as a function of temperature for a melting transition. 

condition 

(17.3) 

and using Eq. 17.2, the equilibrium free energy, Feq, can be expressed as a function 
of T alone, in the form Feq [T, Ceq(T)], and [(Z) - pq becomes a measure of the 
local departure from equilibrium. The function F ( T ,  [) defined in Eq. 17.2 can be 
used to  model the free energies of systems that are in the process of moving toward 
equilibrium-i.e., undergoing a phase transformation represented by particular val- 
ues of [. 

Introduced in this manner, the order parameter, E ,  is a “hidden” thermody- 
namic variable: its equilibrium values, cq(T), are not independent but are fixed 
by Eq. 17.3. Therefore, an order parameter is characteristic of the transformation 
process because it cannot be fixed by an experimental condition. 

Whether the phase transition is first- or second-order depends on the relative 
magnitudes of the coefficients in the Landau expansion, Eq. 17.2. For a first- 
order transition, the free energy has a discontinuity in its first derivative, as at 
the temperature T, in Fig. 17.la, and higher-order derivative quantities, such as 
heat capacity, are unbounded. In second-order transitions, the discontinuity occurs 
in the second-order derivatives of the free energy, while first derivatives such as 
entropy and volume are continuous at the transition. 

The order of a transition can be illustrated for a fixed-stoichiometry system 
with the familiar P-T diagram for solid, liquid, and vapor phases in Fig. 17.2. 
The curves in Fig. 17.2 are sets of P and T at which the molar volume, V ,  has 
two distinct equilibrium values-the discontinuous change in molar volume as the 
system’s equilibrium environment crosses a curve indicates that the phase transition 
is first order. Critical points where the change in the order parameter goes to zero 
(e.g., at the end of the vapor-liquid coexistence curve) are second-order transitions. 

Connections to other types of phase diagrams can be obtained if order parame- 
ters are exchanged for intensive variables. Figure 17.2 is replotted with the order 
parameter V as the ordinate in Fig. 17.3b. The diagram predicts the phases that 
would exist for a molar volume fixed by a rigid container at different tempera- 
tures. The tie-lines connect equilibrium molar volumes at the same temperature 
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fn 
(4 

I 9? n n 
Gas (vapor) 

Temperature, T Temperature, T 

Figure 17.2: (a) Single-component phase diagram. (b) Shading represents the 
equilibrium value of a molar extensive quantity such as molar volume V (i.e.. light gray 
represents a large value and dark gray a small value) that apply to each phase at that 
particular P and T .  For phase transitions. the grayscale (or V )  could be used as an order 
parameter indicating phase. 

and pressure. An analog to a ternary diagram could be obtained by substituting 
molar entropy for the T-axis in Fig. 17.3. 

Order parameters may also refer to underlying atomic structure or symmetry. 
For example, a piezoelectric material cannot have a symmetry that includes an 
inversion center. To model piezoelectric phase transitions, an order parameter. 7, 
could be associated with the displacement of an atom in a fixed direction away from 
a crystalline inversion center. Below the transition temperature T,, the molar Gibbs 
free energy of a crystal can be modeled as a Landau expansion in even powers of 11 
(because negative and positive displacements, 7 ,  must have the same contribution to 
molar energy) with coefficients that are functions of fixed temperature and pressure, 

G(T, P, 77) = G,(T, P )  + a ( P ) ( T  - TC)q2 + B(P)v4 (17.4) 

The equilibrium state is entirely determined by the minima of G as a function of 
pressure and temperature. The equilibrium order parameter qeq is determined by 
the minima of G and the equilibrium molar free energy can be calculated explicitly. 

4 a 

Temperature, T Temperature, T 

(17.5) 

Figure 17.3: (a) Single-component P-T phase diagram. (b) Phase diagram obtained 
from ( a )  by plotting the molar volume, V ,  as an order parameter in place of pressure. The 
grayscale could indicate variations in an order parameter such as S. 
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where Eq. 17.6 is the free-energy change when a mole undergoes a phase transfor- 
mation from the nonpiezoelectric phase ( r ]  = 0) to a piezoelectric phase (q2 2 0). 
Atomic displacements of opposite sign, & r ] ,  correspond to different polarizations of 
the same piezoelectric phase. 

Naturally, the fixed composition phase transformations treated in this section 
can be accompanied by local fluctuations in the composition field. Because of the 
similarity of Fig. 17.3 to a binary eutectic phase diagram, it is apparent that compo- 
sition plays a similar role to other order parameters, such as molar volume. Before 
treating the composition order parameter explicitly for a binary alloy, a preliminary 
distinction between types  of order parameters can be obtained. Order parameters 
such as composition and molar volume are derived from extensive variables; any 
kinetic equations that apply for them must account for any conservation principles 
that apply to  the extensive variable. Order parameters such as the atomic dis- 
placement r]  in a piezoelectric transition, or spin in a magnetic transition, are not 
subject to any conservation principles. Fundamental differences between conserved 
and nonconserved order parameters are treated in Sections 17.2 and 18.3. 

17.1.2 Two-Component Systems 

For a binary A-B alloy, another independent parameter, X B  (or X A  = 1 - X B )  
must be added to the fixed-stoichiometry order parameters in the preceding section. 
The phenomenological form of the Landau expansion, Eq. 17.2, can be extended 
to  include X B  and has been used to catalog the conditions for many transitions in 
two-component systems [3]. 

The methods of constructing homogeneous molar free energies for phase dia- 
grams can also be used to construct first-order approximations of free-energy den- 
sities when a composition order parameter field is heterogeneous. Multicomponent 
phase diagrams can be accurately predicted from empirical, computed, or theo- 
retical models of the composition dependence of molar enthalpies and entropies of 
formation and mixing. Macroscopic models for molar free energies of mixing can 
be obtained from combinations of atomistic bond energies, crystal structure, and 
configurational and vibrational entropy. A simple example of ordering or cluster- 
ing of an A-B alloy on a b.c.c. lattice illustrates how composition and structural 
order parameters arise naturally in the construction of the homogeneous molar free 
energy. 

Decomposition and Order-Disorder Transformations on a B. C. C. Lattice. Suppose 
that two species, A and B ,  occupy a b.c.c. lattice. If unlike bonds have lower 
molar enthalpies than like bonds [i.e., HAB < ~ ( H A A  + H B B ) ] ,  then at low tem- 
peratures, ordered structures result in which the nearest-neighbors of A atoms are 

'In this section, the terms ordered structures, order parameters, and ordering transformations 
appear and may present some confusion. Unfortunately, these historic terms are in common 
use. An ordered structure typically indicates a regular site occupation pattern at  the microscopic 
scale. Ordering transformations are those associated with such regular microscopic patterns. 
Order parameters are coarse-grained measures that collectively indicate phase plus additional 
information indicating geometric configurations of the same phase-for example, at  antiphase 
boundaries. 
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predominately B atoms.2 At high temperatures, disordered structures should ap- 
pear because of the significant entropic contributions of the numerous disordered 
configurations but at  the expense of slightly increased molar enthalpies. In this 
case, the high-temperature phase is b.c.c. (A2, in Structurbericht notation) and, on 
cooling, there is a phase transition to the B2 structure (primitive-cubic ionic CsCl 
is the prototype of the B2 structure shown in Fig. 17.4). At this phase transition, 
there is a decrease of symmetry on the transformation to the ordered phase-the 
a/2(111) translational symmetry of the A2 phase is lost. An order parameter that 
indicates this symmetry loss would be a candidate to characterize an order-disorder 
transition on the b.c.c. lattice. An example of a structure that undergoes such an 
ordering transformation is P-brass (a Cu-Zn alloy). 

Figure 17.4: B2 ordering on a b.c.c. lattice where grayscale is associated with the 
composition at each site. B2 is a particular type of microscupic urcleriiig (of which CsCl is 
the prototype); the compositions are the same on all a-planes but differ from the composition 
on all the &planes. 

Considering Fig. 17.4, the development of the B2 structure creates two sublat- 
tices from the original A2 structure. One of the B2 sublattices consists of the b.c.c. 
unit-cell centers (indicated by ,B in Fig. 17.4) are displaced from the b.c.c. corners ( a  
in Fig. 17.4) by u/2(111). An ordering transformation produces sublattices, (Y and 
p, with differing site fractions, x$ and &. Their difference becomes a structural 
order parameter: 

q = -  X S - X P  (17.7) 

7 evolves from zero toward equilibrium finite values *qeq. Symmetric stable values 
exist because the b.c.c. corner sites are equivalent to the b.c.c. center sites-any 
result must be invariant to exchange of Q with p sublattices. Compositions on the 
two sublattices must be coupled to the local average composition, 

2 l (  4 

(17.8) 

2The molar enthalpy and the molar internal energy of bonding, H A B  and U A B ,  are related to the 
bond energies E A B  at constant pressure and a t  constant volume, respectively. 
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which is unchanged from the system’s average composition upon ordering. The 
order parameters 7) and X B  are derivable from microscopic values of X g  and X i ,  

However, if unlike bonds have higher molar enthalpies, low-temperature equilib- 
rium configurations will consist of two-phase A- and B-rich A2 regions. At higher 
temperatures, entropic contributions will favor complete mixing. Therefore, sys- 
tems that favor like bonds will tend to have a decomposition transformation upon 
cooling. As a result of a decomposition transformation, composition (i.e., X B  in a 
binary alloy, Eq. 17.8) plays the role of an order parameter and evolves into stable 
values indicated by tie-lines on a phase diagram. However, 7) in Eq. 17.7 remains 
zero during a decomposition reaction. 

A model for the homogeneous free energy of mixing and B2 ordering can be 
obtained with site occupation probabilities. In a homogeneous system, the probabil- 
ity, pg ,  of finding a B-species occupying an a-site is X g ;  similarly, from Eqs. 17.7 
and 17.8, 

pg = xg = x, + 7 

p; = 1 - xg = 1 - X B  - q 
p i  = xi = X B  - q  

(17.9) 

ppA = 1 - xg = 1 - X B  + 7) 

These probabilities must all lie between zero and one; this sets bounds on physical 
values for the structural order parameter 

1 
- x g < q < X ~  if O < X g < -  

2 (17.10) 
X g - l < q < l - X g  if - < X g < l  

The simplest approximation to the total entropy of mixing is the mean-field Bragg- 
Williams-Gorsky configurational entropy, proportional to C py lnpy [4]:3 

1 
2 

AS = -Nk (pg lnpg + p i  l n p i  + pg lnpg + pg lnpg) (17.11) 

If it can be assumed that mixing, decomposition, and ordering transformations 
occur at constant volume, an estimate of the internal energy, U ,  can be used to 
obtain the appropriate minimizing molar free energy F = U ;  TS .  A model for the 
total internal energy can be obtained from the nearest-neighbor bond energies of the 
three possible bond types EAA, EBB,  and EAB, and their populations calculated 
from site probabilities. Because each atom contributes four bonds, 

NAA = W ~ A A  = 4p;ppA = 4 [ ( I  - X B ) 2  - 17’1 

(17.12) 

3The reference state is the composition-weighted linear combination of pure A and B compo- 
nents. This approximation neglects vibrational entropy. Higher-order mean-field approximat,ions 
to  configurational entropy, known as the cluster-variation method, are known [5, 61. 
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The last two terms in U can be used as  a reference energy-the total internal energy 
of a system of composition XB that is divided into pure A and pure B portions. 
The change in internal energy due to mixing and ordering relative to this reference 
state is 

AU = E A A ( ~  - XB) + EBBXB - U 
( 17.13) 

The nearest-neighbor interaction coefficient, W = EAA + EBB - ~ E A B ,  and the 
temperature together characterize the molar free energy of mixing: 

= -w { [ E A A  + EBB - 2EAB][XB(XB - 1) -b q2]} 

A F  = - 4W [XB(XB - 1) + q2] 

1 (XB + 7 )  ln(XB + 77)  + (XB - 77) ln(XB - q )  
+(1 - XB + q ) l n ( l  - XB + q )  + (1 - XB - q ) l n ( l -  XB - q )  +kT [ 

= - 4 w  [q2 - XBXA] 

(1 7.14) 

The equilibrium order parameters Xgq and qeq minimize A F  subject to any sys- 
tem constraints. Supposing that the system’s composition is fixed, the method of 
Lagrange multipliers leads to a common-tangent construction for A F  with respect 
to  XB-or equivalently, equality of chemical potentials of both A and B. Two 
compositions, X:- and X 2 + ,  will coexist at equilibrium for average compositions 
XB in the composition range X2-  < XB < X;+ if they satisfy 

1 (XB + q )  1n(XB + 17) + (XB - 77) ln(XB - 7) 
f(XA + q )  1n(XA + 7 )  + ( X A  - 17) In(XA - 17) 

+kT [ 

The condition expressed by Eq. 17.15 pertains only if X2-  # X 2 + ;  it is automat- 
ically satisfied for fixed uniform compositions with variable order parameter (this 
situation appears below for B2 ordering). Because q is not constrained, 

(1 7.16) 

The symmetry of the particular model, Eq. 17.14, simplifies the equilibrium condi- 
tion, Eu. 17.15: 

(17.17) 

where X2* = 
parameters can be reduced to solutions of 

f AXiq. For this nearest-neighbor b.c.c. model, equilibrium order 

and 

(17.18) 

(17.19) 
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For the disordered (A2)  phases, qeq = 0, Eq. 17.19 is satisfied automatically, and 
equilibrium tie-lines are present if W < 0 and T < Tcrit = IW/kl, as illustrated in 
Fig. 17.5. In the nearest-neighbor model, ordered B2 solutions can appear at  any 
uniform composition X B .  Nonzero equilibrium structural order parameters appear 
only if W > 0 at  temperatures T satisfying 

(17.20) 

as illustrated in Fig. 17.5. 
The development of the miscibility gap for W < 0 and the antiphases (kqeq) for 

W > 0 have entirely different kinetic implications. For decomposition, mass flux is 
necessary for the evolution of two phases with differing compositions. Furthermore, 
interfaces between these two phases necessarily develop. The evolution of ordered 
phases from disordered phases (i.e., the onset of nonzero structural order parame- 
ters) can occur with no mass flux; macroscopic diffusion is not necessary. Because 
the q:q-phase is thermodynamically equivalent to the veg-phase, the development of 
77-phase in one material location is simultaneous with the evolution of 72-phase 
at  another location. The impingement of these two phases creates an antiphase 
domain boundary. These interfaces are regions of local heterogeneity and increase 
the free energy above the homogeneous value given by Eq. 17.14. The kinetic im- 
plications of macroscopic diffusion and of the development of interfaces are treated 
in Chapter 18. 

1 

T 
Tcrit  

0 

Figure 17.5: Phase diagrams for the nearest-neighbor bond-energy model for the b.c.c. 
lattice. (a) The temperature dependence of the decomposition reaction for W = EAA + 
E B B - ~ E A B  < 0.  A miscibility gap appears at temperatures below Tcrit = W / k  but qeq = 0 
at all compositions and temperatures. (b) B2 ordering transformations occur if W > 0 and 
T/TCrit < 4XAXB and are indicated by the onset of nonzero values of qeq. The qeq are 
symmetric about 77 = 0. The two values &qeq indicate equivalent ordered states where the 
a- and P-planes in Fig. 17.4 are exchanged. 
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The composition order parameter X B  is an example of a conserved order param- 
eter; it cannot increase or decrease locally without an opposite change elsewhere. 
The structural order parameter is an example of a nonconserved order param- 
eter-no spatial correlations in their variations are necessary. Energetic changes 
associated with the two different types of order parameters have already been dis- 
tinguished by the difference between the common-tangent condition (Eq. 17.18) 
and the global-’minimum condition expressed by Eq. 17.19. The changes in molar 
free energies for the two different types of order parameters are treated in the next 
section. 

17.2 MOLAR FREE-ENERGY CHANGES FOR CONSERVED AND 
NONCONSERVED ORDER PARAMETERS 

The composition or the number fraction of component B ,  X B ,  is an example of an 
order parameter that is conserved in a closed system. Figure 17.6 shows a molar 
free energy versus composition curve for a binary solution. The molar free energy 
for a solution at  any composition X B  can be written in terms of its partial molar 
quantities, F A ( X B )  and FB(XB)z4 

(17.21) 

0 xi xg 1 

Number fraction of component B, XH 

Figure 17.6: Molar free energy. F ( X g ) ,  as n function of X g  for a binary solution. 
Partial molar free energies for A and B a t  the composition X g  [i.e.. F A ( X ~ )  and F g ( X g ) ]  
are given by the intercepts at X B  = 0 and X g  = 1 of the line tangent t o  the curve F ( X B )  
at X g  = X g .  AF,, is the change in free energy that  occurs for a very large system of initial 
composition X i  if one mole of the original system is transformed to one mole of a new 
solution of composition X h  and the system is open and unconstrained so that  matter can 
be transferred in or out. A F ,  is the corresponding change that occurs if the  system is closed 
so that  its total composition is fixed. 

4The Helniholtz free energy. used here as an example of a molar free energy, is the appropriate 
minimizing functional for a system at fixed volume in equilibrium with a reservoir at fixed tem- 
perature. For different types of system constraints, F would be replaced with another appropriate 
molar free energy. 
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Consider a general system at composition X g .  If any of its subsystems (i.e., 
material portions) could transform to a new composition X b  without affecting the 
rest of the system, the change in the system’s total free energy .F would be simply 

A F  = F ( X L )  - F ( X g )  (17.22) 

for each transformed mole as indicated by A F ,  in Fig. 17.6. Such a change would 
be possible in a system that can exchange B with its environment-an open system 
for which no conservation principle applies. In a closed system, the total number 
of B, NB, is effectively conserved and such a change is not possible. Therefore, for 
any nonconserved parameter [, the change in molar free energy is 

A F  = F(J’ )  - F([o)  ( 17.2 3) 

In a closed system, where the numbers of A and B atoms are conserved, a change 
in any subsystem must affect the rest of the system-atoms must be exchanged 
internally to accomplish the transformation. For each mole transformed, the change 
in F for the X L  moles of the B component is [ F ~ ( x b ) - F ~ ( x g ) ] x L ,  with a similar 
term for the (1 - X L )  moles of the A component, 

which can be rewritten 

or 

A F  = F ( X L )  - F ( X g )  - ( X b  - X g )  (17.26) 

which is numerically equal to the distance indicated in Fig. 17.6 by AF,. Note 
that A F ,  is negative if at X B  = XL, the curve for F ( X B )  lies below the tangent; 
A F ,  is positive otherwise. Equation 17.26 holds for any composition Xb when the 
composition X g  is fixed. 

Consider a small fluctuation of composition (or any other order parameter that 
is conserved for a system), ~ X B  = X b  - X g .  Expanding F ( X B )  in ~ X B  yields 

Substitution of Eq. 17.27 into Eq. 17.26 gives 

(17.28) 

for the change in the molar free energy. Equation 17.28 indicates that when X B  is 
conserved, the variation in molar free energy is proportional to ( ~ X B ) ~ .  Therefore, 
a barrier to the growth of small variations exists whenever the second derivative in 
Eq. 17.28 is positive. 
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On the other hand, if [ is nonconserved, using Eq. 17.23 and expanding F(t"+b<) 
shows that the lowest-order term foi. the change in the molar free energy is 

(17.29) 

A decrease in the free energy can always be achieved by picking a variation d t  with 
a sign that makes the product in Eq. 17.29 negative. Therefore, if < is nonconserved, 
there is no barrier to  evolution to  a local minimum in the appropriate free-energy 
functional, and the system will evolve if there are kinetic mechanisms that enable 
such variations. 

17.3 CLASSIFICATION OF PHASE TRANSFORMATIONS: CONTINUOUS 
VERSUS DISCONTINUOUS TRANSFORMATIONS 

Figure 17.7a shows a typical molar free energy versus composition curve for a 
binary system exhibiting a miscibility gap. The corresponding equilibrium diagram 
is shown in Fig. 17.7b. If a homogeneous alloy in Region I of Fig. 17.7b is rapidly 
cooled into the miscibility gap and held there at To, it decomposes into solute-rich 
and solute-lean phases at the ends of the tie-line shown. If the alloy composition 
is only slightly higher than Xg' so that it is in the range where d 2 F / d X i  > 0, 
Eq. 17.28 shows that a free-energy barrier exists for any local region in the system 
to enrich itself progressively in solute-atom concentration. In addition, Fig. 17.6 
shows that if such a region could undergo a fluctuation corresponding to a large 
increase in local solute concentration, the free energy would decrease. In contrast, if 
the alloy composition is higher and in the range where d2F/dX$ < 0, a region of the 
specimen can progressively enrich itself and eventually form the equilibrium solute- 
rich phase as the free energy decreases continuously. The dividing line between 
these two types of behavior is set by the condition d 2 F / d X i  = 0 and is known as 
the chemical spinodal. This line is mapped in Fig. 17.7b. 

Phase transformations proceed only when there is an ultimate decrease in the 
free energy, and the considerations above show that two quite different types of 

X i '  X B  x;" 

T 

TO 

X B  

Figure 17.7: (a) Molar free energy, F ( X B )  vs. cornpositmion curve for a binary system 
exhibiting a miscibility gap. The corresponding equilibrium diagrani is shown in (b). The 
compositions of the a' and a" phases in equilibrium across the miscibility gap in (b) are 
obtained from common-tangent constructions at each temperature such as the one shown 
in (a). The points on the chemical spinodal in (b) correspond to points on the curve in (a) 
where a 2 F l a X i  = 0. 
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phase transformation can take place depending upon whether the composition is 
inside or outside the spinodal line in Fig. 17.7b. If the composition is outside the 
chemical spinodal (but still within the miscibility gap) there is a bulk free-energy 
barrier to the formation of the solute-rich phase in any local region, and the solute- 
rich phase can form only if such a region somehow becomes sufficiently enriched 
in solute atoms so that the free-energy barrier is overcome. Once the barrier is 
surmounted, the region can continue to develop into the equilibrium phase with 
a continuous decrease in the free energy. The only way that this can occur at  a 
sensible rate is by means of a fluctuation that produces a relatively large enrichment 
of composition in a small region, i.e., nucleation of the solute-rich phase must take 
place in a region of atomic dimensions (see Chapter 19). On the other hand, if the 
composition is within the chemical spinodal, there is no bulk free-energy barrier to 
the progressive formation of solute-rich regions, and the transformation takes place 
over large regions of the system with a continuous decrease in the free energy. 

This leads to  the general classification of continuous and discontinuous transfor- 
mations. 

Continuous transformations: In this type of transformation, the system is 
initially unstable, and an infinitesimal variation will initiate the transformation and 
the decrease of bulk free energy. The transformation can begin over large regions, 
and all volumes of a system can transform simultaneously. The beginning of the 
transformation involves a change that is small in degree but large in extent. Primary 
examples include spinodal decomposition and some order-disorder transformations 
in alloys that exhibit long-range order. 

Discontinuous transformations: In this type of transformation, there is a 
free-energy barrier to infinitesimal variations and the system is initially metastable. 
However, a sufficiently large variation can cause the free energy to decrease. The 
transformation therefore can be initiated at  a finite rate only by a variation that is 
large in degree but small in extent (i.e., nucleation is required). Examples include 
the formation of B-rich precipitates from a supersaturated A-B solution. 
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CHAPTER 18 

SPINODAL DECOMPOSITION AND 
0 R D E R-D I S 0 R D E R T RAN S FO R M AT I 0 N S 

Spinodal decomposition and certain order-disorder transformations are the two 
categories of continuous phase transformations. Both arise from an order parameter 
instability: in the case of spinodal decomposition, it is a conserved order parameter; 
for continuous ordering, it is a nonconserved order parameter. 

As spinodal and ordering transformations progress, order parameter gradients 
arise and the extra energy associated with these gradients must be reflected in 
a modified diffusion potential for the transformations. The evolution of spinodal 
decomposition and continuous ordering transformations is described by the Cahn- 
Hilliard equation and the Allen-Cahn equation, respectively. Both incorporate 
gradient-energy terms via the modified diffusion potential. 

Fine-scale, spatially periodic microstructures are characteristic of spinodal de- 
composition. In elastically anisotropic crystalline solutions, spinodal microstruc- 
tures are aligned along elastically soft directions to minimize elastic energy. Mi- 
crostructures resulting from continuous ordering contain interfaces called antiphase 
boundaries which coarsen slowly in comparison to the rate of the ordering trans- 
format ion. 

18.1 THE INTERDIFFUSIVITY AT UNSTABLE COMPOSITIONS 

Because composition is a locally-conserved order parameter, it cannot change in 
one location without affecting its neighborhood-fluxes are required to change a 
composition field. For example, in a binary alloy, the concentration field CB is re- 
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lated to the composition field ( C B  = X B / ( R ) )  and the flux of B is linearly related 
to its chemical potential gradient by Eq. 3.7.l The fluxes that produce a concen- 
tration change at some point necessarily affect concentrations in the neighborhood 
of that point. This coupling between the space and time behavior of concentration 
is encoded in Fick's first and second laws for a binary alloy by 

JB = -DVCB (18.1) 
- 

where the flux, &, is relative to the V-frame described in Section 3.1.3, and 

(18.2) 

which is linearized by expanding the interdiffusivity 2, about an average composi- 
tion. The exact form is given by Eq. 3.25: 

E % (R) (cADB + CBDA)  = X A D B  + X B D A  
(18.3) 

= ( X A  *DB + X B  *DA) d In X A  

If 5 > 0, Eq. 18.2 implies that a system with a uniform composition X g ( Z )  = 

(Cl)cgnst would not evolve. However, if < 0, small composition fluctuations 
would grow without bound: a system described by Eq. 18.2 would develop into 
many unphysical and finely spaced large fluctuations in composition. 

The stability conditions for a conserved order parameter are developed in Sec- 
tion 17.2, and Eq. 17.28 relates this condition to the sign of d 2 F / d X z .  If a system 
is at a nearly uniform composition X B  where the second derivative is negative, 
the system is unstable and should evolve. As shown below, the sign of D ,  deter- 
mined by the sign of d 2 F / d X i ,  predicts the decomposition of a uniform unstable 
composition. However, Eqs. 18.1 and 18.2 do not account for interfacial energies 
between the developing phases. The correction to Eqs. 18.1 and 18.2 due to inter- 
facial energies is accomplished through the addition of a gradient-energy term and 
is addressed in Section 18.2. 

To show how the sign of 6 is related to the sign of d2F/aX$ ,  consider chemical 
diffusion in a substitutional A-B crystalline material, as described in Section 3.1.3. 
The fluxes fz and Jg in the C-frame are given by Eq. 3.7 and can be written in 
the forms 

1: = -LAV/LA J Z  = -LBV/LB (18.4) 

where L A  = LAA - (CA/CB)LAB and L B  = LBB - (CB/CA)LBA. Using Eq. 3.15, 
the corresponding fluxes in the V-frame are related to the fluxes in the C-frame by 

(18.5) 

For simplicity, we assume in this chapter that the atomic volumes of A and B are 
equal and constant (i.e., C ~ A  RB z R = constant).2 Then, using Eqs. 3.21, 18.4, 
and 18.5, solving for J Z ,  and simplifying the result using Eq. 3.9 yields 

JZ  = ~ ~ ( C A L B V P B  - C B L A V P A )  (18.6) 

See Section A.2 for this and similar conversions between composition and concentration. 
2These approximations were eliminated by Hilliard [l], and a corresponding derivation that utilizes 
methods developed in Section 3.1.3 appears in Exercise 18.1. 
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Equation 18.6 can be simplified using the identity 

(18.7) 

In addition, because of the Gibbs-Duhem relation, C A ~ ~ A  + c ~ d p ~  = 0, the 
chemical potential gradients are interdependent: 

CALBVPB - C B L A V ~ A  = R[(c%LB + c ~ L A ) ( v ~ B  - v ~ A )  

+ (CALB - CBLA)(cAvpA + C B V P B ) ]  

C A  V ~ A  -I- C B  V ~ B  = O (18.8) 

With the aid of Eqs. 18.7 and 18.8, the flux of B in the volume-fixed frame is then 

7 -  J B  - -R2 ( ~ L B  + &A) v(pB - P A )  

-MV(PB - P A )  

(18.9) 

where M = R2 ( ~ L B  + c ~ L A )  must be positive to satisfy the basic postulate of 
irreversible thermodynamics, ir 2 0 (Eq. 2.16). Comparison of Eqs. 18.2 and 18.9 
shows that 6 is negative when the system is unstable to small concentration fluc- 
tuations, a2F/8X;  < 0. This condition occurs during spinodal decomposition, and 
the negative interdiffisivity gives rise to uphill d i f l ~ s i o n . ~  

However, a negative interdiffusivity makes the diffusion equation ill-posed. With 
a positive diffusion coefficient, the amplitude of a composition wave decays at a rate 
proportional to the square of the inverse wavelength (see Section 5.2.4). Conversely, 
if the diffusion coefficient is negative, the smallest wavelengths will grow the most 
rapidly. Consider two concentration profiles that are nearly the same except for 
small differences in their highest-order Fourier coefficients; after a short time, the 
profiles will be very different if the diffusion coefficient is negative. Therefore, when 
6 < 0, the behavior of the concentration profile is not robust with respect to small 
variations in the initial data and the problem is ill-posed. However, as shown in the 
following section, interfacial energy terms can be included by associating additional 
energy with the concentration gradients, and their inclusion regularizes the diffusion 
equation when D < 0 (i.e., the resulting equation is not ill-posed). 

18.2 FREE ENERGY OF INHOMOGENEOUS SYSTEMS: DIFFUSE 
INTERFACES AND THE POTENTIAL FOR TRANSFORMATION 

The conditions for continuous phase transformations (described in Chapter 17) 
derive from considerations of the molar free energy of a homogeneous, spatially uni- 
form system with no interfaces. For phase transformations involving nonconserved 

3Spinodals occur at points where second derivatives vanish and for molar free energy and compo- 
sitions give rise to the sharp “cusps” in Fig. 17.1 [a] .  Spinodal derives from the Latin spina, for 
thorn (the plural, spinae, meant difficulties or perplexities). 
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order parameters, such as for A2 -+ B2* ((qeq = 0) -+ ( q  = kqeq)), there is no 
bias to  form one ordered B2 variant over another (the two equivalent variants are 
indicated by B2*; see Fig. 17.4). The two equivalent variants emerge at random 
locations, and interfaces develop as one impinges upon the other. For conserved 
order parameters, such as composition, interfaces between phases on phase-diagram 
tie-lines necessarily appear. 

In the absence of interfaces, a linear kinetic theory could be developed where 
the transformation driving force derives from decreases in homogeneous molar free 
energy as derived in Eqs. 17.28 and 17.29 for the conserved and nonconserved cases. 
However, at the onset of a continuous phase transition, the system is virtually all 
interface between new phases or variants. For example, when equivalent variants 
emerge in adjacent regions during ordering, gradients in the order parameter are 
generated; these constitute emerging diffuse antiphase boundaries. Neglecting the 
contribution of these interfaces leads to ill-posed linearized kinetics, as indicated 
by the negative interdiffusivity in Eq. 18.9. 

The theory for the free energy of inhomogeneous systems incorporates contribu- 
tions from interfacial free energy through the diffuse interface method [3]. Interfaces 
are defined by the locations where order parameters change and can be located by 
the regions with significant order-parameter gradients. Interfacial energy appears 
in the diffuse-interface methods because order-parameter gradients contribute extra 
energy. 

18.2.1 

Let J(F) represent either a conserved or a nonconserved order parameter, such as 
C B ( F )  or q(F). Also, let the field f(F) = f(J(F),VJ(F)) be the free-energy density 
(energy/volume) at position F. The homogeneous free-energy density, f = 
f (J, VJ = 0), is the free-energy density in the absence of gradients and is related to 
molar free energies, F(J) = N,(R) f h o m ( J ) ,  used to construct phase diagrams such 
as Figs. 17.5 and 17.7. Expanding the free-energy density about its homogeneous 
value in powers of  gradient^,^ 

Free Energy of an inhomogeneous System 

f (e ,  VC) = f(J, 0 )  + 2 * VJ + VJ . K VJ + . . . (18.10) 

where 

(18.11) 

is a vector evaluated at zero gradient, and K is a tensor property known as the 
gradient-energy coefficient with components 

(18.12) 

The free-energy density should not depend on the choice of coordinate system [i.e., 
f (J, 05) should not depend on the gradient's direction] and therefore 2 = 0 and K 
will be a symmetric t e n ~ o r . ~  Furthermore, if the homogeneous material is isotropic 

4There are expansions that contain higher-order spatial derivatives, but the resulting free energy 
is the same as that  derived here [I, 41. 
51f the homogeneous material has an inversion center (center of symmetry), 2 is automatically 
zero. 
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or cubic, K will be a diagonal tensor with equal components K .  The free-energy 
density will be, to  second order, 

f ( E ,  VE) = fhO"(E) + KVE ' VE = fhO"(E) + KIVEI2 (18.13) 

The free-energy density is thus approximated as the first two terms in a series 
expansion in order-parameter gradients: the first term is related to homogeneous 
molar free energy and the second is proportional to  the gradient squared. 

In the expansion that leads to Eq. 18.13, it is assumed that the free energy varies 
smoothly from its homogeneous value as the magnitude of the order-parameter 
gradient increases from zero. This assumption is usually correct, but there may 
be cases that include a lower-order term proportional to lVSl if the free-energy 
density has a cusp at  zero gradient. Such cusps appear in the interfacial free 
energy at  a faceting orientation; they are also present a t  small tilt-misorientation 
grain-boundary energies [5], Models with crystallographic orientation as an order 
parameter incorporate gradient magnitudes, lV(l, into the inhomogeneous free- 
energy density [6]. 

18.2.2 

There are two energetic contributions to interfaces in systems that undergo decom- 
position and ordering transformations such as illustrated in Figs. 17.5 and 17.7. 
One is due to  the gradient-energy term in Eq. 18.13; this contribution tends to 
spread the interface region and thereby reduce the gradient as the order parameter 
changes between its stable values in adjacent phases. A second contribution derives 
from the increased homogeneous free-energy density associated with the "hump" 
in Fig. 18.1, and this term tends to narrow the interface region. Thus, systems 
modeled with Eq. 18.13 contain diffuse interfaces where the order parameter varies 
smoothly as in Fig. 18.2. Equilibrium order-parameter profiles and energies can be 
determined by minimizing F, the volume integral of Eq. 18.13 [l, 41. 

Figure 18.2a shows a planar interface between two equilibrium phases possessing 
different conserved order parameters corresponding to local free-energy density min- 
ima in their order parameters as in Fig. 17.7a. Figure 18.2b shows a corresponding 
profile of the distribution of order between two identical ordered domains possessing 
different nonconserved order parameters corresponding to local free-energy density 

Structure and Energy of Diffuse Interfaces 

I i  I 

Figure 18.1: 
which has the maximum value A f,!,;:. 

Properties of diffuse interfaces expressed in ternis of the function Afho"(<), 
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Figure 18.2: (a) Composition and (b) order variations across diffuse. planar interfaces. 
The profiles c(z) and q(z) are continuous. In (a). the grayscale image represents the spatial 
variation of a conserved variable, and the quantities ca' and ca" are the equilibrium values 
in the bulk phases at large distances from the interface (see Fig. 17.7). In (b). the drawing 
below the profile illustrates the spatial variation of a nonconserved variable such as local 
magnetization in the region around a domain wall. 

minima. Both kinds of interfaces can coexist, so that the variations of CB and 77 
are coupled as in Fig. 18.3. In all cases, the distribution of the order parameter (or 
order parameters) minimizes the total free energy of the system. F. The coupled- 
parameter case can be treated as an extension to the theory so that the free energy 
is a function of both CE and 17. 

t 
'I 
or 
c 

X- 

C 

Figure 18.3: 
antiphase boundary with segregation. 

Coupled system of order and concentration parameters representing mi 
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Minimizing 3 = f (<, V E ) d V  produces equilibrium interface profiles [(q. An 
equilibrated planar interface is characterized by its excess energy per unit area, y, 

, = 2 l :  ,/-,d[= ,/=A[ (18.14) 

and a characteristic width 6, 

(18.15) 

where A fhom is the increase in free-energy density relative to a homogeneous system 
at its equilibrium values of E (i.e., relative to the common-tangent line) and A f g T  
is the maximum value of Afhom (indicated in Fig. 18.1). y and 6 can be measured 
and their values uniquely determine the model parameters, A f z T  and K .  

18.2.3 Diffusion Potential for Transformation 

The local diffusion potential for a transformation, @(q, at a time t = to ,  can be 
determined from the rate of change of total free energy, 3, with respect to its 
current order-parameter field, [ (F,  to) .  At time t = t o ,  the total free energy is 

3 ( t o )  = s, [fhom(C(F, to ) )  + KV5 .V5] d V  (18.16) 

which defines 3 as a functional of [(F‘,  to) .s If the order parameter is changing with 
local “velocity” [i.e., such that [ (F,  t )  = c(F, t o )  + ((7, to ) t ] ,  the rate of change 
of F can be summed from all the contributions to f([, V [ )  due to changes in the 
order-parameter field and its gradient, 

Using the relation 

Eq. 18.17 can be written 

( 18.17) 

(18.18) 

Applying the divergence theorem to the second integral in Eq. 18.19, 

(18.20) 
d 3  i t O  = s, ( :;(‘) - 2KV2[) 4 d V  + 2K 1, i V [  d 2  

where aV is the oriented surface bounding the volume V .  The boundary integral on 
the right-hand side of Eq. 18.20 is negligible. It vanishes identically if i (8V)  = 0, 

‘Some readers will recognize this development as the calculus of variations [7]. A functional is a 
function of a function; in this case, F takes the function [ (F,  t o )  and maps it to a scalar value 
that is numerically equal to the total free energy of the system. 
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which is the case if [ ( d V )  has fixed boundary values (Dirichlet boundary condi- 
tions), or if the projections of the gradients onto the boundary vanish (Neumann 
boundary conditions), If neither Dirichlet or Neumann conditions apply, the bound- 
ary integral will usually be insignificant compared to the volume integral for large 
systems (e.g., if the volume-to-surface ratio is greater than any intrinsic length 
scale). 

Therefore, if the order parameter changes by a small amount 6[ = ( d t ,  the 
change in total free energy is the sum of local changes: 

The quantity 

(18.2 1) 

(18.22) 

is the localized density of free-energy change due to a variation in the order- 
parameter field, 6[, and is therefore the potential to change [. Equation 18.22 
is the starting point for the development of kinetic equations for conserved and 
nonconserved order-parameter fields. 

18.3 EVOLUTION EQUATIONS FOR CONSERVED AND 
NON-CONSERVED ORDER PARAMETERS 

18.3.1 Cahn-Hilliard Equation 

The Cahn-Hilliard equation applies to conserved order-parameter kinetics. For the 
binary A-B alloy treated in Section 18.1, the quantity in Eq. 18.22 is the change 
in homogeneous and gradient energy due to a change of the local concentration CB 

and is related to flux by 

(18.23) 

where the subscript is affixed to the gradient energy coefficient as a reminder that 
the homogeneous system is expanded in composition and its gradient. 

Therefore, the accumulation gives a kinetic equation for the concentration CB (T, t )  
in an A-B alloy: 

2 K C V 2 c ~ ] }  (18.24) 
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which is the Cahn-Hilliard equation [3]. The Cahn-Hilliard equation is often lin- 
earized for concentration around the average value of the inherently positive kinetic 
coefficient M, = ( M )  = ( 5 / [ 0 ( a 2 P o m  )/(ax;)]), defined in Eq. 18.9: 

1 2 horn 
~ dCB = Ado [ ~ V ' C B  - 2 K , V 4 c ~  
at (18.25) 

The first term on the right-hand side in Eq. 18.25 is diffusive. The second term 
accounts for interfacial-energy penalties from concentration gradients. 

18.3.2 Allen-Cahn Equation 

The Allen-Cahn equation applies to the kinetics of a diffuse-interface model for a 
nonconserved order parameter-for example, the order-disorder parameter ~ ( 7 ,  t )  
that characterizes the A2 --t B2' phase transformation treated in Section 17.1.2. 
The increase in local free-energy density, @(F) from Eq. 18.22, does not require any 
macroscopic flux.7 In a linear model, the local rate of change is proportional to its 
energy-density decrease, 

(18.26) 

where Mq is a positive kinetic coefficient related to the microscopic rearrangement 
kinetics. According to the Allen-Cahn equation, Eq. 18.26, 77 will be attracted to 
the local minima of fhorn.  Depending on initial variations in 77, a system may seek 
out multiple minima at a rate controlled by Mq. The second term on the right-hand 
side in Eq. 18.26 will govern the profile of 77 at the antiphase boundary and will 
cause interfaces to move toward their centers of curvature [8]. 

18.3.3 

Numerical models of conserved order-parameter evolution and of nonconserved 
order-parameter evolution produce simulations that capture many aspects of ob- 
served microstructural evolution. These equations, as derived from variational prin- 
ciples, constitute the phase-field method [9]. The phase-field method depends on 
models for the homogeneous free-energy density for one or more order parameters, 
kinetic assumptions for each order-parameter field (i.e., conserved order parameters 
leading to  a Cahn-Hilliard kinetic equation), model parameters for the gradient- 
energy coefficients, subsidiary equations for any other fields such as heat flow, and 
trustworthy numerical implementation. 

The phase-field simulations reproduce a wide range of microstructural phenom- 
ena such as dendrite formation in supercooled fixed-stoichiometry systems [lo], 
dendrite formation and segregation patterns in constitutionally supercooled alloy 
systems [ll], elastic interactions between precipitates [12], and polycrystalline so- 
lidification, impingement, and grain growth [6]. 

Numerical Simulation and the Phase-Field Method 

'This ordering transition occurs at  constant composition and is accomplished by microscopic 
re-arrangement of atoms into two sublattices. 



442 CHAPTER 18: SPINODAL AND ORDER-DISORDER TRANSFORMATIONS 

The simple two-dimensional phase-field simulations in Figs. 18.4 and 18.5 were 
obtained by numerically solving the Cahn-Hilliard (Eq. 18.25) and the Allen-Cahn 
equations (Eq. 18.26). Each simulation’s initial conditions consisted of unstable 
order-parameter values from the “top of the hump” in Fig. 18.1 with a small spatial 

Figure 18.4: Example of numerical solution for the Cahn-Hilliard equation, Eq. 18.25. 
demonstrating the kinetics of spinodal decomposition. The system is initially near 
an unstable concentration, (a), and initially decomposes into two distinct phases with 
compositions ca (black) and cB (white) with a characteristic length scale, ( c )  and (d). 
Subsequent evolution coarsens the length scale while maintaining fixed phase fractions. The 
effective time interval between images increases from (a)-(f). 

Figure 18.5: Example of numerical solution for the Allen-Cahn equation, Eq. 18.26, for 
an order-disorder transition such as A2 + B2* .  Initial data are near the disordered state. 
7 = 0 (gray) in (a). The system evolves into two types of domains (shown in black and white) 
with antiphase boundaries (APBs) separating them. The phase fractions are not fixed. The 
local rate of antiphase boundary migration is proportional to interface curvature [8. 131. The 
effective time interval between images increases from (a)-(f). 
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variation. In each simulation, the magnitude of the order parameter is indicated by 
grayscale. Initial medium gray values correspond to the unstable initial conditions. 

The characteristics of the initial evolution during spinodal decomposition or 
order-disorder transformations can be predicted by the perturbation analyses pre- 
sented in the following section. 

18.4 INITIAL STAGES OF DECOMPOSITION AND ORDER-DISORDER 
TRANSFORMATIONS 

18.4.1 

A homogeneous free-energy density function fhom(cg) that has a phase diagram 
similar to Fig. 17.7b has the form 

Cahn-Hilliard: Critical and Kinetic Wavelengths 

l6f%F [(cg - C")(Cg - C P ) ]  2 
fhoycg)  = 

(CP - ca)4 
(18.27) 

with stable (common-tangent) concentrations located at  its minima C" and cP and 
a maximum of height fkaT at cg = co E (c" + cp)/2. Suppose that an initially 
uniform solution at  CB = co is perturbed with a small one-dimensional concentra- 
tion wave, cg(z , t )  = co + e(t)sinPz, where /3 = 2n/X.  Substituting cg(T;t) into 
Eq. 18.25 and keeping the lowest-order terms in e(t) yields 

- [lSf&: - 2KcP2(cP - e ( t )  (18.28) de(t) - MOP2 - 
dt (cP - c " ) ~  

so that 

(18.29) 

where the sign of the amplification factor R(P) indicates whether a fluctuation 
will grow or not [i.e., only composition fluctuations wit.h wavelengths that satisfy 

I 

R(P) > 01, or 

d fkY 2Kc 

rr x > Xcrit = -(cP - c") - 
2 

(18.30) 

will have dcldt > 0 and will grow. Taking the derivative of the amplification factor 
in Eq. 18.28 with respect to p and setting it equal to zero, the fastest-growing 

(18.31) 

The characteristic length scale in the early stage of spinodal decomposition will 
correspond approximately to this wavelength.8 

sReaders may recognize an analogy to  the critical and fastest-growing wavelengths derived for 
surface diffusion and illustrated in Fig. 14.5. Both the surface diffusion equation and the Cahn- 
Hilliard equation are fourth-order partial-differential equations. The Allen-Cahn equation has 
analogies to  the vapor transport equation. These analogies can be formalized with variational 
methods [14]. 
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18.4.2 Allen-Cahn: Critical Wavelength 

A homogeneous free-energy density function f ho"(r]) that has an order-disorder 
transition similar to  Fig. 18.6b has the form 

(18.32) 

with local minima at r]  = f1 and a local maximum at r]  = 0. 
Suppose that the system is initially uniform with an unstable disordered struc- 

ture (i.e., r ]  = 0). For instance, the system may have been quenched from a high- 
temperature, disordered state. r]  = f l  represents the two equivalent equilibrium 
ordered variants. If the system is perturbed a small amount by a one-dimensional 
perturbation in the z-direction, r](q = b ( t )  sin(pz). Substituting this ordering per- 
turbation into Eq. 18.26 and keeping the lowest-order terms in the amplification 
factor, b ( t ) ,  

(18.33) 

(18.35) 

which is about four times larger than the interface width given by Eq. 18.15. 
Note that the amplification factor is a weakly increasing function of wavelength 

(asymptotically approaching 4M, fk; at  long wavelengths). This predicts that the 
longest wavelengths should dominate the morphology. However, the probability of 
finding a long-wavelength perturbation is a decreasing function of wavelength, and 
this also has an effect on the kinetics and morphology. 

Figure 18.6: (a) Free energy vs. nonconserved order parameter, q, at point   TO,^) 
where the ordered phttse is stable. (b) Corresponding phase diagram. The ciirve is the locus 
of order-disorder transition temperatures above which q c q  becomes zero. The equilibrium 
values of the order parameters, A$q, are the values that would be achieved at equilibrium in 
two equivalent variants lying on different sublattices and separated by an antiphase boundary 
as in Fig. 18 .7~ .  
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It is instructive to contrast the nature of the evolving early-stage morphologies 
predicted by Eq. 18.25 (for spinodal decomposition) and Eq. 18.26 (for ordering) and 
illustrated by the simulations in Figs. 18.4 and 18.5. In spinodal decomposition, the 
solution to the diffusion equation gives rise to a composition wave of wavelength 
A,,, given by Eq. 18.31. The decomposed microstructure is a mixture of two 
phases with different compositions separated by diffuse interphase boundaries (see 
Fig. 18.7b). 

In continuous ordering, the solution to the diffusion equation gives rise to a wave 
of constant composition in which the order parameter varies. The theory does not 
predict that the order wave will have a “fastest-growing” wavelength-rather, it 
indicates that the longer the wavelength, the faster the wave should develop. The 
evolving structure will consist of coexisting antiphase domains, one with positive 71 
and one with negative q, separated by diffuse antiphase boundaries (see Fig. 18.7~) .  

The crystal symmetry changes that accompany order-disorder transitions, dis- 
cussed in Section 17.1.2, give rise to diffraction phenomena that allow the transitions 
to be studied quantitatively. In particular, the loss of symmetry is accompanied by 
the appearance of additional Bragg peaks, called superlattice reflections, and their 
intensities can be used to measure the evolution of order parameters. 

(a) Random 

< Diffuse 2 
interfaces 

Spinodal 

Ordered 

APBs -L)( 

Figure 18.7: Interfaces resulting from two types of continnous transformatioii. (a) Initial 
structure consisting of ratidoirily mixed alloy. (b) After spinodal decomposition. Regions 
of R-rich and B-lean pliaves separated by diffuse interfaces formed as a result of long-range 
diffusion. ( c )  After an ordering transforniatiori. Equivalent ordering variants (domains) 
separated by two antiphase boundaries (APBs). The APBs result from A and B atomic 
rearrangement onto different sublattices in each domain. 

18.5 COHERENCY-STRAIN EFFECTS 

The driving force for transformation, @ in Eq. 18.22, was derived from the to- 
tal Helmholtz free energy, and it was assumed that molar volume is independent 
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of concentration or structural order parameter. However, if an order-parameter 
fluctuation produces internal volume fluctuations, the differential expansions or 
contractions will produce internal strains, and additional strain-energy terms must 
be considered in the energetics leading to Eq. 18.21. 

In crystalline solutions, the developing interfaces are initially coherent-strains 
are continuous across interfaces. Unless defects such as anticoherency dislocations 
intervene, the interfaces will remain coherent until a critical stress is attained and 
the dislocations are nucleated. For small-strain fluctuations, the system can be 
assumed to remain coherent and the resulting elastic coherency energy can be de- 
rivedeg 

For example, consider a binary alloy in which the stress-free molar volume is 
a function of concentration, V(CB) .  The linear expansion due to the composition 
change can be inferred from diffraction experiments under stress-free conditions 
( Vegard's efect) and is characterized by Vegard's parameter, Q, [e.g., in cubic or 
isotropic crystals egFo = eU=O = E Z ~ O  = Q,(C - CO)].  The assumption of coherency 
implies that the total strain in the interfacial planes is zero. If a planar composition 
fluctuation perturbation of the form 

yy. 

CB(Z) = co + sccospz (18.36) 

is postulated and the material is elastically isotropic, the total strain, ciYt, will 
correspond to the sum of the strain due to the composition change, E;=O, and the 
elastic strain due to the coherency stresses, ezp (i.e., €tot = EU=O + E??). Then, 
using the equations of linear isotropic elasticity, lo 

23 23 

z Z  - cospz and €tot - tot - tot - tot - tot - 
xx - eyy - exy - eyr  - E , ,  - 0 (18.37) €tot - 

1 - v  

The elastic strains, e:?, required to satisfy Eq. 18.37 are 

2v 
1 - u  

cos p z  zZ - cy,sc- 

xx - fyy - -Qc 6c cos p z  

= o  xy - Eyz - ZX 

€elas - 

€elas - elas - (18.38) 

€elas - elas - €elas 

where u is Poisson's ratio. The corresponding elastic stresses are given by u = 
CEelas  . where C is the fourth-rank stiffness tensor: 

uzz = 0 

uxz = uyy = --Cy,sc- 

uzy = uyz = uzz = 0 

cos pz (18.39) 
E 

1 - u  

9J.W. Cahn's early contributions to elastic coherency theory were motivated by his work on 
spinodal decomposition. His subsequent work with F. Larch6 created a rigorous thermodynamic 
foundation for coherency theory and stressed solids in general. A single volume, The Selected 
Works of John W. Cahn [15], contains papers that provide background and advanced reading for 
many topics in this textbook. This derivation follows from one in a publication included in that 
collection [16]. 
"Methods to  calculate coherency stresses in anisotropic materials, and an example calculation 
for cubic materials, have been published [17]. 
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where E is Young’s elastic modulus. Therefore, the elastic coherency strain-energy 
contribution to the total energy is 

(18.40) 

The final equality in Eq. 18.40 demonstrates that the contribution to coherency 
energy is independent of wavelength and direction. 

The coherency energy modifies Eqs. 18.21 and 18.22 as follows: 

and the Cahn-Hilliard equation linearized in C B ,  corresponding to Eq. 18.25, in- 
cluding coherency effects for elastic materials, is 

where the first equality gives the isotropic elastic contribution explicitly and the 
second defines a general coherency modulus, Y ,  for anisotropic materials [l, 171. 

The coherency strain energy introduces an additional barrier to spinodal decom- 
position, which causes a shift on the temperature-composition phase diagram of the 
chemical spinodal,  defined by d2  f h o ” / d c i  = 0,  to the coherent spinodal, defined by 

+ 2aZY = 0 d2 f 
d C i  

(18.43) 

as in Fig. 18.8 

t 
T 

Q Coexistence 

Figure 18.8: Relation between chemical and coherent spinodals. 

An additional effect of undercooling on the kinetics and microstructure of spin- 
which odal decomposition arises from the temperature dependence of d2 f 
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is approximately linear near the chemical spinodal temperature [ l ] .  Because 2azY 
is always positive, the coherent spinodal lies below the chemical spinodal in the T- 
X diagram. The depression AT of the coherent spinodal below the consolute point 
can be calculated (Eq. 18.43) for various systems. In Al-Zn, AT is approximately 
20 K; in Au-Ni, it is approximately 400 K. 

In crystalline solids, only coherent spinodal decomposition is observed. The 
process of forming incoherent interfaces involves the generation of anticoherency 
dislocation structures and is incompatible with the continuous evolution of the 
phase-separated microstructure characteristic of spinodal decomposition. Systems 
with elastic misfit may first transform by coherent spinodal decomposition and 
then, during the later stages of the process, lose coherency through the nucleation 
and capture of anticoherency interfacial dislocations [18]. 

18.5.1 

Microstructural length scales that initially arise from uniform, but unstable, order 
parameters are readily understood by the perturbation analyses that lead to the 
amplification factor R(P) in Eqs. 18.28 and 18.34. When a system is anisotropic 
such as in a elastically coherent material, the perturbation’s behavior may depend 
on its direction with respect to the material’s symmetry axes. 

Order-parameter fluctuations can be generalized by introducing the wave-vector 
p’ in a Fourier representation, 

Generalizations of the Cahn-Hilliard and Allen-Cahn Equations 

(18.44) 

where 

(18.45) 

are the amplitudes associated with each Fourier mode 8. Each Fourier mode is 
independent in a linear case. For example, when Eq. 18.44 is inserted into the 
linearized Cahn-Hilliard equation, Eq. 18.42, 

-$.z 
A(P) = “(4 - (01 e d z  - ‘S 

where 
2 horn 

R(6)  = -Mo (% + 2 ~ 2  Y(fi) + 2Kc1612) I6I2 (18.47) 

Equation 18.47 indicates how the amplification factor depends on the mode p’ as 
well as the direction f i  = 

The p dependence of the amplification factor in an elastically isotropic crystal 
(for which R is independent of the direction of 6) is plotted for a temperature 
inside the coherent spinodal in Fig. 18.9. For p < &.it, the amplification factor 
R(P) > 0 and the system is unstable-that is, the composition waves in Eq. 18.44 
will grow exponentially. The wavenumber pmsx, at which aR(p)/dp = 0, receives 
maximum amplification and will dominate the decomposed microstructure. Outside 
the coherent spinodal, where d2fhorn/dc~$2c$Y(fi) > 0, all wavenumbers will have 
R(P) < 0 and the system will be stable with respect to the growth of composition 
waves. 

through the anisotropy in Y .  



18.5: COHERENCY-STRAIN EFFECTS 449 

Figure 18.9: 
at a temperature inside the coherent spinodal where d2fhorn/dcg + 2cy: Y < 0. 

Amplification factor vs. wavenumber plot for an elastically isotropic crystal 

The solution of Eq. 18.46 is 

A ( 6 ,  t )  = A($, O)eH("' (18.48) 

which is a generic form for linear perturbation analysis. At least two sources of 
linearization lead to Eq. 18.48. As in the steps leading from Eq. 18.24 to Eq. 18.25, 
averaging is performed so that the kinetic equations are linear, and the perturbation 
modes are independent and linear in a small parameter. 

The linear perturbation analyses reliably predict initial behavior and charac- 
teristic length scales. Equation 18.48 does not predict behavior at  longer times, 
as nonlinearities and Fourier mode-coupling intervene. Numerical methods permit 
simulation of specific features and trends, such as the coarsening of the microstruc- 
tural length scales in Figs. 18.4 and 18.5, which can be characterized, visualized, 
and understood. Furthermore, direct insight into the evolution path is obtained 
through physical considerations of energy functionals, Eqs. 18.21 and 18.41. 

Because the kinetic equations are derived from variational principles for the total 
free energy, the total free energy always decreases.ll The equilibrium state natu- 
rally has the lowest total free energy. For the total free energy given by Eq. 18.21, 
equilibrium corresponds to the phase composition and fractions predicted by the ho- 
mogeneous free energy that minimizes total interfacial energy. For a conserved order 
parameter, energy-minimizing interfacial configurations have uniform mean curva- 
ture such as a planar or spherical interface.12 For a nonconserved order parameter, 

' the energy-minimizing configuration is no interface (i.e., a single variant). However, 
there are many locally minimizing microstructures in either case at  which kinetic 
processes halt. Nevertheless, the coarsening observed in Figs. 18.4 and 18.5 can 
be rationalized by considerations of the differences between the early microstruc- 
tures predicted by perturbation analyses, Eq. 18.48, and the microstructures that 
minimize the total free energy functional. I 

llFunctionals that  are monotonic, such as the appropriate total free energy, are called Lyapanow 
functions, and their existence simplifies global analysis. In the isothermal and constant-volume 
cases treated in this chapter, the total Helmholtz free energy is the Lyapanov function. However, 
other Lyapanov functions apply as the system constraints are generalized [9]. 
lZBecause K does not depend on the direction of the order-parameter gradient in Eq. 18.21, the 
interfacial energy is isotropic, and energy-minimizing partitions of space are constant-curvature 
surfaces. If the interfacial energy is anisotropic, energy-minimizing interfacial configurations have 
constant weighted mean curvature (see Appendix C ) .  



450 CHAPTER 18: SPINODAL AND ORDER-DISORDER TRANSFORMATIONS 

18.5.2 

Microstructural characteristics of spinodal decomposition are periodicity and align- 
ment. Periodicity arises from wavelengths associated with the fastest-growing initial 
mode. At later times, the characteristic periodic length increases due to microstruc- 
tural coarsening. Periodicity can be detected by diffraction experiments. 

Crystallographic alignment can arise from the orientation dependence of the elas- 
tic strain energy term in the diffusion equation. Alignment requires that a material 
has a nonzero Vegard’s coefficient and is elastically anisotropic [i.e., the factor Y 
(Section 18.5) must vary significantly with crystallographic direction]. Under these 
conditions, composition waves directed along crystallographic directions that are 
elastically soft (i.e., along which Y is a minimum) will grow fastest, leading to 
alignment of the product microstructure with these directions. For cubic crystals, 
this alignment is along (100) and, less frequently, ( I l l )  directions. 

Periodic microstructures can be corroborated by observations of wavevectors P 
in transmission electron microscope (TEM) images, particularly if the sample is 
oriented with the modulation waves directed perpendicular to the electron-beam 
direction (e.g., with the beam along [OOl]  for a crystal with (100) modulations). 

If there is alignment, contrast in TEM images is strong, because of the peri- 
odic strain field in the crystal. Selected-area diffraction shows evidence of such 
alignment by the location of “satellite” intensities around the Bragg peaks arising 
from the modulation of atomic scattering factors, lattice constant, or both [19]. In 
Fig. 18.10, the electron diffraction effects, expected from an f.c.c. crystal with (100) 
composition waves, are depicted with a [OOl] beam direction. 

Diffraction and the Cahn-Hilliard Equation 

Examples of observations of spinodal microstructures include: 

0 Kubo and Wayman made TEM observations of an aligned (100) spinodal 
decomposition product in thin foils of long-range ordered P-brass [20]. (In- 
terestingly, bulk material did not decompose, while thin foils with [ O O l ]  foil 
normals did. The difference was attributed to a relaxation of elastic constraint 
in the thin foil.) 

. - 
220 020 220 
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200 000 200 
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. . . -_ 
220 020 220 

Figure 18.10: The (001) section of a reciprocal lattice of spinodally decomposzd f.c.c. 
alloy, as observed by TEM. Note the systematic absences of satellites for which G .  R = 0 (3 
is the diffraction vector and 8 is the local atomic displacement vector). 
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0 Miyazaki made TEM observations of an aligned (100) decomposition product 
in Fe-Mo alloys, with diffraction patterns similar to those in Fig. 18.10 (211. 

0 Allen reported TEM observations of a nonaligned decomposition products in 
long-range ordered Fe-A1 alloy [22]. Such morphologies are called isotropic 
spinodal microstructures. Similar structures are observed in Al-Zn and Fe- 
Cr alloys. Such structures can be produced in systems that are elastically 
isotropic or in which the lattice constant does not change appreciably with 
com posit ion. 

0 Brenner et al. reported an atom-probe field-ion microscope study of decompo- 
sition in an Fe-Cr-Co alloy (see Fig. 18.11) [23]. The atom probe allows direct 
compositional analysis of the peaks and valleys of the composition waves. It 
is probably the best tool for verifying a spinodal mechanism in metals, be- 
cause the growth in amplitude of the composition waves can be studied as a 
function of aging time, with near-atomic resolution. In spinodal alloys, there 
is a continuous increase in the amplitude of the composition waves with aging 
time. On the other hand, for a transformation by nucleation and growth, the 
particles formed earliest generally exhibit a compositional discontinuity with 
the matrix. 

Figure 18.1 1: Spinodal decomposition observed by atom-probe field-ion microscopy. 
(a) Isotropic morphology observed in Fe-Mo alloys. (b) Aligned morphology observed in 
Fe-Cr-Co alloys. From Brenner et d. (231. 
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EXERCISES 

18.1 Equation 18.9 was derived assuming equal and constant atomic volumes in 
the  A-B solid solution. Derive a corresponding relation for t h e  interdiffusion 
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flux in the V-frame, J Z ,  assuming that that O A  and Op, remain independent 
of composition, but for which O A  # Op,. Find a relation between the interdif- 
fusivity, 5, alloy composition, atomic volumes, and LA and LB for this more 
general case. 

Solution. Using Eqs. 3.9, the fluxes of components A and B in a local crystal frame 
(local C-frame) can be written 

where L A  and Lg are intrinsic mobilities. The flux o f  B in the V-frame is then 

JT = JT + C B ? ? ~  (18.50) 

where 5; is the velocity of the local C-frame in the V-frame as measured by the motion 
of an embedded inert marker a t  the origin of the C-frame. Using Eqs. 3.15, 3.23, and 
A.10, ??z = -[RAJ~ + RByg] and therefore 

(18.51) -c JT = CARAJB - C B R A J ~  

Substituting Eqs. 18.49 into Eq. 18.51 yields 

JT = - ~ A C A C B  [ L B V ~ E  - LAVpA] (18.52) 

Equation 18.52 may be put into another form by using the identity 

L E V ~ E  - L A V ~ A  = ( L B C A  + L A C E )  ( ~ A V ~ B  - R E V P A )  
(18.53) + ( L B R B  - LARA) ( C A V ~ A  + C B V ~ E )  

Substituting Eq. 18.53 into Eq. 18.52 and using Eq. 18.8 gives the further expression 

JT = - R A c A c B  ( L B c A  + L A C E )  ( R A v ~ B  - R B v ~ A )  (18.54) 

The second term in parentheses in Eq. 18.54 may be developed further by considering 
the free-energy density given by 

f = C A p A  + C B p B  (18.55) 

Differentiating Eq. 18.55 and using ( C A V ~ A  + C E V ~ B )  = 0, 

Applying the gradient operator t o  Eq. 18.56 then yields 

Substitution of Eq. 18.57 into Eq. 18.54 produces the relation 

(18.56) 

(18.57) 

(18.58) 
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where the coefficient, L, is 

Also, because V ( a f / a c ~ )  = ( @ f / a c ~ ~ ) V c ~ ,  

JZ = - (Lg) VCB 

and a comparison of Eq. 18.60 with Eq. 3.27 shows that 

(18.59) 

(18.60) 

(18.61) 

18.2 The Al-Zn system was the first studied extensively in an attempt to verify 
the theory for spinodal decomposition [24]. The equilibrium diagram for this 
system, shown in Fig. 18.12, shows a monotectoid in the Al-rich portion of 
the diagram. The top of the miscibility gap at  40 at .  % Zn is the critical 
consolute point of the incoherent phase diagram. 

In concentrated Al-Zn alloys, the kinetics of precipitation of the equilibrium p 
phase from a are too rapid to allow the study of spinodal decomposition. An 
A1-22 at .  % Zn alloy, however, has decomposition temperatures low enough 
to permit spinodal decomposition to be studied. For A1-22 at .  % Zn, the 
chemical spinodal temperature is 536 K and the coherent spinodal tempera- 
ture is 510 K. The early stages of decomposition are described by the diffusion 
equation 

- dC = D  [(lf?) 622- aZC 
at 
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(18.62) 

Figure 18.12: 
Diagrams, Vol. 3 [25]. 

Equilibrium diagram for Al-Zn alloys. From ASM Handbook: Alloy Phase 
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(a) What will be the characteristic periodicity in the microstructure in the 
early stages of decomposition at 338 K for an A1-22 at. % Zn alloy? 

(b) Suppose that the specimen described in part (a) is suddenly heated to 
473 K. Explain how the microstructure established at 338 K will change 
upon heating: 

i. At very short times 
ii. At intermediate times 

iii. At very long times 

Data. Assume for Al-Zn alloys that CYZY is isotropic, the enthalpy of mixing 
of Al-Zn solutions is independent of temperature, and the entropy of mixing, 
s, is ideal; that is, 

s = -nk[clnc + (1 - c) ln(1- c)] 
n = 6 x 

Q = 104 kJ mol-’ 
K = 1.6 x 
b = -2.6 x 
f” = -1.17 kJ cm-3 (at 338 K and 22 at. % Zn) 

cm-3 (number of atoms per unit volume) 
fi = [c(l - c)]f”~~e-Q/(NokT) 

J cm-l 
cm2 s-l (at 338 K and 22 at. % Zn) 

Solution. We will need an expression for f”(T).  Because f = e - Ts ,  af/aT = -s 
and a(f”)/aT = -st’.  Also, for ideal entropy of mixing, s” is independent of T, so 
f” should vary linearly with T. From the fact that f” = 0 at the chemical spinodal 
temperature and the value o f f ”  provided at 338 K, we obtain 

‘.17 
log (T - 536) J m-3 

198 
f” (T)  = (18.63) 

We can evaluate the elastic energy term 2a:Y because we know f” + 2aaY = 0 a t  510 
K. Thus, 

2a:Y = -f”(510) = 1.536 x 10’ Jm-3 (18.64) 

(a) The periodicity of the microstructure a t  338 K (early times) is determined by 
Pm(338 K). From aR(p)/ap = 0 at P,, 

(18.65) 

-1.17 x lo9 + 1.536 x 108 Jm-3 
4 x 1.6 x 10-lo Jm- l  

= 1.26 x lo9 m - l  (18.66) 

This corresponds to  a modulation wavelength a t  338 K of 

2T 
A, = - = 4.986 nm 

Pm 
(18.67) 

(b) Take the microstructure produced at 338 K with Pm = 1.26 x lo9 and heat to  
473 K (st i l l  within the coherent spinodal). Let’s compute Pm and Pc a t  473 K: 

= 5 . 8 4 5 ~ 1 0 ’  m - l  (18.68) 
-3.723 x 108 + 1.536 x 10’ Jm-3 

4 x 1.6 x 10-lo Jm-l 
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Recall that Pc is the value of P where R(P) = 0, so 

(18.69) 

and thus, 
P,(473) = 8.266 x 10’ m-’ (18.70) 

Note that Pm(338 K) > Pc(473 K), so this is an example of reversion: the fine- 
scale decomposition structure produced a t  338 K ,  on heating to  473 K, finds 
itself with a negative R(P) at 473 K. Therefore, the fine-scale microstructure with 
approximately 5 rim periodicity dissolves a t  early times a t  473 K. At intermediate 
times a t  473 K, a microstructure dominated by waves with P,(473 K) is expected. 
These have a wavelength of 

Xm(473 K) = 10.75 nm (18.71) 

which is more than double that of the original structure. 

(c) At long times of aging a t  473 K, the structure gradually coarsens-that is, the 
wavelength increases from i ts intermediate-time value of approximately 11 nm. 

To quantitatively assess the relative rates of the reversion a t  473 K with the 
decomposition that follows, we can compute the ratio of the two R(P)s: 

(18.72) 

Taking Pi = Pm(338 K) and PZ = &(473 K) and using f”(473 K) at the reac- 
tion temperatwe of interest, 

(18.73) 

So we conclude that the fine-scale structure “disappears“ about 12 times faster 
than the coarser structure forms a t  473 K. 

18.3 Both FeA1  and F e M o  alloys can undergo spinodal decomposition, yet the re- 
sultant microstructures have important differences. Figure 18.13 shows trans- 
mission electron micrographs of these two alloys taken with the electron beam 
parallel to  ( O O l ) ,  exhibiting typical spinodal microstructures. 

Figure 18.13: 
decomposition. From Allen [22] and Miyazaki e t  al. [21]. 

TEM of (a) Fe-A1 and (b) Fe-Mo alloy specimens after spinodal 
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(a) What characteristic feature common to both microstructures is sugges- 
tive of spinodal decomposition? What is the theoretical reason for this 
characteristic feature? 

(b) What is the most significant morphological difference between the spin- 
odal microstructures in the two alloys? By using appropriate expressions 
from the theory of spinodal decomposition, identify two different phys- 
ical properties of the alloy systems, whose behavior would provide an 
explanation for this difference. Fully explain your reasoning. 

Solution. 

(a) The characteristic common to  both microstructures is periodicity. This arises 
from selective amplification of composition waves inside the coherent spinodal. 
The linear theory of spinodal decomposition predicts exponential growth of waves 
with nm-scale wavelengths, and the wavenumber corresponding to  the maximum 
rate of decomposition, pm,  is 

(18.74) 

(b) The microstructure of the Fe-AI alloy, Fig. 18.13a, shows little evidence of crys- 
tallographic alignment, and a t  least two factors could be responsible for this lack 
of a preferred direction for the fastest-growing waves. First, it could be that 
the lat t ice constant of Fe-AI alloys is not very composition dependent, making 
a, = (l/a) da/dc E 0. Second, it could be for this alloy that the elastic modulus 
Y is independent of orientation; that is, the alloy is elastically isotropic. Either 
alternative would make the factor 2a:Y in Eq. 18.74 very small relative to  f” .  

The microstructure of the decomposed Fe-Mo alloy, Fig. 18.136, shows strong 
alignment of the developing two-phase microstructure along (100) directions. Such 
alignment is common in cubic crystals, and i t  arises from the anisotropy of the 
effective modulus, Y ,  in the diffusion equation. From Eq. 18.74 it is apparent 
that the crystallographic directions in which Y is a minimum will correspond t o  
the wavevector of the fastest-growing waves. 

18.4 If the progress of spinodal decomposition is measured isothermally at a series 
of temperatures, a plot of the time required to reach a given amount of de- 
composition at the various temperatures can be constructed [as described in 
Section 21.2, such a plot is called a time-temperature-transformation (TTT) 
diagram]. For spinodal decomposition, a TTT diagram has a “C” shape, 
similar to the shape of the corresponding TTT diagram for a nucleation and 
growth transformation (see Section 21.2). 

Derive an expression for the temperature a t  which the rate of spinodal decom- 
position is a maximum (i.e., find the temperature of the nose of the C-curve). 

Solution. The strategy is simple. We have an expression (Eq. 18.46) for the amplifi- 
cation factor, which is a function of wavevector (p )  and temperature (T), which for a 
one-di mensiona I wavevector is 

(18.75) 



458 CHAPTER 18: SPINODAL A N D  ORDER-DISORDER TRANSFORMATIONS 

First, we take the derivative of R(P, T )  with respect to  p to  find the maximum wavevec- 

g + 2a%Y 
p2 - -  

4Kc m -  (18.76) 

from which it is seen that Prn is function oftemperature (through f”). Then, by plugging 
Eq. 18.76 into Eq. 18.75, an explicit expression for the temperature dependence R(T)  
is obtained. Taking the derivative with respect to  T of the resulting expression, an 
expression is obtained for the temperature a t  which the rate of spinodal decomposition 
is a maximum. 

The temperature dependence of R(P, T )  arises from two sources: 9 and the mobility 

M,. Using a regular solution model, 9 can be expressed 

_ -  (T , -T)  -- a2 f 
ac2 Rc(1 - c )  (18.77) 

where T, is the consolute temperature and c is normalized composition. The mobility 
has an Arrhenius temperature dependence: 

M 0 -  - A ~ - Q / ( ~ T )  (18.78) 

After some algebraic manipulation, we get the following expression, which can be solved 
for the temperature of the nose, Tn: 

Note that the nose of the C-curve is composition-dependent. 

18.5 Suppose that two equivalent variants of an ordered structure are present in 
a binary A-B system in the form of two domains (1 and 2) separated by 
an antiphase boundary as on the left and center of Fig. 18 .7~ .  Only two 
sublattices are present in the structure. 

Show that the long-range order parameter for domain 1 is the negative of the 
long-range order parameter of domain 2. 

Solution. Using Eqs. 17.7 and 17.8, 

2vl = [Xgll - [Xg], (domain 1) 

2q2 = [Xg12 - [Xg], (domain 2) 

But because the variants are equivalent, 

(18.80) 

(18.81) 

Combining Eqs. 18.80 and 18.81, 

2112 = [xg], - [XEll 

112 = -771 



CHAPTER 19 

N U C LEATI 0 N 

The formation of a new phase by a discontinuous phase transformation (such as the 
formation of a solid from a liquid or the precipitation of a solute-rich solid phase 
from a supersaturated solid solution) requires the nucleation of the new phase 
in highly localized regions of the system. In this chapter we present the general 
theory of this nucleation, including classical and nonclassical models. Rates of 
nucleation are analyzed under quasi-steady-state and non-steady-state conditions. 
The influence of the nature of the nucleus/matrix interface, as well as effects due 
to the nucleus shape and presence of elastic strain energy, are included. Both 
homogeneous and heterogeneous nucleation are treated. Homogeneous nucleation 
takes place in uniform regions of a system in the absence of special sites such as at 
crystal defects or impurity particles which may aid the nucleation process. On the 
other hand, heterogeneous nucleation takes place at such special sites. These modes 
of nucleation generally compete with one another, and the predominant mode is 
the one that proceeds more rapidly. 

Discontinuous transformations will generally occur in the series of stages illus- 
trated in Fig. 19.1. 

Stage I is the incubation period in which the matrix phase is metastable and 
no stable particles of the new phase have formed. Nevertheless, small particles 
(termed clusters or embryos)  which are precursors to the final stable phase 
continuously form and decompose in the matrix. The distribution of these 
clusters evolves with increasing time to produce larger clusters which are more 

459 Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 
Copyright @ 2005 John Wiley & Sons, Inc. 
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t 

Figure 19.1: 
a function of time at constant temperature. 

Number of particles formed during a discontinuous transformation, N ,  as 

stable and therefore less likely to revert back to the matrix. Eventually, some 
of the largest of these clusters evolve into particles (i.e., stable nuclei) of the 
new phase, remain in the system permanently, and continue to grow. At this 
point nucleation is well under way. 

Stage I1 is the quasi-steady-state nucleation regime. During this period, the 
distribution of clusters has built up into a quasi-steady state and stable nuclei 
are being produced at a constant rate. 

Stage I11 shows a decreased rate of nucleation to the point where the number 
of stable particles in the system becomes almost constant. This is commonly 
due to a decrease in the supersaturation (or free energy) which is driving the 
nucleation in untransformed regions of the system. 

Stage IV is the late period where the nucleation of new particles becomes 
negligible. However, many of the previously nucleated larger particles grow 
at the expense of the smaller particles in the system (i.e., coarsening occurs 
as described in Section 15.1). This causes the total number of particles to 
decrease. 

Nucleation theory deals for the most part with Stages I and 11. The treatment 
which follows starts with the relatively simple classical theory of the homogeneous 
nucleation of a new phase in a one-component condensed system without strain 
energy. This sets the stage for a description of the complications that occur when 
two components are present and for cases in which significant elastic strain energy 
is associated with the formation of a nucleus. Heterogeneous nucleation in crys- 
talline systems is taken up with emphasis on grain boundaries and dislocations as 
heterogeneous nucleation sites. 

19.1 HOMOGENEOUS NUCLEATION 

19.1.1 Classical Theory of Nucleation in a One-Component System without 
Strain Energy 

Consider a one-component system that consists initially of a total of N atoms of a 
parent (Y phase that is metastable with respect to the formation of an equilibrium 
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p phase.' According to the classical model, in order to nucleate the p phase, it is 
necessary for some of the a phase to be converted into small clusters of the ,b' phase 
and, in turn, for at least some of these clusters to survive possible conversion back 
to the a phase and grow into much larger stable clusters corresponding to the bulk 
p phase. The small p clusters will have a large surface-to-volume ratio, and their 
interfacial energies will therefore be relatively large. This relatively large interfacial 
energy will make the formation of small clusters difficult and act as a barrier to the 
nucleat ion. 

The Critical Nucleus. Imagine that a p cluster is produced by removing a cluster 
of atoms from the a-phase matrix leaving a cavity, transforming this cluster into 
the p phase, and then inserting the cluster into the cavity. In the classical model, 
the total energy of the embedded p cluster is assumed to be separable into bulk 
free energy and interfacial free energy terms. If the energy of the cluster/matrix 
interface is isotropic and no elastic strain energy is present (see Section 19.1.3), the 
energy change due to the formation of the cluster is then written 

where N is the number of atoms in the cluster, pp and pa are the chemical potentials 
of the bulk p and a phases, q is a shape factor, and y is the interfacial energy per 
unit interfacial area. Since the interfacial energy is isotropic, the cluster will adopt 
a spherical shape to minimize its energy, and therefore 7 = ( 3 6 r ) l l 3  f12/3. In the 
classical model, the bulk free-energy change due to the formation of the cluster is 
assumed to be the same as if it were a bulk phase. Furthermore, y is assumed to be 
the same as that for a large flat a l p  interface. In these approximations, the small 
cluster is therefore assumed to have the same properties as the bulk p phase. 

When the interfacial energy depends on the inclination of the interface and y 
is therefore anisotropic, Eq. 19.1 does not apply. In this case, the cluster will 
minimize its total interfacial energy by adopting its Wulff shape (Section C.3.1), 
which may be fully faceted or made up of faceted and smoothly curved regions. 
Several characteristic shapes are shown in Fig. 19.2. The interfacial-energy term in 
Eq. 19.1 can then be expressed as the sum of the interfacial energies of the various 
faceted or smoothly curved patches that make up the entire closed interface and 

Fi ure 19.2: Calculated nucleus shapes for homogeneous nucleation of an f.c.c. phase in 
an9.c.c. matrix. Interface is everywhere coherent with respect to a reference structure which 
can be taken as either the nucleus or matrix crystal. From LeGoues et at. [I]. 

lIn systems with fixed stoichiometry such as COz or polyvinyl chloride, N would be the number 
of molecules. In this chapter we refer to atoms, but molecular systems can be treated analogously. 



462 CHAPTER 19: NUCLEATION 

2 
LL 

written in the form 

’. p! Size, N+ 
LL Bulk free- ’.,. 

(19.2) 

2 
LL 

i a 

where the summation is carried out over all of the discrete areas, Ai, making up 
the enclosed interface, yi is the energy per unit area of the ith area, and qi is the 
shape factor for the ith area. The interfacial energy is then again proportional to  
N2I3 but with y replaced by xi ”yiqi. 

The bulk term in Eq. 19.1 is negative, and a schematic plot of AGN vs. n/ is 
shown in Fig. 19 .3~ .  It is seen that because of the positive interfacial energy term, 
AGy possesses a maximum before it becomes negative. The increase in free energy 
at the maximum will act as a barrier to  the formation of large stable /3 clusters. For 
successful nucleation, small clusters must somehow form in the face of this positive 
free energy of formation and then grow to a larger size beyond the maximum where 
they continue to grow as the free energy decreases. For this reason, N, and AG, 
are generally called the critical cluster (or nucleus) size and the critical free energy 
of nucleation, respectively. The values of N and AGN at the maximum, designated 
by Nc and AG,, respectively, are found from the condition dAGN/dn/ = 0 and, for 
the isotropic y case, are given by 

’. 
Bulk free- ’.,. 

(19.3) 

p! 
LL 

(19.4) 

Size, N+ 

A kinetic model for the rate a t  which stable particles form in the presence of this 
barrier is developed below. 

The classical model is an obvious approximation since the interface may be sig- 
nificantly diffuse and occupy a substantial fraction of the cluster volume. A clean 
separation between bulk and interfacial energies therefore becomes problematic. 
The classical model for the critical nucleus may be expected to  be a reasonable 

4 1  
***- 

*** 4 1  ***- 
,** Interfacial free- 

energy term a 

Figure 19.3: 
Nonequilibriuin system during nucleation. (b) System a t  equilibrium. 

Solid curves show cluster free energy AGN vs. cluster size N. (a) 



19.1: HOMOGENEOUS NUCLEATION 463 

approximation whenever the region strongly affected by the interface is fairly thin 
compared to the nucleus size. This tends to be the case when the supersaturation is 
small so that (pp -pa)  is small and N, is large according to Eq. 19.3. When this is 
not the case, nonclassical models (Section 19.1.6), which abandon the approxima- 
tion of separate bulk and interfacial free-energy terms, must be employed. It will be 
shown that the rate-limiting kinetic events that produce critical nuclei take place 
over a small range of cluster sizes centered on the critical nucleus size, which may 
contain on the order of 100 atoms. Exact descriptions of the energies of the much 
smaller clusters in the distribution where the classical model is least realistic are 
therefore not essential. Furthermore, the classical model has the virtue of simplic- 
ity and allows the construction of a simple analytical model for nucleation which 
reproduces many of its main features in appropriate systems. The classical model 
has been shown to account reasonably well for several experimentally measured 
nucleation rates in selected systems (see Section 19.1.7). 

Quasi-Steady-State Nucleation Rate. Consider first the CY phase containing a total 
of N atoms under stable equilibrium conditions. In general, this phase will contain 
an equilibrium distribution of small p clusters. If it is imagined that the clusters are 
produced by the procedure above, the plot of free-energy change vs. cluster size will 
appear as shown in Fig. 19.3b. In this case, where equilibrium prevails, Eq. 19.1 
will again apply, but the bulk free-energy term will now be positive since the Q 

phase is stable and pp > pa. Values of AG2 will therefore increase monotonically 
with N as seen in Fig. 19.3b. The contribution of the clusters to the free energy of 
the system can then be written 

AG"q = C N Z A G Z  ., 

The first term in Eq. 19.5 consists of the free energies to form the clusters (where 
the free energy to form a particle is given by Eq. 19.1), and the second term is the 
free energy derived from the entropy of mixing of the ( N  - CNNN?) Q atoms 
and all of the EN N? p clusters. The equilibrium fraction of each cluster can now 
be found by minimizing AG with respect to N?, with the result 

(19.6) 
The simplification of Eq. 19.6 stems from the fact that N >> This 
result demonstrates that small p clusters will be present in the Q phase under 
equilibrium conditions and that their concentrations will decrease rapidly with in- 
creasing size, since AG'2 increases monotonically with increasing N as indicated in 
Fig. 19.3b. 

Consider now the nonequilibrium system when pp < pa and the nucleation of the 
stable p phase therefore becomes possible. Under this condition, AGN goes through 
a maximum with increasing N as in Fig. 19.3a, and the formation of sufficiently 
large clusters causes the free energy of the system to decrease. Thermodynamics 
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allows such clusters to grow without limit. A distribution of clusters can then 
develop in which relatively large p clusters in the distribution are gradually built 
up by the net gain of atoms and eventually become large enough to  leave the 
nucleation process in the form of stable p particles. This process corresponds to  
the formation of stable nuclei of the p phase. 

The rate of formation of stable nuclei can now be obtained by considering the 
rate at which clusters grow by adding (and sometimes losing) atoms as they advance 
through cluster space. If NN is the number of clusters of size N in the system, the 
flux of clusters which are growing from size N to size N + 1 may be written as 

J N ( t )  = pN NN( t )  - aN+i NN+i(t) (19.7) 

where PN is the rate at which single atoms from the cr phase join a p cluster of size 
N ,  and c r ~ + 1  is the rate a t  which single atoms are lost to the cr phase from a ,B 
cluster of size N + 1. Other growth processes, such as the impingement of clusters, 
will be rare and are therefore ignored. 

The coefficients in Eq. 19.7 may be taken as constants independent of the form 
of the distribution of cluster sizes. The relationship between the two coefficients PN 
and C U N + ~  may then be obtained by imposing an artificial constraint on the system: 
no clusters are allowed to grow beyond a limiting size, Nlim, which is considerably 
larger than the critical size N,. At the same time, all clusters of size below this limit 
are allowed to equilibrate with respect to one another so that detailed balance is 
achieved between them and all fluxes in cluster space go to zero. A new distribution 
of cluster sizes, Nzq, will be produced in this constrained system. It is assumed 
that the same free-energy minimization procedure used previously to find the size 
distribution under true equilibrium conditions, and which led to Eq. 19.6, may be 
used for the constrained system, resulting in 

(19.8) 

where AGN corresponds to the curve shown in Fig. 19.3a2 The form of this dis- 
tribution is shown in Fig. 19.4b and is seen to possess a minimum at  Nc due to  
the corresponding maximum in Fig. 19.3a. For the constrained system, J N ( ~ )  in 
Eq. 19.7 is equal to zero and therefore, using Eq. 19.8 and expanding to first order, 

=pN I+-- ( kT dN ) 
Combining Eqs. 19.7 and 19.9 and approximating NN+l(t)  = NN(t)+dNN(t)/dN, 

(19.10) 

Comparing its form with Eq. 3.83 shows that Eq. 19.10 is equivalent to  the one- 
dimensional diffusion of particles in cluster-size space under the influence of both a 
concentration gradient and a force field derived from a potential gradient. 

2This “constrained equilibrium hypothesis” assumption, although seemingly plausible, is un- 
proven [2). 
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Figure 19.4: 
constrained equilibrium ( N;q) and for nonequilibrium system during nucleation ( N N ) .  

Cluster size distribution. (a) System at equilibrium (N?). (b) System in 

The nucleation rate under quasi-steady-state conditions can now be found by 
substituting Eq. 19.9 into Eq. 19.7 and rearranging and expanding to first order to 
obtain 

Equation 19.11 can then be integrated under quasi-steady-state conditions with 
JN = J = constant in the form 

( 19.12) 

The limits of integration are obtained by considering the differences between the 
actual quasi-steady-state cluster distribution, N N ,  and the constrained equilibrium 
distribution (Lee, N T ) ,  as in Fig. 19.4b. In general, NN < N;q because of the 
effect of the constraint. However, at very small sizes, well below N,, detailed balance 
(see Section 2.2.4) will be closely maintained in the quasi-steady-state distribution 
and the two distributions will therefore be nearly identical. Therefore, + 
1 as N + 1. On the other hand, at large sizes beyond Nc, N Z q  becomes relatively 
large as AGN decreases, while NN falls essentially to zero. Therefore, + 0 
as N + 00. The integration on the right-hand side is simplified by the fact that 
values of the integrand are significant only near N = Nc because of the maximum 
in AGN at N,. Therefore, PN will vary slowly in this range and can be replaced 
by / 3 ~  = Pc = constant. Also, AGN can be replaced by an expansion around N, of 

(19.13) 

and from Eqs. 19.1 and 19.4, 

( 19.14) 
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Therefore, putting these relationships into Eq. 19.12 yields 

The lower limit of integration on the right-hand side can be replaced by --oo without 
significant error, and carrying out the integration, 

Z,\i 
3nN:kT 

(19.16) 

(1 9.17) 

( 19.18) 

Equation 19.17 may be interpreted in a simple way. If the equilibrium concen- 
tration of critical clusters of size N, were present, and if every critical cluster that 
grew beyond size N, continued to grow without decaying back to a smaller size, the 
nucleation rate would be equal to J = PcN exp[-Ag,/(kT)]. However, the actual 
concentration of clusters of size N, is smaller than the equilibrium concentration, 
and many supercritical clusters decay back to smaller sizes. The actual nucleation 
rate is therefore smaller and is given by Eq. 19.17, where the first term (2) corrects 
for these effects. This dimensionless term is often called the Zeldovich factor and 
has a magnitude typically near 10-l. 

Non-Steady-State Nucleation: The Incubation Time. Although in principle, non- 
steady-state nucleation in single-component systems can be analyzed by solving 
the time-dependent nucleation equation (Eq. 19.10) under appropriate initial and 
boundary conditions, no exact solutions employing this approach have been ob- 
tained. Instead, various approximate solution have been derived, several of which 
have been reviewed by Christian [3]. Of particular interest is the incubation time 
described in Fig. 19.1. During this period, clusters will grow from some initial 
distribution, usually essentially free of nuclei, to a final steady-state distribution as 
illustrated in Fig. 19.5. 

Approximate solutions of the time-dependent nucleation equation discussed by 
Christian indicate that the time-dependent nucleation rate in Region I for a single- 
component system may be approximated by 

J ( t )  M Je-t/‘ ( 19.19) 

where J is the final quasi-steady-state rate and T is the incubation time [3]. As- 
suming that this is the case, a reasonably good estimate for the magnitude of T 

may be obtained using a physical argument introduced by Russell [4, 51. Here it is 
argued that the curve of AGN vs. N is essentially flat in the vicinity of N = Nc, as 
illustrated in Fig. 19.6, and that there is a range of cluster size, 6, over which the 
change in A ~ N  is less than kT. Over this range A ~ N  in Eq. 19.10 may be taken 
as constant, and this equation then becomes 

(19.20) 
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t I  

Figure 19.5: Cluster-size distribution during transient nucleation. 

which is of the form of the simple mass diffusion equation when only a concentration 
gradient is present. In this range, clusters will therefore grow (“move”) in cluster 
space by a random-walk process just as during the mass diffusion of particles. Well 
away from N,, drift arising from the force field of the potential (i.e., A ~ N )  dom- 
inates. The transition from predominant random walking to  predominant drifting 
occurs when the potential deviates from flatness by approximately kT on either 
side of N, (see Fig. 19.6). Because of drift, clusters of size Af < (Nc - 6/2) have a 
high probability of shrinking, whereas clusters of size n/ > (N, + 6/2) have a high 
probability of growing to  stable nucleus size. The time required to  form significant 
numbers of nuclei (i.e., the incubation time) will therefore be approximately the 
time required for clusters to  random walk the distance 6 in cluster space, provided 
that the time required to reach size Af < (Nc -6/2) is shorter than the random-walk 
time. Other calculations indicate that this is indeed the case [3, 61. By analogy with 
the random walk for simple mass diffusion where, according to  the one-dimensional 
form of Eq. 7.35, (R2) = 2Dt, 

6 2  

2 P C  

7 % -  (19.21) 

Figure 19.6: Variation of free energy with size of fluctuation in the nucleation regime. 
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Furthermore, it is shown in Exercise 19.4 that 

( 19.22) 

and is therefore closely equal to the square of the Zeldovich factor given by Eq. 19.18. 
The results above are in reasonably good agreement with other estimates of r based 
on approximate analytic and numerical solutions of Eq. 19.10 [3, 61. 

19.1.2 Classical Theory of Nucleation in a Two-Component System without 
Strain Energy 

Nuclei in two-component systems need not have the same composition as the parent 
phase. For example, B-rich p particles may precipitate from an A-rich a-phase 
matrix. The bulk free-energy change term in Eq. 19.1 is then given by (NIN,) AG,, 
(where the quantity AGc is shown in Fig. 17.6) rather than N(@ - pa).  The rate 
of nucleation of the p phase can be determined by using a two-flux analysis where B 
atoms are added to a cluster by a two-step process consisting of a jump of a B atom 
onto the cluster from a nearest-neighbor matrix site followed by a replacement jump 
in the matrix in which a second B atom farther out in the matrix jumps into the site 
just evacuated by the first B atom [6]. The analysis for the steady-state nucleation 
rate is similar to that described previously, and the resulting expression for the 
rate is similar to Eq. 19.17. However, the p, frequency is replaced by an effective 
frequency that reduces to the smaller of either the frequency of the matrix+cluster 
jumping or the matrix+matrix replacement jumping. (Note that the controlling 
rate is always the slower rate in a two-step process.) The concentration of B atoms 
in the vicinity of the nucleus is expected to be close to its average concentration in 
the matrix. Further details are given by Russell [6]. 

19.1.3 Effect of Elastic Strain Energy 

When clusters form in solids, an elastic-misfit strain energy is generally present 
because of volume and/or shape incompatibilities between the cluster and the ma- 
trix. This energy must be added to the bulk chemical free energy in the expression 
for AGN. Since the strain-energy term is always positive, it acts, along with the 
interfacial energy term, as a barrier to the nucleation. The magnitude of the elastic- 
energy term generally depends upon factors such as the cluster shape, the mismatch 
between the cluster and the matrix (see below), and whether the interface between 
the matrix and cluster is coherent, semicoherent, or incoherent, as described in 
Section B.6. 

The elastic energy of a p cluster in an a matrix can be calculated by carrying 
out the following four-stage process [7]: 

Assume the cluster and the matrix to be linearly elastic continua. Cut the 
cluster (modeled as an elastic inclusion) out of the a matrix, leaving a cavity 
behind, and relax all stresses in both the inclusion and matrix. The inclusion 
will then have a generally different shape than the cavity. The homogeneous 
strain required to transform the cavity shape to  the inclusion shape is called 
the transformation strain, E:. 
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(ii) Apply surface tractions to  the inclusion so that it fits back into the cavity. 
The tractions necessary to accomplish this, -agnj, will be those required to 
produce the strains - E $ .  

(iii) Insert the inclusion back into the cavity and join the inclusion and matrix 
along the inclusion/matrix interface in a manner that reproduces the type 
of interface (i.e., coherent, semicoherent, or incoherent) that existed initially 
between the p cluster and the matrix. 

(iv) Remove the applied tractions by applying equal and opposite tractions (i.e., 
a$nj). This step restores the system to its original state. The tractions ognj 
that act on the system at the a//? interface will give rise to ‘‘constrained” dis- 
placements w,C, and thus strains E : ~ ,  in both the inclusion and the matrix 
which can be computed using the strain-displacement relationships of elastic- 
ity theory. Corresponding stresses atj can then be computed from Hooke’s 
law. The final strains and stresses are then c,Cj and atj in the matrix and 
(&,Cj - &$) and (otj - a$) in the particle. Finally, the elastic energy can be 
calculated from a knowledge of these stresses and strains, since for any elastic 
body the elastic energy is given by 1/2 sv aij&ij dV. 

In problems of this type, the quantities that are given are the inclusion shape, 
the stress-free transformation strains E ; ,  the elastic properties of the two phases, 
and the degree of coherence between the inclusion and the matrix. When the 
elastic properties of the inclusion and matrix are the same, the system is said 
to be elastically homogeneous. Otherwise, it is elastically inhomogeneous. The 
main difficulty is the calculation of the constrained strains, E C . .  Having these, the 
calculation of the elastic strain energy in the inclusion and matrix is straightforward. 
The original reference to such calculations is Eshelby [7]. An overview is given by 
Christian [3]. 

Some of the main results are given below for simple shapes such as spheres, 
discs, and needles which can be derived from a general ellipsoid of revolution by 
varying the relative lengths of its semiaxes. Only the limiting cases when the a l p  
interfaces are completely coherent or completely incoherent are included. Inclusions 
with semicoherent interfaces and interfaces where various patches possess different 
degrees of coherence will exhibit intermediate behavior which is much more com- 
plicated. Also, results for faceted interfaces are not included. In most cases, the 
energy of a faceted cluster can reasonably be approximated by using the result for a 
smoothly shaped cluster whose shape best approximates that of the faceted cluster. 

Incoherent Clusters. As described in Section B.l, for incoherent interfaces all of 
the lattice registry characteristic of the reference structure (usually taken as the 
crystal structure of the matrix in the case of phase transformations) is absent and 
the interface’s core structure consists of all “bad material.” It is generally assumed 
that any shear stresses applied across such an interface can then be quickly relaxed 
by interface sliding (see Section 16.2) and that such an interface can therefore 
sustain only normal stresses. Material inside an enclosed, truly incoherent inclusion 
therefore behaves like a fluid under hydrostatic pressure. Nabarro used isotropic 
elasticity to find the elastic strain energy of an incoherent inclusion as a function 
of its shape [8] .  The transformation strain was taken to be purely. dilational, the 
particle was assumed incompressible, and the shape was generalized to that of an 
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ellipsoid of revolution with semiaxes a, a, c so that its shape was given by 

x2 y2 z2 - + - + - = I  
a2 a2 c2 

(19.23) 

The shape could therefore be varied between that of a thin disc (c << a) and that 
of a needle (c >> a). The strain energy (per unit volume of inclusion) is expressed 
in the form 

(19.24) 

where E is the dilational transformation strain and E(c/a)  is a dimensionless shape- 
dependent function that has the form sketched in Fig. 19.7. From this plot, and the 
dependence of AgE on E(c/a) given in Eq. 19.24, it is apparent that the elastic strain 
energy of an incoherent particle can be made arbitrarily small if the particle has the 
form of a thin disc. Of course, such a shape would have very large interfacial area 
and corresponding interfacial free energy. The preferred shape for the nucleation is 
therefore that which minimizes the sum of the strain and interfacial energies. 

AsE = 6pe2 E - (2  

SDhere 

Figure 19.7: 
of aspect ratio cia. 

Elastic strain energy function E(c /a )  for an incoherent ellipsoid inclusion 

Coherent Clusters. As described in Section B.6, for coherent interfaces all of the 
coherence (lattice registry) of the reference lattice is retained. For a + p phase 
transformations, the reference lattice is generally taken as the a-phase lattice, and 
the interface will contain an array of coherency dislocations as in Fig. B.8, which 
accounts for the surrounding stress field. A further example showing a spherical p 
cluster enclosed by a coherent interface is illustrated in Fig. 19 .8~ .  As long as the 
a /@ interface remains coherent during the growth of a p cluster, any shear stresses 
across it will be unrelaxed, since no interface sliding is possible in complete contrast 
to the case of the incoherent interface discussed above. 

Eshelby treated systems that are both elastically homogeneous and elastically 
isotropic [7]. Some results for the ellipsoidal inclusion described by Eq. 19.23 are 
given below. 

Case 1. Pure dilational transformation strain with &Zz = E& = &T2. 
In an elastically homogeneous system, the elastic strain energy per unit vol- 
ume of the inclusion AgE is independent of inclusion shape and is given by 

(19.25) 
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(4 

Figure 19.8: Interfacial structure for (a) coherent and (b) semicoherent interfaces 
between matrix phase Q and particle phase 0. The reference structure is the crystal lattice. 
Only coherency dislocations are present in (a); in (b), anticoherency dislocations relieve the 
elastic strain around the particle. 

where v is Poisson’s ratio and p is the shear m o d ~ l u s . ~  Another feature of this 
case is that purely dilational strain centers do not interact elastically, so that 
the strain fields of preexisting inclusions do not affect the strain energy of new 
ones that form. This is sometimes referred to as the Bitter-Crum theorem [9]. 
Finally, there is the degree of accommodation-this refers to the fraction of 
the total elastic strain energy residing in the matrix. For this example, it can 
be shown that two-thirds of AgE always resides in the m a t r i ~ . ~  

The case of a pure dilational transformation strain in an inhomogeneous elas- 
tically isotropic system has been treated by Barnett et al. [lo]. For this case, 
the elastic strain energy does depend on the shape of the inclusion. Results 
are shown in Fig. 19.9, which shows the ratio of Ag,(inhomo) for the inhomo- 
geneous problem to Ag,(homo) for the homogeneous case, vs. c /a .  It is seen 
that when the inclusion is stiffer than the matrix, Ag,(inhomo) is a minimum 

0 1 2 3 4 5 6 7  

I cla + 

Needle 
-a 8 

Disc 
SDhere 

Figure 9.9: Effect of elastic inhomogeneity on elastic strain energy of a coheren - 

ellipsoidal inclusion of aspect ratio c /a .  Stress-free transformationstrains are E : ~  = &rv = 
&Tz. From Barnett et al. [lo]. 

31t is noted that Eqs. 19.24 and 19.25 do not agree exactly for the case of a sphere. Equation 19.25 
correctly contains the factor (1 + v)/[3(1 - u)] % 2/3, introduced by Eshelby as an image term to 
make the surface of the matrix traction-free [7]. 
4Further discussion of accommodation can be found in Christian’s text, p. 465 [3]. 
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for a spherical inclusion and, when the inclusion is less stiff than the matrix, 
it is a minimum for a disc. 

The elastic energy of inhomogeneous, anisotropic, ellipsoidal inclusions can be 
studied using Eshelby’s equivalent-inclusion method. Chang and Allen stud- 
ied coherent ellipsoidal inclusions in cubic crystals and determined energy- 
minimizing shapes under a variety of conditions, including the presence of 
applied uniaxial stresses [ 111. 

Case 2. Unequal dilational strains: €Zx = E ~ )  €TV = E ~ )  and €Tz = E,. 

Here 

(19.26) 
€2 + EP + 2V€,EV 

-[xc/(32a)][13 (€2 + E ; )  + 2 (16v - 1) E , E ~  

-8 (1 + 2 ~ )  ( E ~  + E ~ )  E~ - 8~21 

In this case the second and third terms become vanishingly small for a disc as 
it gets very thin, but the first term, which is independent of shape, remains. 
In addition, it may be seen that Eq. 19.25 is a special case of Eq. 19.26. 

Case 3. Pure shear transformation strain: €T3 = = 512; all other E; = 0 .  

Here 
n p 2 - u  2 c  

ASE = -- S -  
8 1 - v  a ( 19.27) 

Thus, for this case, AgE becomes vanishingly small for a disc as it gets very 
thin. 

Case 4. Invariant-plane strain with €T3 = &TI = S/2 ,  ET, = E ~ ,  and all other 

An invariant-plane strain consists of a simple shear on a plane, plus a normal 
strain perpendicular to  the plane of shear (see Section 24.1 and Fig. 24.1). 
This is a combination of Cases 2 and 3. The expression for Ag, then follows 
directly from Eqs. 19.26 and 19.27, with the result that AgE is proportional 
to cia. AgE is therefore minimized for a disc-shaped inclusion lying in the 
plane of shear. 

The term invariant-plane strain comes from the fact that the plane of shear 
in an invariant plane strain is both undistorted and unrotated. Hence the 
plane of shear is a plane of “exact” matching of the coherent inclusion and 
the matrix. In martensitic transformations, this matching is met closely on a 
macroscopic but not a microscopic scale (see Section 24.3). 

€$, = 0. 

Additional factors that should often be considered in the treatment of strain 
energies (although commonly ignored) are: elastic anisotropy, which can be consid- 
erable, even for cubic crystals; elastic inhomogeneity, which can be treated by the 
Eshelby equivalent-inclusion method [12] ; nonellipsoidal inclusion shapes; and elas- 
tic interactions between inclusions that can be significant, producing, for example, 
alignment of adjacent precipitates along elastically soft directions in anisotropic 
crystals [13]. 
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19.1.4 

Both the interfacial energy and any strain energy associated with the formation 
of the critical nucleus act as barriers to homogeneous nucleation. Both energies 
are generally functions of the nucleus shape, and to find the nucleus of minimum 
energy, it is necessary to find the shape that minimizes the sum of these energies. As 
mentioned above, in the simple case where there is no strain energy, such as during 
solidification, the shape is given by the Wulff shape (described in Section C.3.1). 
However, in solid/solid transformations such as precipitation, where strain energy 
is generally present, the problem becomes considerably more complex. 

The many variables that play a role include the anisotropic interfacial energy, 
which will be affected by the degree of coherency, and the elastic strain energy 
variables, which include the transformation strain, the degree of coherency, and the 
elastic properties (including elastic anisotropy). No analytical treatments of this 
complex minimization problem therefore exist. However, it is generally anticipated 
that the interfacial energy will be the dominant factor in most cases. Because the 
strain energy is proportional to the nucleus volume while the interfacial energy is 
proportional to the nucleus area, the interfacial energy should tend to dominate at 
the large surface-to-volume ratio characteristic of the small critical nucleus. 

Both interfacial energy and strain energy have been incorporated in an analy- 
sis that gives some quantitative insight into the role that strain energy may play 
in determining the critical nucleus shape [14]. The nucleus is again taken to be 
ellipsoidal, so that the strain energy can be expressed as a function of c /a ,  as, 
for example, in Fig. 19.9. For simplicity, the interfacial energy is assumed to be 
isotropic. The free energy to  form an ellipsoidal cluster may then be written 

Nucleus Shape of Minimum Energy 

where AgB is the bulk free-energy change per unit volume in the transformation, 
AgE is a function of t where t = c /a ,  and A(<) is a shape factor given by 

(2t2/4-) tanh-' 4- ( C  < 1) i ( 2 5 / J m )  sin-' 4- (t > 1) 
A ( t )  = 2 (t = 1) (19.29) 

The energy of the critical nucleus is now found by minimizing AG with respect 
to a and 5. The first minimization produces the results 

and 

(19.30) 

(19.31) 

Equation 19.31 may be divided by the expression AG(1) = 1 6 ~ ~ ~ / [ 3 ( A g ~ ) ~ ] ,  which 
is the form Eq. 19.31 would assume if the cluster were a sphere (5 = 1) and the 
strain energy were zero. Therefore, 

(19.32) 
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To find the effect of the strain energy on nucleus shape, the ratio AG(<)/AG(l) 
from Eq. 19.32 is now plotted vs. < for various fixed values of the energy ratio 
AgE(l)/AgB, where AgE(l)  is the strain energy for the spherical nucleus ( E  = 1). 
Some results are shown in Fig. 19.10 for a coherent case corresponding to the 
lowest curve in Fig. 19.9, where the elastic energy decreased as the nucleus became 
disc-like. The minima in the curves correspond to the critical nuclei of minimum 
energy, and the critical nuclei remain spherical until the elastic energy is larger 
than about 85% of the absolute bulk free-energy change. E then decreases and 
the nucleus becomes progressively more disc-like. Similar results were found for 
other cases [14]. In general, the nucleus shape will not be strongly affected by the 
strain energy until lAgEI becomes comparable to IAgBI. But in most cases, AG(<) 
will be so large that no significant homogeneous nucleation is possible. Therefore, 
strain energy will not affect the nucleus shape significantly in most actual cases. 
However, there will be exceptional cases where the interfacial energy is particularly 
small, as in the case of coherent clusters with close lattice matching, where AG(l) ,  
and therefore AG(<), are small enough so that significant nucleation can occur in 
the presence of strain energies large enough to affect the nucleus shape. 

L o . 5 0  , , , , 1 
" 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

f- 

Figure 19.10: Free energy to form ellipsoidal nucleus, Ag((),  as a function of the aspect 
ratio ( = c / a  for various fixed values of the ratio -Ag,(l)/AgB. Ag(() is normalized by 
AG(l), the value AG(<) would assume for a spherical nucleus (6 = 1) in the absence of any 
strain energy. Age(l)  is the strain energy for a spherical nucleus. The elastic energy as a 
function of ( corresponds to the lowest curve in Fig. 19.9. After Lee et al. [14]. 

19.1.5 More Complete Expressions for the Classical Nucleation Rate 

With the background above, more complete expressions for the classical nucleation 
rate can be explored. 

Single-Component System with Isotropic Interfaces and No Strain Energy. This rela- 
tively simple case could, for example, correspond to the nucleation of a pure solid 
in a liquid during solidification. For steady-state nucleation, Eq. 19.16 applies with 
AG, given by Eq. 19.4 and it is necessary only to develop an expression for Pc. In a 
condensed system, atoms generally must execute a thermally activated jump over a 
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local energy barrier in order to join the critical nucleus from the matrix. Therefore, 
,& = z,Xs v, exp[-GF/(kT)] so that 

(19.33) 

Here, z c X g  is the number of sites in the matrix from which atoms can jump onto 
the critical nucleus, vc is the effective vibrational frequency for such a jump, and 
GT is the free energy of activation for the jump. 

Two-Component System with Isotropic Interfaces and Strain Energy Present. An ex- 
ample of this case is the solid-state precipitation of a B-rich P phase in an A-rich 
a-phase matrix. For steady-state nucleation, Eq. 19.16 again applies. However, 
for a generalized ellipsoidal nucleus, the expression for AG will have the form of 
Eq. 19.28. Also, P must be replaced by an effective frequency, as discussed in 
Section 19.1.2. 

For nuclei that are coherent with the surrounding crystal, the lattice is continuous 
across the cr/P interface. The jumps controlling the Pc frequency factor will then be 
essentially matrix-crystal jumps and Pc will be equal to the product of the number 
of solute atoms surrounding the nucleus in the matrix, z c X S ,  and the solute atom 
jump rate, r, in the a crystal. The jump frequency can reasonably be approximated 
by r M *Dl/a2 (see Eq. 7.52, where *DI is the solute tracer diffusivity and a is the 
jump distance). Therefore, 

(19.34) 

For an incoherent nucleus, the jump rate across the cluster/matrix interface will 
be much faster than the lattice jump rate. Therefore, the pc frequency factor is 
controlled by the lattice-replacement jumping and Eq. 19.34 holds. 

In many cases, AGN may be affected by the presence of supersaturated lattice 
vacancies resulting from the rapid cooling necessary to  induce the precipitation. 
Incoherent interfaces are generally efficient sources for vacancies (in contrast to  the 
coherent interfaces considered above), and in cases where €Zx is positive, excess 
vacancies will annihilate themselves at the cluster/matrix interfaces and therefore 
eliminate the elastic strain energy that would otherwise have developed [6]. Fur- 
thermore, the excess vacancies may continue to  annihilate beyond this point until 
the rate of buildup of elastic strain energy due to  their annihilation is just equal to 
the rate at which energy is given up by the vacancy annihilation. In such a case, 
the excess vacancies provide a driving force aiding the nucleation and AGN takes 
the form 

AGN = f l N ( A g ~  + Agv) + 777fll3 (19.35) 

where SZ is the atomic volume and Agv is the free-energy change due to  the vacancy 
annihilation. For an elastically homogeneous spherical cluster where the transfor- 
mation strain in the absence of any vacancy relaxation would be a uniform dilation, 
eTx, it may be shown (Exercise 19.5) that 

where E is Young’s modulus. On the other hand, when €rX is negative, Agv will 
be positive and excess vacancies will hinder the nucleation. 
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19.1.6 Nonclassical Models for the Critical Nucleus 

When the cluster interface is sufficiently diffuse that it occupies much of the cluster 
volume, the classical nucleation model breaks down. This will be the case, for 
example, in a precipitation system when the composition is near a spinodal and the 
interface becomes diffuse, as described in Section 18.2.2. It is then no longer possible 
to separate the nucleus energy into volume and interfacial terms, and the nucleus 
must be modeled as a single inhomogeneous body. The problem becomes one of 
determining the energy of a small critical cluster (nucleus) that is inhomogeneous in 
both composition and structure. In the special case when the precipitate and matrix 
have the same well-matched structures, the nucleus will be coherent with respect to  
a reference structure that can be taken to be either the matrix or precipitate lattice 
and there will be only compositional inhomogeneity with which to contend. The 
Cahn-Hilliard gradient-energy continuum approach to the energy of inhomogeneous 
systems described in Section 18.2 can then be used [15, 161. When there is a 
difference in structure, a discrete atomistic calculation will be required. 

An extensive formulation of classical and nonclassical models for homogeneous 
nucleation, as well as experimental tests of their validity, have been carried out for 
the Co-Cu precipitation system in which coherent Co-rich nuclei form [15]. 

19.1.7 Discussion 

According to the classical model, the rate of nucleation during precipitation is sen- 
sitive to the magnitude of the interfacial energy because the critical nucleus energy, 
AG,, varies as y3 (Eq. 19.4) and the nucleation rate varies as exp[-AG,/(kT)] 
(Eq. 19.17). The interfacial energy of incoherent solid/solid interfaces is typicaliy 
about 500 mJ m-', whereas that of an interface that is coherent is lower by a factor 
of 3 or more. Homogeneous nucleation is therefore expected only in cases where the 
nucleus interface is coherent and the interfacial energy is relatively low. Otherwise, 
heterogeneous nucleation will predominate. This is consistent with experimental 
results obtained by Aaronson and Lee [17]. 

The nucleation rate is also sensitive to the magnitude of the driving energy 
since, according to Eq. 19.4, AG, is proportional to the inverse square of this 
quantity. When the temperature is changed and the system becomes metastable, 
the driving force increases with continued temperature change until the rate of 
nucleation increases explosively, as indicated in Fig. 19.11. 

It is often useful to estimate values of AG, that may be required to produce an 
observable nucleation rate. For example, for the nucleation of a solid in a liquid, 
Eq. 19.33 applies and reasonable values for the various factors in the equation 

exp[-Gy/(kT)] x and J x 1 ~ m - ~ s - ' .  Therefore, AG, x 76kT and AG, 
must be no larger than approximately 76kT for observable rates of nucleation to 
occur. 

The explosive onset of nucleation has made the experimental measurement of 
nucleation rates difficult, as measurable rates can be obtained only under a very 
limited range of experimental conditions. An additional difficulty has been counting 
the actual number of particles formed, since substantial concurrent particle coars- 
ening often occurs (see Fig. 19.1). A common procedure has therefore been to  find 
the driving force (which is relatively easy to quantify) that is necessary to produce 

are: ( A G , / ~ T N , ~ ~ T ) ' / ~  x lo-'; z,Xz x 10'; v, x 10 13 s -1 ; N 1023 cm-3; 
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Driving force + 

Figure 19.11: Dependence of the nucleation rate J on the driving force for nucleation. 

measurable amounts of nucleation and then to look for consistency between the 
value of AG, obtained from the data and that predicted from theory. Since the 
nucleation rate is so sensitive to the value of AG,, many of the other factors in 
the overall expression for the nucleation rate need not be known with high preci- 
sion. The various approximations used above to obtain expressions for these factors 
therefore do not lead to serious errors. 

Despite these difficulties, Aaronson and LeGoues have measured the rate of the 
homogeneous nucleation of coherent Co-rich particles in the Co-Cu system by elec- 
tron microscopy and compared their results with predictions of both the classical 
model and two nonclassical models [15]. Even though the thickness of the critical 
nucleus interface was roughly half the nucleus radius, as discussed in Section 23.4.1, 
relatively good agreement was obtained between the predictions of all three mod- 
els. Furthermore, the predicted absolute nucleation rate was within a few orders of 
magnitude of the measured rate. This degree of agreement must be considered as 
relatively good in view of the many uncertainties involved. 

19.2 H E T  E RO G E N E 0 US NU C L EAT I0 N 

Heterogeneous nucleation occurs in competition with homogeneous nucleation. Het- 
erogeneous nucleation in solids is favored by the presence of special sites in the 
material that are capable of significantly lowering AG,. Homogeneous nucleation 
is favored by the fact that the number of sites for homogeneous nucleation is gen- 
erally equal to the number of atomic sites in the specimen and is therefore fur 
greater than the number of heterogeneous sites. The mechanism with the faster 
kinetics dominates. We shall consider two types of heterogeneous nucleation pro- 
cesses: nucleation at grain boundaries in polycrystalline solids and nucleation on 
dislocations. 

19.2.1 

Grain boundaries are two-dimensional (planar) defects separating three-dimensional 
grains. Grain edges are one-dimensional (linear) defects found at the intersection 
of three grain boundaries. Grain corners are zero-dimensional (point) defects where 
four grains touch and where four grain edges meet (see Fig. 15.16). The number 

Nucleation on Grain Boundaries, Grain Edges, and Grain Corners 
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of each type of site per unit volume in a polycrystal decreases as its dimensionality 
decreases. 

Our treatment of nucleation on defects in polycrystalline materials follows that 
first developed by Cahn [18]. We employ the simple classical model for the critical 
nucleus and assume isotropic interfacial energies. Consider the nucleation of a 
@-phase particle on a grain boundary between two grains of an a-phase matrix. 
Since yaa and yap are isotropic, the nucleus will have the shape of two truncated 
spheres joined in the plane of the grain boundary (referred to  as a lenticular shape), 
as in Fig. 19.12. (Exercise 19.11 proves this nucleus shape, and Exercise 19.12 
treats the related geometry of nucleation on a flat substrate.) A circular patch of 
grain boundary is eliminated but is replaced by the two spherical cap-shaped a/@ 
interfaces. If the energy of this nucleus is lower than that of a spherical nucleus 
homogeneously nucleated within an a-phase grain, the boundary will act as an 
effective heterogeneous nucleation site. 

The dihedral angle + is given by Young’s equation: 

yaa  = 2yap cos+ (19.37) 

(19.38) 

Note the limiting physical situations implied by Eq. 19.38. When yaa goes to zero, 
the grain boundary loses its ability to catalyze the reaction, and homogeneous 
nucleation will be favored (+ = 7r/2). When yaa rises to 2y@, the grain boundary 
will be a perfect catalyxer of the reaction, because the grain boundary can be 
replaced by a continuous film of the ,6 phase with no increase in energy (+ = 
0 ) .  In this instance, the nucleation barrier vanishes, a situation called barrierless 
nucleation. The @ phase is said to completely wet the grain boundary when yaa  2 

The nucleation barrier for the lenticular particle shown in Fig. 19.12 can be 
2 7 4  * 

derived using the geometric relations for its volume V and interfacial area A: 

2 n ~ 3  v=- 3 (2-3cos++cos3+) 

and 

The semithickness c and radius r of the particle are given by 

A = 4rR2 (1 - cos +) 

(19.39) 

(19.40) 

r = Rsin+ (19.41) 

lnterphase boundary 

Figure 19.12: 
situated on a grain boundary in phase a. 

Geometrical parameters defining size and shape of a lenticular p particle 



19.2 HETEROGENEOUS NUCLEATION 479 

and 
C =  R ( ~ - c o s $ )  (19.42) 

The free-energy change AGE for nucleation on a boundary site can then be 
expressed as 

(19.43) 

Note that in deriving Eq. 19.43, the quantity yaa has been eliminated, using 
Eq. 19.37. It should be apparent from Eq. 19.43 that the value of the critical 
radius R, for heterogeneous nucleation on a grain boundary is equal to  that for 
homogeneous nucleation under the same conditions. The term in square brackets 
in Eq. 19.43 is equal to  one-half the free-energy change for homogeneous nucleation. 
So the ratio of the critical free-energy change AGF for boundary nucleation to  that 
for homogeneous nucleation AG," is 

(19.44) 

This ratio is the same as that of the volume of the grain boundary particle to  that 
of a sphere having the same radius of curvature. The dihedral angle 1c, is the sole 
parameter in determining this ratio. 

Relations similar to  Eq. 19.44 can be derived for the nucleation barrier for grain 
edges and corners, AGf and As:, respectively [18]. The extent to which the 
heterogeneous. sites are favored relative to  homogeneous nucleation and to  each 
other can be seen by plotting the ratios AG,"/AG,", AGflAG,", and AG:/AG," 
vs. cosq, as shown in Fig. 19.13. 

0 0.5 1 1.5 2 

Figure 19.13: Ratio of critical free-energy change for heterogeneous nucleation on grain 
boundaries, ed es, and corners, Ag,, to that for homogeneous nucleation, AG,", HS a function 
of dihedral anae  $. From Cahn [lS]. 

Figure 19.13 demonstrates that for a given value of q, AG, decreases as the 
dimensionality of the heterogeneous site decreases. However, the number of sites 
available for nucleation also decreases as the dimensionality decreases. Thus, the 
kinetic equations for nucleation theory must be used to  predict which mechanism 
will dominate. To accomplish this, some assumptions about the polycrystalline 
microstructure must be made. Let: 

L = average grain diameter 
15 = grain boundary thickness 
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n = number of atoms per unit volume 

nB = n(6 /L)  = number of boundary sites per unit volume 
nE = n(6 /L)2  = number of edge sites per unit volume 
nc = n(6 /L)3  = number of corner sites per unit volume 

The densities of the heterogeneous sites can then be approximated by 

We now compare the rate of boundary nucleation to the rate of homogeneous nu- 
cleation, using Eq. 19.17: 

The ratio of these rates is 

Thus, 

Defining Rg = kTln(L/6), the rates JB and J H  are equal when 

Rg = k T  In (5) = AGF - AG," 

(19.45) 

(19.46) 

(19.47) 

(19.48) 

(19.49) 

and the homogeneous nucleation rate is higher when Rg > AG," - AG,". Similar 
analyses yield conditions for which each type of heterogeneous nucleation will be 
dominant, with the results summarized in Table 19.1. 

Table 19.1: 
Boundaries, Edges, and Corners 

Conditions for Heterogeneous Nucleation at Grain 

Dominant Mode Conditions 

Homogeneous nucleation 
Boundary nucleation 
Edge nucleation 
Corner nucleation 

RB > AG," - AG," 
As," - AG," > RB > AG," - AG," 
AGE - AG," > RB > AG," - A@ 

As," - A62 > RB 

The results can bc prcsented graphically, as in Fig. 19.14. The plot shows the 
kinetically dominant type of nucleation as a function of grain size (via R E ) ,  AGE, 
and r**/r"P. By setting the nucleation rate, J ,  at a fixed value, a curve such as 
abcde can be plotted to indicate, for given value of L/6 ,  the dominant modes of 
nucleation at  the designated nucleation rate at various values of r*"/r*P. 
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Homogeneous 
0.3 3i 

0 0.5 1 1.5“ 2 
yaa/yap = 2 cos l/l 

Figure 19.14: Re imes in which grain corner, edge. boundary, and homogeneous 
nucleation are predictecf to be dominant. From Cahn [18]. 

19.2.2 Nucleation on Dislocations 

Dislocations in crystals have an excess line energy per unit length that is associated 
with the elastic strain field of the dislocation and the bad material in its core. In 
many cases, the formation of a particle of the new phase a t  the dislocation can 
reduce this energy, enabling it to act as a favorable site for heterogeneous nucleation. 
The original treatment of heterogeneous incoherent nucleation on dislocations was 
by Cahn [19]. The general topic, including coherent nucleation on dislocations, has 
been reviewed by Larch6 [20]. 

Incoherent Nucleation. Consider first incoherent nucleation on dislocations [ 191. 
For linearly elastic isotropic materials, the energy per unit length El inside a cylin- 
der of radius T having a dislocation a t  its center is given by 

and 

E L  = -I.(&) Pb2 (screw dislocation) 
4 n  

Pb2 (edge dislocation) 
47~  (1 - v) In (k) El = 

(19.50) 

(19.51) 

where b is the Burgers vector and R, is the usual effective core radius. 
Poisson’s ratio v is approximately 0.3 for many solids, so to a fair approximation, 

the energy difference between edge and screw dislocations can be ignored. Following 
Cahn. 

E l = - l n ( & )  B b  
2 

(19.52) 

where B x p b l ( 2 n ) .  
Allowing the entire region inside a radius T to transform to incoherent @ will allow 

essentially all of the dislocation energy originally inside the transformed region to 
be “released.” Thus, the dislocation catalyzes incoherent nucleation by eliminating 
some of the dislocation’s total energy. I t  is important to note that the dislocation 
will still effectively exist in the material along with its strain energy outside the 
transformed region, even though the incoherent @ has replaced the core region. For 
example, a Burgers circuit around the dislocation in the matrix material surround- 
ing the incoherent @-phase cylinder will still have a closure failure equal to  b. On 
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forming the incoherent cylinder of radius r ,  the total free energy change per unit 
length is 

(terms independent of r )  (19.53) 
Bb 
2 

AG’(r) =m2Ag~+2.1rry-  - l n r + . . .  

Extreme values of AG’(r) are given by the condition 

Bb 
br 2r = 2./r(rAg~ + 7) - - = 0 8 AG‘ (r ) (19.54) 

Plotting AG’(r) vs. r in Fig. 19.15, two types of behavior are evident, depending 
on the value of the parameter, a, where 

(19.55) 

For a > 1, nucleation is barrierless-i.e., the transformation is controlled solely by 
growth kinetics. However, for a c 1, a barrier exists. The local minimum of AG’(r) 
at point A in the plot corresponds to a metastable cylinder of p of radius ro forming 
along the dislocation line. (In a sense, this is analogous to the Cottrell atmosphere 
described in Section 3.5.2.) In Eq. 19.54, the metastable cylinder’s radius is 

(19.56) 

The nucleation barrier for a c 1 is then related to the difference in AG’(r) 
between the states A and B in Fig. 19.15, where the radius rc corresponding to the 
unstable state at B is given from Eq. 19.54 as 

(19.57) 

However, the dislocation is practically infinitely long compared to the size of any 
realistic critical nucleus. If the nucleus were of uniform radius along a long length 
of the dislocation, AGc would be very large. A critical nucleus will form from a local 
fluctuation in the form of a “bulge” of the cylinder associated with the metastable 
state A,  as illustrated in Fig. 19.16. The problem is thus to find the particular 
bulged-out shape that corresponds to a minimum activation barrier for nucleation. 

t l  B 

r0 rc r 

Fi ure 19.16: 
cyfndrical precipitate along the core of a dislocation. From Cahn [lQ]. 

Possible free energy vs. size behavior for the formation of an incoherent 
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Figure 19.16: 
dislocation. 

Possible shape for incoherent critical nucleus forming along the core of a 

Let the function r(t) specify the shape of the nucleus. The energy to  go from 
the metastable state A to the unstable state B (see Fig. 19.15) can be expressed 

AG = [AG' ( r )  - AG' ( T O ) ]  dt (19.58) J 
From earlier equations, 

7 r A g B ( r 2 - T z )  -"I.(:) 2 +2ry  [ r / q - r O ] }  dt 

(19.59) 
The unknown shape r( t) is determined by minimizing AG using variational calcu- 
lus techniques. The solution to the Euler equation for this problem is somewhat 
complicated, requiring some substitutions and lengthy algebra [19]. From the re- 
sulting equations, one can plot the ratio of the activation barrier for nucleation 
on dislocations AGp to that for homogeneous nucleation As: vs. a, in a manner 
analogous to the plot given in Fig. 19.13, which compared nucleation on various 
sites in polycrystals. The resulting plot in Fig. 19.17 shows a dramatic decrease in 
the relative value of AGf as cy -, 1. 

Cahn also considered briefly the nucleation kinetics and showed that for reason- 
able values of the parameters in the theory, nucleation on dislocations in solids can 
be copious [19]. Typically, this occurs when a is in the range 0.4-0.7. 

" 0 0.2 0.4 0.6 0.8 1.0 
a 

Figure 19.17: 
at dislocations with increasing values of the parameter a (see Eq. 19.55). From Cahn [19]. 

Lowering of the activation barrier for heterogeneous incoherent nucleation 
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Coherent Nucleation. The elastic interaction between the strain field of the nucleus 
and the stress field in the matrix due to  the dislocation provides the main catalyzing 
force for heterogeneous nucleation of coherent precipitates on dislocations. This 
elastic interaction is absent for incoherent precipitates. 

For coherent particles with dilational strains, there is a strong interaction with 
the elastic stress field of edge dislocations [20]. If a particle has a positive dilational 
transformation strain (& + E&, + &FZ > 0), it can relieve some of the dislocation’s 
strain energy by forming in the region near the core that is under tensile strain. 
Conversely, when this strain is negative, the particle will form on the compressive 
side. Interactions with screw dislocations are generally considerably weaker, but 
can be important for transformation strains with a large shear component. Deter- 
minations of the various strain energies use Eshelby’s method of calculating these 
quantities [20]. 
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The kinetics of grain boundary nucleated reactions. 

EXE RClS ES 

19.1 An equilibrium temperaturecomposition diagram for an A-B alloy is shown 
in Fig. 19.18a. A nucleation study is carried out at 800 K using an alloy of 
30 at. % B. The alloy is initially homogenized at 1200 K,  then quenched to 
800 K where the steady-state homogeneous nucleation rate is determined to 
be 10' m-3 s-'. Since this rate is so small as to  be barely detectable, it  is 
desired to  change the alloy composition (i-e., increase the supersaturation) 
so that with the same heat treatment the nucleation rate is increased to 
1021 m-3 s-l. Estimate the new alloy composition required to achieve this 
at 800 K. Use the free energy vs. composition curves in Fig. 19.18b, and 
assume that the interphase boundary energy per unit area, 7, is 75 mJ m-2. 
List important assumptions in your analysis. 

- 
3 1200 - 
f 
ElOOO- 

c" 800- 

v 

- B 
I I 1  I I 1  I I l l  

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 
Atomic fraction B 

(4 

Atomic fraction B 

( b )  

Figure 19.18: 
AgB, vs. atomic fraction of component B at T = 800 K. 

(a) Equilibrium diagram for A-B alloy. (b) Plot of free-energy density, 

Solution. Important assumptions include that the interfacial free energy is isotropic, 
that elastic strain energy is unimportant, and that the nucleation rates mentioned are for 
steady-state nucleation. The critical barrier to nucleation, Ap,, can be calculated for 
the 0.3 atomic fraction B alloy using the tangent-to-curve construction on the curves 
in Fig. 19.18b to provide the value AgB = -9 x 10' Jm-3 for the chemical driving 
force for this supersaturation at 800 K. AgC is given for a spherical critical nucleus by 
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Note that at this temperature, kT = 1.38 x x 800 = 1.10 x lo-", 50 that 
at 800 K and X B  = 0.3, AG, % 79kT. Based on the criterion that for significant 
nucleation AG, 5 76kT (Section 19.1.7), it is reasonable that the nucleation rate is 
"barely detectable" in the alloy with X B  = 0.3. 

The steady-state nucleation rate will be proportional to  exp[-AG,/(kT)] 50 we know 
that at 800 K and X B  = 0.3, 

lo6 = ~ ' e x p ( - 7 9 )  (19.61) 

where the constant C' is equal t o  NP.2 in the classical theory for steady-state nucleation. 
We need to  find the critical nucleation barrier necessary to  achieve the nucleation rate 
of 10". and this will be 

or 

1 o6 exp( -79) 
loz1 exp[ -AG,/( kT)] 
- =  

or -34.54+79= - AGc 
kT 

In 1 0 - l ~  = -79 + - 
kT 

(19.62) 

(19.63) 

and thus for the higher nucleation rate we must have AG, *: 44.5kT = 4.91 x lO-"J. 
Next, solve for the chemical driving force required to  get AG, down to  this value, as 
follows: 

Finally, use the free-energy density vs. composition curves and work the tangent-to- 
curve construction in reverse. Using the result that AgB = -12 x 107Jm-3, the 
corresponding tangent t o  the a-phase curve will be at about 33 at. % B. 
This calculation serves as a good example of the high sensitivity of nucleation rate t o  
the degree of supersaturation. 

19.2 The data below are typical for a metal solid solution that can precipitate a 
phase 0 from a matrix phase a. Assume that the structures of both phases are 
such that 0 could form by coherent homogeneous nucleation or, alternatively, 
by incoherent homogeneous nucleation. Also, assume that strain energy can 
be neglected during incoherent nucleation but must be taken into account 
during coherent nucleation. Using the data below, answer the following: 

(a) Below what temperature does incoherent nucleation become t h e n o d y -  

(b) Below what temperature does coherent nucleation become t h e n o d y -  

(c) Which type of nucleation, coherent or incoherent, do you expect to occur 

Data 

namically possible? 

namically possible? 

at 510 K? Justify your answer. 

-yc = 160 mJ m-2 
7' = 800 mJ m-2 
AgE = 2.6 x lo9 J m-3 
AgB = 8 x lo6 (T - 900K) J m -3 K-' 

(coherent interface) 
(incoherent interface) 

(coherent particle) 
(driving force for precipitation) 

Solution. 

(a) Nucleation becomes thermodynamically possible if the thermodynamic driving 
For sufficiently large volumes n u c l t  force for the transformation is negative. 
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ated incoherently in the absence o f  strain energy, and where the interfacial energy 
has become unimportant, the total energy change will be negative if AgB < 0. 
Therefore, we need AgB = 8 x lo6 (T - 900 K) J m-3 K-’ < 0, or T < 900 K.  

(b) For coherent nucleation t o  be thermodynamically possible, AgB + AgE < 0. 
Therefore, we need 8 x lo6 (T - 900 K) + 2.6 x lo9 < 0, or T < 575 K. 

(c) Assuming that the number o f  available sites for nucleation is the same for both 
coherent and incoherent mechanisms, the nucleation mechanism one expects t o  
observe will be determined by the critical free-energy barrier, AG,. Because the 
nucleation rates are proportional t o  exp[-AG,/(kT)], the mechanism with the 
lowest value o f  AG, will dominate and be observable if AG, 5 76kT, approxi- 
mately. 

Assuming spherical nuclei, A& = 167ry3/[3(Ags + Ag,)’], where 

(19.65) y = yi,  AgE = 0 
y = yc, AgE # 0 

(incoherent nucleation) 
(coherent nucleation) 

Using the given data, at T = 510K, AgB = -3.12 x lo9 Jm-3. Wi th  this, 

AGc = 8.81 x lO-”J (incoherent nucleation) 
(19.66) ( AG, = 2.54 x lO-”J (coherent nucleation) 

and, similarly, 

AGC/(76kT) = 1.65 > 1 

AGC/(76kT) = 0.475 < 1 

(incoherent nucleation) 

(coherent nucleation) 
(19.67) 

Consequently, coherent nucleation is expected. 

19.3 Martensitic transformations involve a shape deformation that is an invariant- 
plane strain (simple shear plus a strain normal to the plane of shear). The 
elastic coherency-strain energy associated with the shape change is often min- 
imized if the martensite forms as thin plates lying in the plane of shear. Such a 
morphology can be approximated by an oblate spheroid with semiaxes ( r ,  r ,  c ) ,  
with T >> c. The volume V and surface area S for an oblate spheroid are given 
by the relations 

(19.68) V = -r c and S = 2rr2 47r 2 

3 
The coherency strain energy per unit volume transformed is 

Ac 
ASE = 1- (19.69) 

(a) Find expressions for the size and shape parameters for a coherent critical 
nucleus of martensite. Use the data below to calculate values for these 
parameters. 

(b) Find the expression for the activation barrier for the formation of a 
coherent critical nucleus of martensite. Use the data below to calculate 
the value of this quantity. 

(c) Comment on the likelihood of coherent nucleation of martensite under 
these conditions. 
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(d) Make a sketch of the free-energy surface AG(r, c) and indicate the loca- 
tion of the critical nucleus configuration ( T ~ ,  c,) on the surface. 

Data 
AgB = -170 MJ m-3 

y = 150 mJ m-' 
A = 2.4 x lo3 MJ m-3 

(chemical driving force at observed transformation 
temperature) 
(interphase boundary energy per unit area) 
(strain energy proportionality factor) 

Solution. 

(a) Write the free energy to  form a nucleus in the usual way as the sum of a bulk 
free-energy term, a strain-energy term, and an interfacial-energy term so that 

( 19.70) 

Now AG = AG(c, T )  and the critical values of c and T are then found by applying 
the simultaneous conditions 

4 4 
3 3 

AG = -TT'CA~B + - T T C ~ A  + 2 ~ r ' r  

Substituting Eq. 19.70 into Eqs. 19.71 and solving for rC and cc yields 

(19.71) 

(19.72) 

Using the data provided, these quantities evaluate to  

(19.73) 
C 

T 
rC = 50nm cc = 1.5nm - = 0.035 

(b) Substituting Eqs. 19.72 into Eq. 19.70 then yields 

3 2 ~  A2y3 
AgC = -~ 

(AgB)4 

Using the data provided, this quantity is equal to  

AG, = 7.8 x J 

(19.74) 

(19.75) 

(c) Nucleation would proceed at observable rates if A& 5 76kT. Assuming a nucle- 
ation temperature of 350 K, 

= 1.6 x 105 (19.76) 
7.8 x J - A G c  -- 

kT 1.38 x J K-l x 350K 

which is huge compared to 76! So homogeneous nucleation would be very unlikely. 
Note that the size parameter rC is particularly large and thus the critical nucleus 
volume is large, consistent with the large value of A&. 

(d) The saddle point on the free-energy surface, (rC,cc),  is indicated in Fig. 19.19. 
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Figure 19.19: Saddle point on free-energy surface. 

19.4 Derive Eq. 19.22; i.e., 

1 1 a 2 A ( 7 ~  

-=--(w) 62 8kT N=Nc 

Solution. Approximate the curve of AGN vs. n/ in Fig. 19.6 by a circle of radius R. 
Then 

kT = R - (19.77) 

Expanding Eq. 19.77 and neglecting the higher-order terms, 

1 1 1  --- P-mz 
The standard expression for the curvature, 1/R, is 

(19.78) 

(19.79) 

Combining Eqs. 19.78 and 19.79, the desired result is then obtained. 

19.5 Derive Eq. 19.36 for the free-energy change due to the annihilation of excess 
vacancies at nucleating incoherent clusters during precipitation. 

Hint: The chemical potential of excess vacancies is given by Eq. 3.66. 
Solution. First, calculate the energy change contributed by the excess vacancies which 
are eliminated to  relieve the strain due to  the dilatation $1. If V is the cluster volume, 
AV = 3€TIV. The number o f  vacancies required is then N = 3ETlV/n and the 
free-energy change due to  the removal of these vacancies is therefore 

(19.80) 

Next, calculate the free-energy change due to  the destruction of the additional vacancies 
which are removed to the point where the rate of buildup o f  elastic strain due to  
their annihilation is just equal to the rate at which energy is given up by the vacancy 
annihilation. If N vacancies are destroyed in this fashion, the volume o f  matrix removed 
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is N n  and the dilational strain that is induced is then Nn/3V.  Using Eq. 19.25, the 
strain energy that is created is 

(19.81) 

The energy released by the annihilated vacancies is As; = NkTln(Xv/XGq), and the 
total energy change is then 

(19.82) 

AG" is minimized when aAG"/aN = 0, and carrying out this operation, the minimum 
value is 

(19.83) 

Adding Eqs. 19.80 and 19.83, the total energy change (per unit cluster volume) is then 
finally 

2 

(19.84) 
3 z n  9(1 - Y )  

Ag = --kTln n 

19.6 Figure 19.20 shows a cross section through the center of a critical nucleus 
that has cylindrical symmetry around the vertical axis EF. AB and CD are 
the traces of flat facets that possess the interfacial energy (per unit area) y f ,  
and AC and BD are the traces of the spherical portion of the interface that 
possesses the corresponding energy y. 

E 
/ 

F 

Figure 19.20: Critical nucleus shape. 

(a) Construct a Wulff plot that is consistent with the critical nucleus shape 

(b) Show that the free energy to form this critical nucleus can be written 
(Wulff shape) in Fig. 19.20. 

1 
AQ,(sphere) 2 

A& = - (3 cos a - coS3 a) (19.85) 

where Ag,(sphere) is the free energy to form a critical nucleus for the 
same transformation but which is spherical and possesses the interfacial 
energy y. Assume the classical model for the nucleus. 
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Solution. 

(a) The WulfF plot in Fig. 19.21 possesses two deep 
two low-energy facets. 

cusps necessary t o  produce the 

E 
/ 

F 

Figure 19.21: Deeply cusped WulfF plot. 

(b) Standard relationships for volumes and areas show that the volume of the nucleus 
is given by V = 27rR3 [cosa - (c0s3 a)/3] while the area of the two facets is 
2rR2 sin2 a and the area of the spherical portion of the interface is 47rR2 cosa. 
The free energy to  form the nucleus is therefore 

3 ) AgB + 2rR2 sin2 a yf + 4xR2 cos a 7 (19.86) 

But, according t o  Fig. 19.21, rf/r = cosa and therefore 

(19.87) 

Minimizing A 9  with respect t o  R in order t o  obtain Ag, and using the result that 
AQ,(sphere) = 167ry3/ [ 3 ( A g ~ ) ~ ]  we obtain the result 

(19.88) 
1 

A&(sphere) 2 
= - (3cosa - cos3a) AGc 

19.7 Consider the possible heterogeneous nucleation of a solid phase from a liquid 
in a conically shaped pit in the wall of a mold as illustrated in Fig. 19.22. 
Let the energies of the liquid/mold, solid/mold, and liquid/solid interfaces be 
rLM, rSM,  and rLS, respectively, and assume that rSM = rLM, 

(a) Using the classical nucleation model, find an expression for the critical 
free energy for heterogeneous nucleation to occur within the pit, and 
compare it to the critical free energy for homogeneous nucleation in 
the bulk liquid. Assume that the pit is deep enough to allow a critical 
heterogeneous nucleus to form within it. 

(b) For the solid, which has nucleated successfully within the pit, to grow 
without limit, it must be able to grow out of the pit and expand into the 
bulk liquid. Determine how deep the pit must be so that this can occur. 
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Figure 19.22: 
wall of a mold containing a metastable liquid. 

Cross section of heterogeneous solid nucleus formed in a conical pit in the 

Solution. 

(a) The nucleus may be expected to  have the form shown in Fig. 19.22. It consists of 
a cone with a spherical cap of constant curvature that meets the mold surface at 
90" and therefore satisfies Young's equation for local interfacial equilibrium. The 
volume of the nucleus is then the volume of the cone of height d plus the volume 
of the spherical cap of radius R and is given by 

The area of the cap, A ,  is given by 2rRh, where h is its height. Therefore, 

A = 2rRh = 2rR2[1 - COS(CY/~)] (19.90) 

The free energy to  form a nucleus as in Fig. 19.22 is then 

(19.91) 
2 r ~ 3  

AG = -[1 - C O S ( C Y / ~ ) ] A ~ ~  + 2rR2[1 - C O S ( C Y / ~ ) ] ~ ~ ~  
3 

The critical nucleus radius, Rc, is found by setting = 0, with the result 

(19.92) '- AgB 

The critical radius given by Eq. 19.92 is equal t o  the critical radius for homogeneous 
nucleation in the bulk liquid. This is the expected result because Y~~ = Y SM 
(so that the liquid/solid interface makes an angle of 90" with the mold) and the 
inward pressure on the interface due t o  curvature, A P  = 2rLS/R (Eq. 12.4), 
is then exactly balanced by the change in bulk free energy across the interface, 
nphase trans = -AgB (Eq. 12.1). Substitution of Eq. 19.92 into Eq. 19.91 yields 
the critical free energy for nucleation: 

2 7 L S  R - _ -  

(19.93) 

AG," = ( 1 6 ~ / 3 ) ( y ~ ~ ) ~ / ( A g ~ ) ~  is the critical free energy of homogeneous nucle- 
ation, so 

AG, 1 - COS(CY/~) -- 
AG,H - 2 

(19.94) 
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and thus the heterogeneous nucleation will be much easier than homogeneous 
nucleation. 

(b) Once the critical nucleus has formed within the pit, it will grow outward as shown 
in Fig. 19.23. When it reaches the mold surface, a t  a time t l ,  it will continue 
to  grow by bulging outward as long as i ts  radius is always larger than the critical 
radius for homogeneous nucleation in the liquid, corresponding to  R, in Eq. 19.92. 
The minimum radius that will occur during this bulging out will correspond t o  that 
shown at time t 2  in Fig. 19.23, where the growing particle possesses a spherical 
cap with a radius that is just equal t o  half the width of the pit at the mold surface. 
This radius must be larger than R, and the critical condition on the pit depth, D, 
for unlimited growth into the liquid is therefore 

(19.95) 

Figure 19.23: 
supercritical heterogeneous nucleus that has formed in the pit with a critical radius R,. 

Critical pit depth, D, which will just allow the unlimited growth of a 

19.8 In Exercise 19.7 we considered heterogeneous nucleation of a solid from a liq- 
uid in a conical pit in the wall of the mold holding the liquid. Consider now 
heterogeneous nucleation in the same solidification system but with the nucle- 
ation occurring in a crack in the wall of the mold as illustrated in Fig. 19.24 in- 
stead of in a conical pit. Again, let the energies of the liquid/mold, solid/mold, 
and liquid/solid interfaces be y L M ,  y S M ,  and y L S ,  respectively, and assume 
that rSM = Y ~ ~ .  

Figure 19.24: 
liquid. The crack extends normal to the page. 

Cross section of a long crack in the wall of a mold containing a metastable 
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(a) Describe the expected three-dimensional shape of the nucleus. 

(b) Using the classical nucleation model, find an expression for the critical 
free energy for the heterogeneous nucleation to occur within the crack 
and compare it to  the critical free energy for homogeneous nucleation in 
the bulk liquid. Assume that the crack is deep enough to allow a critical 
heterogeneous nucleus to form within it. 

Solution. 

(a) The expected shape o f  the nucleus is shown in Fig. 19.25. The interface ABCD is 
spherical and of radius R and Young's equation for interface equilibrium is satisfied 
along the junction lines ABD and ACD. 

Figure 19.25: Shape of heterogeneous nucleus (ABCD) for solidification formed at  the 
root of the crack in the mold wall. (a) Oblique view. (b) Cross section through the nucleus 
midplane. The crack extends normal to the page. 

(b) The free energy of formation o f  such a nucleus is given by 

(19.96) 

The critical nucleus radius, R,, is found by setting = 0, with the result 

(19.97) 

The critical radius given by Eq. 19.97 is equal t o  the critical radius for homogeneous 
nucleation in the bulk liquid. This result is similar t o  that obtained in Exercise 19.7 
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and might be expected since rLM = y S M ,  the liquid/solid interface makes an 
angle of 90' with the mold, and the inward pressure on the interface due t o  
curvature, P = 2rLS/R  (Eq. 12.4), is then exactly balanced by the outward 
pressure, P = -AgB (Eq. 12.1), due t o  the change in bulk free energy across the 
interface. Substitution of Eq. 19.97 into Eq. 19.96 yields the critical free energy 
for nucleation, 

Because the critical free energy of homogeneous nucleation is 

it follows that 

(19.98) 

(19.99) 

(19.100) 

and as in Exercise 19.7, heterogeneous nucleation will be much easier than homo- 
geneous nucleation. Note that for the solid that has nucleated successfully within 
the crack to  grow without limit, it must be able to  grow out of the crack and 
expand into the liquid. This will require that the crack be deep enough so that 
the nucleus will be supercritical when it emerges from the crack. (An analysis of 
this problem for a heterogeneous nucleus emerging from a conical pit in the mold 
wall is given in Exercise 19.7b.) 

19.9 Experimental observations of precipitation from supersaturated, polycrys- 
talline solid solutions seem to show that at small undercoolings AT = Teq - T 
within a two-phase field, grain-boundary precipitation is observed, and at 
larger undercoolings, homogeneous precipitation occurs within the grain in- 
teriors. Interpret this observation by using nucleation theory. 

Solution. Figure 19.14 delineates regions where homogeneous and heterogeneous 
nucleation will be dominant. The quantity AGF has the most pronounced temperature 
dependence of the important variables in the figure. The ratio r""/raP will normally 
be rather temperatureindependent. Consequently, in Fig. 19.14, varying undercool- 
ing will correspond to  changes parallel t o  the R"/A@ axis. Because A@ -+ 00 

as the undercooling AT + 0, there will always be a range of temperatures close to  
P where the rate of heterogeneous nucleation exceeds that of homogeneous nucle- 
ation. Conversely, high undercooling with correspondingly small values of A&' favors 
homogeneous nucleation. 

19.10 Suppose that a material a with cubic symmetry is nucleating on a smooth, 
amorphous substrate. To demonstrate the crystallographic effects of nucle- 
ation, we will consider nucleation in two dimensions (Lea, the system lies in 
the plane of this page). Assume that the only surfaces which appear on the 
Wulff shape are the { 10)-type faces, which have surface energy (energy per 
unit length) ylol" at the interface with a vacuum. Furthermore, assume that 
there are only two crystallographic orientations of low-energy interfaces of a 
with the substrate: (1) the interface that is normal to {ll}.which has inter- 
facial energy yll/sub; (2) the interface that is normal to (10) which has inter- 
facial energy ylOlsub. Let the interfacial free energy of the substrate/vacuum 
interface be yvlsub. Thus, nucleation could have two distinct morphologies, 
triangular and rectangular, as illustrated in Fig. 19.26. 
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Figure 19.28: 
dimensional substrate surface. 

Possible shapes for nucleation of a twedimensional crystal on a one 

(a) Calculate the critical nucleus dimensions for each morphology in terms 
of the interfacial free energies and the chemical driving force Ag, (energy 
p r unit area). Assume that the nucleation shape for each case is the 
o e that minimizes total surface energy for its volume. 

(b) F,nd a relation between the various surface and interfacial free energies 
that would make the areas of the critical nuclei equal for the two cases. 

Solution. 

'(a) For the triangular morphology, the free-energy change for forming a particle of 
edge length, 2 ,  will be 

10/~1 + ($l/Bub - ,.,v/nub) 61 (19.101) 
l2 

ABtri = TAga + 21. 

The critical size, l , ,  is 

+ (y l l / sub - ?v/sub ) h (19.102) 
1 

61 2 
= 0 = 2Aga2 + 2y10/v 6ABtri 

or 

For the rectangular morphology, the free-energy change for forming a particle of 
height, b, and width, c, will be 

Agrect = bc Aga + (2b + C) ylo/" + c (ylo'aub - yY/sub) (19.104) 

The critical dimensions, b, and c,, are obtained from the minimization equations 

-= aAgrect 0 = c,Ag, + 2ylo/v (19.105) 
6 b  

and are given by 

(19.106) 
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(b) T h e  area of the triangular critical nucleus is 

T h e  area of the rectangular critical nucleus is 

y lO/v  + ylO/sub - yv/sub 2y10/" 

&a A94 
Arect  = bc cc = ( 1 9 . 1 0 9 )  

T h e  two areas are equal when 

(y l l / sub-yv/sub)2  = 2y10/v [ylO/wb - & - p u b  + (Jz - l )yV/SUb]  (19.110) 

19.11 We wish to  prove by means of the Wulff construction (Section C.3.1) that 
the equilibrium shape of the grain boundary nucleus in Fig. 19.12 is indeed 
composed of two spherical-cap-shaped interfaces. 

The nucleus has cylindrical symmetry around an axis normal to the boundary 
and mirror symmetry across the grain-boundary plane. Figure 19.27 shows 
a cross section of the nucleus centered in a patch of boundary of constant 
circular area, A,. The area of the nucleus projected on the boundary is 
indicated by A.  The total interfacial energy of this configuration is then 

Gint = l,, yalP dA + l,, y"1" dA 

(19.111) 
y a f P  &A + / y"," dA - ye/& dA 

= LIP A0 

where the integrals extend over the interface types indicated. The condition 
for minimum total interfacial energy is then 

( 19.1 12)  

since A, = constant. Equation 19,112 can also be written 

- y l "  
6Gint = b  [2 ( ~ ~ l P 7 a ! 3 d A + ~ I d A ) ]  = O  (19.113) 

I . .a16 I 

I 
I 

I 
I 

Figure 19.27: Cross section of grain boundary nucleus. 
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The first term in the curved inner bracket is the energy of either the upper 
or lower half of the cx/P interface in Fig. 19.27, while the second represents 
half the energy of the area A.  Their sum is therefore the total interfacial 
energy of the "half-nucleus" shape containing the fictitious boundary shown 
in Fig. 19.28. Using these results: 

I--A-l 

Figure 19.28: Cross section of half-nucleus shape. 

(a) Construct the Wulff plot for the half-nucleus and find the Wulff shape. 

(b) Show that the upper and lower surfaces of the nucleus in Fig. 19.27 are 

( c )  Show that Young's equilibrium relation at the triple junction at  the 

indeed hemispherical as assumed. 

nucleus and the grain boundary intersection is obeyed. 

Solution. Cross sections of the WulfF plot and Wulff shape consistent with the syrnrne- 
try of the problem are shown in Fig. 19.29. Since the a l p  interface is isotropic, the top 
surface is spherical. Also, the construction is consistent with Young's equation, since 
from the figure, 7"" = 2ya0 cose 

Figure 19.29: Cross section of Wulff plot and related nucleus form. 

During the solidification of a pure liquid, small, solid foreign particles (inclu- 
sions) may be suspended in the liquid and act as heterogeneous nucleation 
sites for the solidifying solid. Assume the heterogeneous nucleus geometry 
shown in Fig. 19.30 and that all of the interfaces involved possess isotropic 
energies. Show that 

(19.114) 

where AGf is the critical free energy for heterogeneous nucleation at  the 
particle and AGF is the critical free energy for homogeneous nucleation in 
the bulk liquid. 
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L 
/ 

Figure 19.30: 
solidification of a bulk liquid ( L ) .  

Heterogeneous nucleation of solid ( S )  on a, solid particlt. ( P )  diiriiig tho 

Solution. Let yLp, y L " ,  and 7"' be the energies (per unit area) of the liquid/particle, 
liquid/solid, and solid/particle interfaces, respectively. From Section 19.2.1 the volume 
of the solid nucleus is Vs = (7rR"/3) ( 2  - 3cose + cos" e ) ,  the spherical liquid/solid 
cap area is ALs = 2xR2(1 - cose) ,  and the solid/particle area is A"" = 7rR2sin'H. 
The free energy of nucleus formation on the particles is then 

where AgB is the usual free energy of the bulk transformation. Also, equilibration at 
the interface junction requires that 

yLp = yLs cos (7 + y"'> ( 19.116) 

Putting these relationships into Eq. 19 115 and minimizing AG" with respect t o  R,  

( 19.11 7 )  

On the other hand, for the homogeneous nucleation of a spherical solid nucleus in the 
bulk liquid, AGf = 167r ( y L s ) 3  / [ 3 ( A g ~ ) ~ ] .  Combining this with Eq. 19.117 therefore 
produces Eq. 19.114. 

19.13 A pure liquid being solidified contains a dispersion of very fine foreign particles 
which can act as heterogeneous nucleation sites as described in Exercise 19.12. 
The rate of nucleation of the solid falls off exponentially with time. Develop 
a simple model that might explain this phenomenon. 

Solution. A simple model can be constructed based on the idea that the nucleation is 
heterogeneous and that the heterogeneous nucleation sites (i.e., the particles), are being 
neutralized as nucleation and growth proceed. Once a nucleation event has occurred 
at a given particle, the solid will grow and envelop the particle, and i t  is unlikely that 
an additional nucleation event will occur there. After the incubation period has passed, 
Eq. 19.17 may be written for heterogeneous nucleation in the form 

( 19.118) 

where np is the number of nucleating particles per unit volume and NP is the number 
of nucleating sites per particle. The number o f  active nucleating particles will then 

J 1 Z/3,npNp 

decrease according t o  

dnp = - J  = -Anp 
dt 

where A = constant. Equation 19.119 integrates t o  

At  n p  = n p ( 0 )  e -  

and therefore 
J = Ant. = A n p ( 0 )  CA' 

19,119) 

19.120) 

19.121) 



CHAPTER 20 

GROWTH OF PHASES IN CONCENTRATION 
AND THERMAL FIELDS 

This chapter focuses on the growth of phases in transformations when long-range 
diffusion of mass and/or conduction of heat at the interface bounding the growing 
phase is necessary to sustain the growth. This occurs whenever there is a change 
of composition at the interface or a latent heat of transformation that must be 
supplied or removed. This type of growth is nonconservative with respect to  maSs 
and enerm and is distinguished from purelv conservative growth that occurs when 
no such long-range transport is required. - 1  

In the treatment of this growth it is necessary to  determine the concentration 
and/or thermal fields that are present in the bulk regions adjoining the moving 
interface under conditions where certain boundary conditions must be satisfied at 
the interface. Also, the rate of interface movement may be controlled by the rate 
at which the mass is transported to the interface by diffusion (diffusion-limited) 
or by the rate at which it can be incorporated at the interface (interface source- 
limited) as described in Section 13.4. A further complication may arise from the 
possibility that the interface, which is moving in adjoining concentration and/or 
thermal fields, will change its form and evolve into a cellular or dendritic structure 
(i.e., it will become morphologically unstable). 

Other types of growth are treated elsewhere in this book. 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 501 
Copyright 0 2005 John Wiley & Sons, Inc. 
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20.1 GROWTH OF PLANAR LAYERS 

We begin by analyzing the growth of planar layers when the growth rate is controlled 
by heat conduction, mass diffusion, or both simultaneously. Growth under interface 
source-limited conditions is considered as well. We assume throughout that the 
interface is morphologically stable and therefore remains planar. Morphological 
instability is analyzed in Section 20.3. 

20.1.1 Heat Conduction-Limited Growth 

Consider the melting of a pure material as depicted in Fig. 20.1. The melting 
is advancing from the left, where the temperature is maintained at TLo,  above 
the melting point. It is assumed that atoms exchange rapidly between the liquid 
and solid at the interface so that local equilibrium is achieved and the interface 
temperature is therefore maintained at the equilibrium melting point. Under this 
condition, the rate of melting will be controlled by the rate of heat conduction 
and nut by processes at the interface. The temperature in the solid at a long 
distance on the right is maintained at Ts". The interface will move as heat flows 
down the temperature gradient in the liquid to the interface, where it supplies the 
necessary latent heat of melting per unit mass, Hm, for the transformation. The 
rate of melting will then depend upon how rapidly this heat can be supplied. The 
differential equation for heat conduction (Eq. 4.11) applies in each phase. However, 
the moving interface modifies the conduction problem by making the position of 
the interface, where the boundary value of T is held at T,, a function of the net 
flux to the interface and thus on the solution itself. Such a problem is called a 
moving-boundary problem, and the dependence of the boundary condition on the 
solution makes the problem nonlinear. Assuming a constant thermal diffusivity, 
the equations governing the temperature fields in the liquid and solid are 

(20.1) 

with the conditions 

(20.2) 
T L ( z  = 0 , t )  = T LO 

T S ( z  = 00, t )  = Tsm 
TL[X(t) ,  tl = Tnl 
T S [ x ( t ) ,  t]  = T m  

T 1 Liquid I Solid 

Figure 20.1: 
advancing from the left. ) 

Temperature distribution for the melting of a pure material. Melting is 
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At this point, the interface position, X(t),  is an unknown function of time. However, 
it can be determined by imposing the requirement that the net rate at which heat 
flows into the boundary must be equal to the rate at which heat is delivered to 
supply the latent heat needed for the melting. Any small difference between the 
densities ps and p L  may be neglected and the resulting uniform density is repre- 
sented by p. Then, if the boundary advances a distance 62, an amount of heat 
pH, 6x must be supplied per unit area. Also, if the time required for this advance 
is 6t, the heat that has entered the boundary from the liquid is JL& (at x = x) and 
the heat that has left the interface through the solid is J S S t  (at x = x). Therefore, 

6t = pH, 6~ (20.3) 
( J L - J ’ )  6 t = - K L ( z )  d T L  6 t + K S ( x )  d T S  

x = x  
x=x x=x 

or equivalently, 

(20.4) 

This type of relationship, accounting for the flux into and out of the interface, is 
generally known as a Stefan condition [l]. The Stefan condition introduces a new 
variable, the interface position, and one new equation. 

A solution of the conduction equation in the liquid is 

T L  = a1 erf - (A) +a2  
(20.5) 

where a1 and a2 are constants. Fitting this solution to the boundary conditions 
given by Eq. 20.2, 

T, - T LO = alerf - (20.6) (A) 
which can only be satisfied at all times if 

x( t )  = A& (20.7) 

where A is a constant (to be determined). This yields the important result that 
the liquid/solid interface will advance parabolically (i.e., as 4). Solving for a l ,  the 
solution of Eq. 20.5 becomes 

Using similar procedures, the solution of the conduction 

(20.8) 

equation in the solid is 

(20.9) 

Note that for these solutions no liquid exists at t = 0 and T S  = TSm everywhere. 
Finally, an equation for determining the constant A can now be obtained by substi- 
tuting Eqs. 20.7, 20.8, and 20.9 and K = C ~ K  into the Stefan condition (Eq. 20.4), 
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with the result 

(20.10) 
c ~ p m  (T, - T S ~ >  e - ~ ’ / ( 4 ~ ’ )  

- 

erfc (A/G) 

Transcendental equations, such as for A in Eq. 20.10, appear frequently in moving 
interface problems and can be solved using numerical methods. 

20.1.2 Diffusion-Limited Growth 

Many situations arise in solid materials where adjoining layers of different phases 
grow (or shrink) under diffusion-limited conditions. In these cases, the atom trans- 
fer across the interfaces between the layers must be sufficiently rapid so that the 
concentrations in the adjoining phases at each interface are maintained in local equi- 
librium. Also, the thermal conduction rates in the system must be rapid enough 
(compared with the mass-diffusion rates) so that no significant thermal gradients 
are present due to the latent heat emitted or absorbed at the interfaces. The anal- 
ysis of the growth kinetics is therefore mathematically similar in many respects 
to the analysis of the melting kinetics in the preceding section. However, in the 
melting analysis it was assumed that ps = p L  and that any effects due to a dif- 
ference in the densities of the two phases were neglected. Under this assumption, 
the total volume of the system remained constant and the two-phase conduction 
problem could be solved within a single coordinate system in a relatively simple 
manner. However, in the case of solid phases, larger differences in density may 
exist. In addition, important cases exist where a component may be delivered to a 
free surface via the vapor phase and produce a new growing phase at the surface 
as, for example, during oxidation. In such cases, the total volume of the system is 
not constant, and substantial expansions or contractions of the phases present will 
occur which cannot be ignored. These changes in volume will cause the phases to 
be displaced with respect to each other, causing additional flux terms to appear in 
the analysis. 

To deal with this more complex problem, we follow Sekerka et al. [2] and Sekerka 
and Wang [3] and first establish a general analysis that allows for these changes of 
volume. The previous melting problem was solved by first obtaining independent 
solutions to the diffusion equation in each phase and then coupling them via the 
Stefan flux condition at the interface. similar approach can be employed for the 
present problem. To accomplish this, it is necessary to identify suitable frames for 
analyzing the diffusion in each phase and then to find the relations between them 
necessary to construct the Stefan condition. 

Framework for Describing the Diffusion. We again make the acceptable approxima- 
tion that the atomic volume of each component within a given phase is independent 
of concentration. No volume changes will therefore occur within each phase as a 
result of diffusion within the phase. As shown in Sections 3.1.3 and 3.1.4, chemical 
diffusion within each phase can then be described by employing a V-frame for that 
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phase and then employing the interdiffusivity, 5. However, the total volume of 
the system will generally change when components diffuse into or out of adjoining 
phases across interfaces since the atomic volumes of the components will differ in 
the adjoining phases. Also, the various phases will grow or shrink and be bodily 
displaced with respect to each other. To cope with this situation, the chemical 
diffusion within each phase is analyzed within its own V-frame.2 The relative dis- 
placements of the different phases (frames) are then determined by applying the 
Stefan condition at the various interfaces. 

Stefan Condition at  an a l p  Interface. Consider the interface between the moving Q 

and p phases shown in Fig. 20.2b. The cr and ,B phases (along with their V-frames) 
will be bodily displaced with respect to  each other, and the Stefan condition can 
be written as 

Figure 20.2: (b) Composition profile 
produced by bonding two thick slabs of pure A and pure B face to face and then annealing 
at TO. 

(a) Phase diagram for A-B binary system. 

2Note that the use of a V-frame for diffusion within a phase merely requires that an equation such 
as Eq. 3.21 is satisfied. The fact that the volume of the phase may be changing due to the gain 
or loss of atoms at its interfaces is irrelevant. 
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where the relation v,": = 

[,lye] " / P  

- v:yP has been used and where 

= flux of i into the a phase at the interface measured in 

the a-phase V-frame 

[ Jy ' ]  " l P  = flux of i into the @ phase at the interface measured in 

the @-phase V-frame 

t~a";c, = velocity of the interface measured in the a-phase V-frame 

vfll"p = velocity of the interface measured in the @-phase V-frame 

v,": = velocity of the a-phase V-frame measured in the P-phase V-frame 

(" = concentration of i at the a /@ interface on the @ side ( p  therefore 

crP = concentration of i at the a /@ interface on the CY side ( a  therefore 

precedes a in the superscript), 

precedes ,!3 in the superscript). 

b 
The two velocities vLIP and v,": can be determined by solving simultaneously 

the two equations given by Eqs. 20.11 for i = (A,  B )  with the help of Eqs. 3.24, 3.27, 
and A.8. Taking the interdiffusivities to be constants, independent of concentration, 
the results are [2, 31 

The Q and E coefficients are given by 

1 Q" =- 
0; A 

and the parameter A is given by 

cP" "0 " P  P a  
B 'A -'B 'A A =  

(20.14) 

(20.15) 

In the special case where fli = 02 and flc = RE,, E" = 
There is then no overall volume change or bodily movement between phases. 

= 0 and Q" = QP = 1. 
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Stefan Condition at  a Free Surface. Commonly, a component (i.e., B )  with a high 
vapor pressure is diffused into the free surface of a /3 phase. Component A has a 
much lower vapor pressure and does not evaporate from the surface. The Stefan 
condition at the free surface is then 

(20.16) 

Substituting Eqs. 3.24, A.8, and A.10 into Eq. 20.16 yields the further relation [2] 

(20.17) 

Equation 20.17 serves as a useful boundary condition in cases where the concentra- 
tion at the surface, cgUrf ,  is maintained constant. 

Solution for Layer Growth in an Infinite cr/P System. The formulation above can be 
used for solving a wide range of layer-growth problems in systems with constant 
interdiffusivities [2]. In the system in Fig. 20.2b7 a thick slab of pure B was bonded 
to a corresponding slab of pure A in a binary A/B system having the phase diagram 
shown in Fig. 20 .2~ .  The system was then annealed at TO, and local equilibrium 
was quickly established across the cr/P interface so that the concentrations in the 
a and P phases at the interface were maintained at cgP and c p ,  respectively. The 
original bonded interface, located at x = 0 (measured in the VP-frame) has moved 
to the position x = ~ ( t ) .  An expression ~ ( t )  can now be found by using essentially 
the same procedure used to solve the previous melting problem. 

First, solutions of the diffusion equation in the cr and ,B phases (in the V*- and 
VP-frame, respectively) are found that match the boundary and initial conditions 
and then the Stefan condition is invoked. The solutions are of the error-function 
type and are given by 

1 - erf ( x / d i Z )  
1 - erf ( A / G )  

cg - cgw - - 
CEO - cagoo 

(20.18) 

(20.19) 

with 

where A = constant. A is now found by substituting Eqs. 20.18, 20.19, and 20.20 
into Eq. 20.12 for the velocity of the interface (in the VP-frame) with the result 

x( t )  = A& (20.20) 

,-A2/(46@) + Q P G  (cpB” - c p )  (20.21) 
fi C p - C g P  l + e r f ( A / G )  

Therefore, the interface again moves parabolically, and A is given by a transcen- 
dental equation. 
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Solution for Layer Growth at  a Free Surface. An example of layer growth at a surface 
is illustrated in Fig. 20.3, where a B-rich layer of p phase has formed on the surface 
of an initially pure A specimen at  the temperature TO. The phase diagram for the 
system is shown in Fig. 20.2a. Component B has a much higher vapor pressure 
than A and is supplied from the vapor phase (consisting of pure B )  to the specimen 
surface located at a = ~ 2 ( t )  at  a sufficient rate to maintain the concentration there 
at a constant value cCUrf corresponding to pure B. At t = 0 the entire specimen 
was of composition cEm (i.e., pure A) with its surface at a = 0. Due to the 
inward diffusion of B ,  a layer of p phase has formed with its surface moving to 
a = Xz(t) and the cx/P interface moving to z = xl ( t ) .  This problem can be solved 
in the same general way as the layer problem discussed above, but it is somewhat 
more complicated because there are now two interfaces instead of one. First, an 
error-function type solution to the diffusion equation is found for each phase within 
its own V-frame. To satisfy the boundary conditions, both interfaces must move 
parabolically with time with displacements given by X I  = A l f i  and x2 = A 2 4 ,  
where A1 and A2 are constants. To find A1 and A2, Stefan conditions are invoked 
at the surface and at the a / @  interface using Eqs. 20.17 and 20.12, respectively. 
The detailed solution is worked out in Exercise 20.4. 

F-Lure 20.3: Layer of p phase formed on the surface of a semi-infinite slab of Q phase. 

20.1.3 Growth Limited by Heat Conduction and Mass Diffusion 
Simultaneously 

The growth problem in alloys becomes considerably more complicated when the 
heat conduction is sufficiently slow so that the system is no longer closely isother- 
mal throughout, and both temperature and composition gradients play important 
roles. Consider, for example, the 
one-dimensional solidification of a liquid alloy of initial composition co in a binary 
eutectic system with the phase diagram shown in Fig. 20.4a. Heat is removed in 
the -a direction, the liquid/solid interface advances along +a, and the temperature 
gradients in both solid and liquid are positive. During cooling, the first solid to 
form at the temperature To will be of solute concentration c z L ,  which is lower than 
the solute concentration in the liquid. Solute must therefore be rejected into the 
liquid at the solid/liquid interface. 

During further solidification, the solute concentration in the liquid in front of 
the advancing interface will then quickly build up to form a concentration “spike” 

We shall examine this problem only briefly. 
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Figure 20.4: One-dimensional solidification of liquid binary alloy. (a) Phase diagram 
of system. The solidus and liquidus are approximated by straight lines. (b) Solute 
concentration vs. distance in the vicinity of the liquid/solid interface (at z = 0) after 
the establishment of a quasi-steady-state concentration spike in the liquid in front of the 
advancing interface. 

of the form shown in Fig. 20.4b. In the figure, further cooling and solidification has 
occurred and the temperature at the interface has dropped to TLIS( t ) .  The com- 
positions of the liquid and solid at the interface are maintained in local equilibrium 
at the interface and are now at cLs(TLIs) and cSL(TLIS),  respectively. 

In this example, the equilibrium concentrations maintained at the interface are 
functions of the interface temperature, which in turn is a function of time. In 
addition, the velocity of the interface, v (i.e., rate of solidification), depends simul- 
taneously upon the mass diffusion rates and the rates of heat conduction in the two 
phases, as  may be seen by examining the two Stefan conditions that apply at the 
interface. For the mass flow the condition is 

and for the heat flow 

( 20.23) 

In addition, the following boundary conditions apply at the solid/liquid interface: 

TS[x( t ) ]  = TL[x( t ) ]  = TLIS cS[x(t)]  = C S L  cL[x(t)] = C L S  (20.24) 

A complete general solution therefore requires solving for temperature and con- 
centration fields in both phases which satisfy all boundary conditions as well as 
the two coupled Stefan conditions. Solving this problem is a challenging task [4, 51; 
however, an analysis of the concentration spike under certain simplifying conditions 
when v is known is given in Section 22.1.1. 
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20.1.4 Interface Source-Limited Growth 

We now turn to cases where the kinetics of layer growth may be controlled by the 
rates at  which atoms can be absorbed or emitted at  the interfaces and is therefore 
interface-limited. We begin by investigating the conditions under which interface 
control may prevail by examining the behavior of the three-layer a / P / y  system 
illustrated in Fig. 20.5a. No a priori assumption is made about whether the kinetics 
are diffusion- or interface-limited. The corresponding phase diagram is shown in 
Fig. 20.5b. The system is being annealed at  TO, and for simplicity it is assumed that 
diffusion is so slow in the Q and y phases that their compositions remain fixed at  the 
compositions shown (i.e., at  cap and cz(, respectively). Furthermore, it is assumed 
that the diffusional transport in the p phase can be described reasonably well by a 
constant diffusivity and simple linear profile, as shown, and that the atomic volume 
of each component is the same in each phase so that no changes in overall volume 
occur. Employing the same interfacial-reaction rate-constant model used to write 
Eq. 13.24, the following five equations will apply under general conditions: 

“3 

J p  = K1 (c:: - c’”) (20.25) 

J p  = - dX1 ( C  p a - c$) 

J p  = K2 (c” - c::) 

(20.26) 

(20.27) 

dt 

(20.28) 

(20.29) 

Equations 20.25 and 20.27 show that cPa 2 cff and coy 5 @‘, since J p  is 

- ,’a - - f$) l  - 4 P 7  (20.30) 

negative and the rate constants are positive. By combining Eqs. 20.25 and 20.29, 

eq 

Cea I I 

Figure 20.5: (a) Three-layer cy/p/y system during annealing at TO. (b) The 
corresponding phase diagram. x1 and xz  indicate the positions of the a l p  and Ply interfaces, 
respectively. 
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where 

(20.31) 

Inspection of Eq. 20.30 demonstrates that cPa E c t t  when the parameter 41 

is small and that cPa E cPr when it is large, as expected. When 41 is small, 
diffusional transport away from the interface is discouraged by a relatively small 
5 0  or large (x2 - X I ) ,  while rapid atomic exchange at the interface is encouraged 
by a relatively large K1. This favors the establishment of local equilibrium at the 
interface. On the other hand, when 41 is large, the situation is reversed, favoring 
diffusional transport and the elimination of any chemical gradient in the P layer. 
By combining Eqs. 20.27 and 20.29, and employing the parameter 

(20.32) 

a similar exercise shows that cPr E c:: when $2 is small, and cPa E cPr when 4 2  
is large. 

Four basic situations can occur: both 4i’s small, both large, and two cases of 
one large and the other small. When $1 and $2 are both small, cPff Z ct; and 
cPr E $2, and the P-phase layer should grow under diffusion-limited conditions. 
Putting these conditions into Eqs. 20.26 and 20.28 and summing them, 

where x = x~ - X I .  This yields parabolic growth upon integration, as expected. 
When $1 and 4 2  are both large, cPr = cPa = C and the growth should be 

interface-limited. Putting these conditions into Eqs. 20.25 and 20.26 and equating 
them, doing the same with Eqs. 20.27 and 20.28, and then subtracting the results, 

The concentration Z is found by equating Eqs. 20.25 and 20.27 to obtain 

- K1 cf; + KzcQ 
C =  

K1+ K2 

(20.34) 

(20.3 5) 

Integration of Eq. 20.34 then yields linear growth at a rate that is controlled by 
the rate constants at the two interfaces. Further analysis (see Exercise 20.3) shows 
that interface-limited growth also prevails when one $i is small and the other large. 
In this case, the P-phase growth rate is controlled by the interface that possesses 
the larger value of $i (and the smaller rate constant), as might be expected. 

The parameter c$i therefore emerges as the critical parameter determining the 
mode of growth. The magnitude of & ,  in turn, depends directly upon the magnitude 
of the rate constant Ki. Determining the magnitude of Ki requires the construction 
of a detailed model for the source action of the interface based on one (or more) of 
the mechanisms described in Section 13.4. 

Experimental results for the growth of layers has been reviewed [6, 71. It is 
recognized that all layer growth should be interface-limited in the early stages when 
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thicknesses are small, since 4i values will then be large [8] .  As a layer thickens, the 
growth may switch at some point from linear interface-limited to parabolic diffusion- 
limited as 4i decreases. In multilayered systems, such as thin-film electronic devices, 
this can produce complicated behavior in which some layers first grow, then shrink, 
and in which some intermediate phases may never appear. Of course, in some 
systems, the growth may be simpler and remain either linear or parabolic at all 
observed times. 

20.2 G R O W T H  OF ISOLATED PARTICLES 

20.2.1 Diffusion-Limited Growth 

The growth of isolated particles is potentially more complex than that of planar 
layers because any volume changes due to differences in the atomic volume in the 
particle and matrix phases will be constrained by the surrounding matrix. A real- 
istic solution therefore should include both the rate at which this constraint relaxes 
and the effect of the stresses generated by the constraint on the diffusion rates. Such 
a calculation presents a formidable problem and will not be taken up here. Instead, 
we focus on the relatively simple case where the atomic volumes are assumed to be 
the same in each phase and there is no change in volume. The composition of the 
growing particle will be taken to be constant throughout, the interdiffusivity in the 
matrix will be assumed constant, and the interface will be assumed to be stable 
against any morphological instability, as described below in Section 20.3. As pointed 
out by Mullins and Sekerka, this class of problems can be solved conveniently for a 
variety of particle shapes by using the scaling method in Section 4.2.2 [9]. 

Spheres. Consider a B-rich sphere of p phase of radius R = R(t)  growing in an infi- 
nite Q matrix under diffusion-limited conditions as shown in Fig. 20.6. This problem 
can be solved by using the scaling method with r )  defined by 7 = r/(4Eat)'/'. The 
diffusion equation in the Q phase in spherical coordinates in rt-space (see Eq. 5.14) 
becomes, after transformation into 7-space, 

(20.36) 

Figure 20.6: A B-rich sphere (or a cylinder) of /3 phase of radius R = R(t) growing 
in an infinite ct matrix under diffusion-limited conditions. The solute concentration cap is 
maintained at the equilibrium value required by the phase diagram. 
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The boundary and initial conditions in the cy phase in rt-space are on the left in 
Eqs. 20.37-20.39, and the corresponding conditions in 7-space are on the right. 

ca( r , t  = 0) = Pffi (r 2 0 )  and c a ( m )  = cam (20.37) 

C"(T = m , t )  = cam and c a ( m )  = cam (20.38) 

c"(r = R(t) , t )  = cap and C"(VR)  = cap (20.39) 

The entse boundary-value problem is transformed successfully into 7-space. VR = 
R( t ) / (4D" t )1 /2  must be constant to satisfy Eq. 20.39. Therefore, the interface will 
move parabolically according to 

R(t) = ~R&E (20.40) 

Letting dc"/dq = f(q) and integrating Eq. 20.36 once yields 

"-a1 - 2  
dc - -e dq 

v2 
where a1 = constant. Integrating again, 

(20.41) 

(20.42) 

Carrying out the integration and determining a1 by applying the boundary condi- 
tions, 

(20.43) 

Next, V R  is determined in the usual way by invoking the Stefan condition at the 
interface, which has the form 

cam - cff - 
cam - Cap 

(1/7) e-q2 - fierfc(7) 

( I / ~ R )  e-7; - J?Ferfc(vR) 
- 

r=R dt 

Use of Eq. 20.43 in Eq. 20.44 then produces the desired relation for VR: 

- CffP e-& 
3 -  

7R - 2 (cP" - cap 1 (l/vR) e-qg - J;rerfc(rlR) 

(20.44) 

(20.45) 

Of special interest is the current of B atoms into the particle, which is given by 

I = 47rR25j" (g) 
r=R 

(20.46) 

Using Eq. 20.43 in Eq. 20.46, 

The last approximation is obtained by an expansion of the denominator to first 
order and is usually valid since T]R is expected to be smalL3 

3Note that the approximation given by Eq. 20.47 is identical to Eq. 13.22, which was obtained 
by an analysis that ignored the effect of the expansion of the sphere during growth. See also 
Exercise 13.6. 
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The growth of spherical precipitates under diffusion-limited conditions has been 
observed in a number of systems, such as Co-rich particles growing in Cu super- 
saturated with Co (see Chapter 23). In these systems, the particles are coherent 
with the matrix crystal and the interfaces possess high densities of coherency dis- 
locations, which are essentially steps with small Burgers vectors. The interfaces 
therefore possess a high density of sites where atoms can be exchanged and the 
particles operate as highly efficient sources and sinks. 

Cylinders, Ellipsoids, and Elliptical Paraboloids. The diffusion-limited growth of par- 
ticles whose planar intercepts are conic sections can also be analyzed by the scaling 
method. For example, the scaling function appropriate for a cylinder is 71 = r / 4 . 4  
The solution for the growth of a cylinder is obtained in Exercise 20.5. 

20.2.2 Interface Source-Limited Growth 

As discussed in Chapter 23, particles produced in phase transformations often nu- 
cleate in the form of platelets or needles when they can find special orientations in 
the matrix where the energies of the platelet faces or needle sides are of relatively 
low energy. These interfaces will be singular or vicinal and possess low densities 
of line defects, as described in Section 13.4.1, and will therefore be poor sources 
for atoms. On the other hand, the platelet edges or needle tips are often general 
interfaces and act as highly efficient sources. The platelets will then undergo strong 
edgewise growth (and the needles will undergo lengthwise growth) accompanied by 
relatively little transverse thickening. The edgewise growth is generally observed 
to progress linearly with time, in contrast to  the parabolic diffusion-limited growth 
of the layers and particles described above. On the other hand, the transverse 
growth is episodic and considerably slower, depending upon the infrequent creation 
of line defects with step and dislocation character which eventually move across the 
faces as described in Section 13.4.1. No exact solutions describing the simultane- 
ous edgewise and transverse growth kinetics of these particles is available, due to 
its complexity. However, the edgewise growth can be modeled in an approximate 
manner which provides some physical insight and accounts for the linear growth 
kinetics observed. 

The geometry of a B-rich &phase platelet growing edgewise in an a-phase matrix 
is shown in Fig. 20.7. The growing edge is modeled as a cylindrical interface of 
radius R where local equilibrium between precipitate and matrix is maintained. 
Adapting Eq. 15.4 to this cylindrical interface, the concentration in the a phase 

a J 

Figure 20.7: 
lengthwise growth of a needleshaped particle). 

4Scaling functions and examples for other shapes are given by Sekerka et al. [2]. 

Edgewise diffusion-limited growth of P-phase platelet in an a matrix (or, 
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at the cylindrical edge is then given by c"P(R) = c"fl((00) [l +yR/(kTR)]. The 
concentration in the matrix far from the platelet is cg", and the concentration in 
the platelet is fixed throughout at 8 " .  Any transverse growth is ignored and it 
is assumed that the diffusion field reaches a quasi-steady state and is radial, as 
indicated by the arrows in Fig. 20.7, and advances at the same rate along x as the 
edge. 

As a first approximation, it is assumed that the radial flux entering the edge is 
constant over the cylindrical interface. The Stefan condition, integrated over the 
interface, is then 

(20.48) 

where x is the position of the edge along x and a local cylindrical coordinate system 
with an origin at  the center of curvature of the edge is employed to describe the 
radial flux. To evaluate the gradient term, it is assumed that the diffusion field 
in front of the edge is the same as the field that would exist around a cylinder of 
radius R embedded in a large body of Q phase where the concentration at a large 
distance, R", from the cylinder is ca and the concentration at the cylinder is cap. 
In the corresponding case of an embedded sphere of radius R, the analyses leading 
to  Eqs. 13.22, 13.52, and 20.47 indicate that the gradient in the Q phase at r = R is 
quite insensitive to the motion of the spherical interface and the exact nature of the 
boundary condition at  R" as long as R" >> R. The present cylindrical system will 
exhibit the same general behavior [lo] and we may therefore evaluate the gradient 
in Eq. 20.48 by using Eq. 5.11 to obtain 

Therefore, combining Eqs. 20.48 and 20.49 yields 

- dX 7rBycc"m - c"P] 
d t  2ln(R"/R)[cPa - c"P]R 

Integration then produces the linear growth expression 

(20.49) 

(20.50) 

(20.51) 

An expression of the same linear form will be obtained for the growth of a needle 
if the tip is modeled as a hemisphere. Further results bearing on the diffusion- or 
interface-limited growth (and shrinkage) of particles have been reviewed by Sutton 
and Balluffi [6]. 

20.3 MORPHOLOGICAL STABILITY OF MOVING INTERFACES 

In the moving-boundary problems treated above, it was assumed that the interface 
retained its basic initial shape as it moved. It is important to realize that such 
problems are a subset of a much wider class of problems known as free-boundary 
problems, in which the boundary is allowed to change its shape as a function of 
time [2]. A mathematically correct solution for the motion of a boundary of a fixed 
ideal shape is no guarantee that it is physically realistic. 
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Moving interfaces can become unstable and break up into complex cellular or 
dendritic structures, as illustrated in Figs. 20.8 and 20.9. In the cellular case, the 
surface becomes rough and bumpy, while in the more extreme dendritic case, treelike 
protrusions, or dendrites, develop. This greatly increases the complexity of the 
growth process. The origin of this instability has been understood since the 1960s, 
when Mullins and Sekerka published their celebrated papers on the subject [4, 91. 
Further work and reviews have since appeared in many places [5, 11-15]. In the 
following, we describe qualitatively the sources of the instability in various systems 
and then present quantitative analysis. 

Figure 20.8: (a) Cellular interface in a transparent organic material (carbon 
tetrabromide). From Jackson and Hunt [16]. (b) Cellular interface (observed at normal incidence) 
in dilute Pb-Sb alloy. From Morris and Winegard [17]. 

Figure 20.9: Dendrites on the surface of a casting of Cu-Ni-Mn alloy made visible 
when solidification shrinkage causes liquid to retreat into the casting interior. (a) Low 
magnification. (b) Higher-magnification image showing side-branch evolution near dendrite 
tips. Micrographs courtesy of J. Feuchtwanger. 

20.3.1 Stability of Liquid/Solid Interface during Solidification of a Unary 
System 

Consider first the solidification of a body of superheated pure liquid by removing 
heat through the wall of its container as in Fig. 20.10. The solidification will 
begin at the walls, and the solid/liquid interface will move toward the center of 
the container at a rate dictated by how quickly the latent heat of solidification 
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*Liquid Solid 

I l l  
\ 

TWT, TC 
T 

+ 
Liquid 

Figure 20.10: (a) Solidification of superheated liquid by removing the latent heat 
through the solid to the walls of its container. (b) Corresponding free-energy curves of 
a solid and liquid as a function of temperature. The interface is maintained at Tm, TC is the 
temperature at the center of the liquid, and TW is the wall temperature. The dashed regions 
indicate the ranges of temperature that are present in the solid and liquid. (c) Detail of the 
solid/liquid interface. Isotherms in the liquid bunch up at the protrusion, causing increased 
heat flux (arrows) into the protrusion. 

can be conducted out through the freshly solidified solid and the walls. In a local 
coordinate system with its origin at the interface and pointed toward the liquid, the 
temperature gradient is positive in both the solid and liquid. In this situation, the 
interface will be stable. As may be seen from the free-energy diagram, both phases 
are themselves stable. Any small bump or perturbation on the solid surface that 
may form randomly on the planar interface will find itself attempting to grow into 
a hotter region of the liquid and will therefore tend to melt back and disappear. 
This is illustrated in Fig. 20.10c, where the isotherms bunch up at the protrusion, 
causing an increased thermal gradient that will increase the flux of heat to the 
protrusion and melt it back. 

Consider now the solidification of a pure liquid that has been supercooled below 
its melting point without nucleation of the solid, as in Fig. 20.11. If the solid is 
nucleated by a seed at the center of the container, the solid will grow as the latent 
heat is conducted to the supercooled liquid and eventually out to the container walls. 

quid 
T 

Figure 20.11: (a) Solidification of body in a supercooled liquid by removing the latent 
heat to the liquid. (b) Corresponding free-energy curves of solid and liquid as a function 
of temperature. The interface is maintained at Tm, and TW is the wall temperature. The 
dashed regions indicate the ranges of temperature present in the solid and liquid. (c) Detail 
of the solid/liquid interface. The temperature gradient in the liquid is reversed compared to 
the superheated case (Fig. 2 0 . 1 0 ~ )  and the bunched-up isotherms cause increased heat flux 
out of the protrusion. 
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In a local coordinate system with its origin at the interface and pointed toward the 
liquid, the temperature gradient in the liquid is negative. In this situation, the 
interface is potentially unstable. In contrast to  Fig. 20.10, stable solid is now 
growing into metastable liquid. Any small bump on the solid surface will now find 
itself growing into a cooler region. As seen in Fig. 20.11c, the bunched-up isotherms 
increase the heat flux out of the protrusion and so encourage its growth. However, 
this growth will be opposed by capillary forces that act to reduce the interfacial 
energy by smoothing out the protrusion. Further analysis is therefore required to 
answer the question of whether the interface will be stable (see Section 20.3.4). 

20.3.2 

Growth of a B-rich stable ,8 phase into a metastable a phase in an isothermal, binary 
solid system is similar to the case directly above since it involves the growth of a 
stable phase into a metastable phase. If temperature is replaced by concentration in 
Fig. 2 0 . 1 1 ~  and the direction of the gradients and fluxes are reversed, the diagram 
will represent the diffusion field expected at a protuberance on the a l p  interface. 
The bunching of the diffusional flux lines then encourages protuberance growth 
while capillarity discourages it, as described below. 

Stability of a/@ Interface during Diffusion-Limited Particle Growth 

20.3.3 

Consider again the alloy solidification described in Section 20.1.3 and illustrated in 
Fig. 20.4. Here, the concentration spike in the liquid in front of the interface shown 
in Fig. 20.4b may cause the liquid in that region to be undercooled. The liquidus 
temperature for a liquid of composition cL is given according to  the phase diagram 
in Fig. 20.4a by the relationship 

Stability of Liquid/Solid Interface during Binary Alloy Solidification 

(20.52) 

where mliq is the constant liquidus slope. Since cL(x) is known in front of the 
interface, the liquidus temperature may be plotted as a function of x with the aid 
of Eq. 20.52 to  produce the ZiS(x) curve in Fig. 20.12. If the actual temperature 
in the liquid, TL(x), is as in Fig. 20.12, the region in front of the interface will be 
undercooled by the amounts indicated in the shaded region between the two curves. 
This form of undercooling is known as constitutional undercooling [18]. 

I 
0 X +  

Figure 20.12: 
spike in the liquid phase shown in Fig. 20.4b. 

Plot of the liquidus temperature, Tliq(s), vs. distance in the concentration 
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The critical condition for the absence of undercooling can then be written 

(20.54) 

where GT and Gc are, respectively, the temperature and composition gradients in 
the liquid at the interface. Undercooling tends to promote instability. However, 
stabilizing factors such as capillarity are also present and, again, further analysis is 
required to settle the question of stability. 

20.3.4 Analyses of Interfacial Stability 

Interfacial stability has been studied by analytical means [4, 5, 9, 11-15] and also 
numerically [19-211. In the following, we present some of the analytical results 
of most immediate interest. Many other important results may be found in the 
references cited. 

Spherical Particle during Diffusion-Limited Growth in an Isothermal Binary Solid. This 
problem was analyzed by Mullins and Sekerka who found expressions for the rate 
of growth or decay of shape perturbations to a spherical B-rich P-phase particle of 
fixed composition growing in an o matrix as in Section 20.2.1 [9]. Perturbations 
are written in the form of spherical harmonics. Steps to solve this problem are: 

i. Express the perturbed shape in terms of spherical harmonics. 

ii. Write out the boundary conditions, accounting for local variations of curva- 
ture (hence concentrations) on the perturbed sphere. 

iii. Write out the general solution to the diffusional growth problem. In the limit 
of low supersaturation, the diffusion field in the o matrix near the sphere is 
adequately described by Laplace’s equation, V 2 c a ( r ,  0,C)) = 0 (an interesting 
discussion of this stationary-field approximation and others encountered in 
mathematical treatments of diffusional growth problems has been given by 
Aaron et al. [22]). 

iv. Evaluate the solution P ( r ,  0,C)) on the interface of the perturbed sphere. This 
determines the coefficients to the various terms that are present in the general 
solution. 

v. Evaluate the growth velocity of the perturbed sphere from its relation to the 
flux into the interface. Extract the expression for the rate of change of the 
amplitude of the perturbation. 

Spherical harmonics are derived from solutions of Laplace’s equation ih spherical 
coordinates using the method of separation of variables-i.e., a solution of the form 

c“ = R(r)  o(0) a($) (20.55) 

is assumed (see Arfken [23]). Laplace’s equation then yields the relation 

(20.56) 
i a  a(oq 1 62(0@) 
- sin0 - 60 [ s i n 0 4  + aF - n(n + 1)(0@) = 0 
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The @($) function turns out to be an exponential and the @(e) function consists 
of Legendre polynomials. Their product @($)@(O) gives the spherical harmonic 
functions which Arfken writes as Y,"(O,q5) and which Mullins and Sekerka write as 
Ylm ( O , q 5 ) .  Then, from Eq. 20.56, 

The functions YT(O,4) are tabulated and can be represented as in Fig. 20.13. A 
series of spherical harmonics can be used to represent an arbitrary perturbation of 
a sphere, much the same as a Fourier series can represent an arbitrary function of 
a single variable. 

Figure 20.13: 
these are functions of 0 alone and can be represented by a two-dimensional plot. 

Perturbations of a circle by spherical harmonics Yn(0). Because m = 0, 

The analysis then proceeds: 

The perturbed shape is given by 

r s  = R+bY,"(o,$) (20.58) 

where b is the amplitude of the perturbation. Because Laplace's equation is 
linear, each harmonic term can be considered independently. Solutions can 
be obtained by superposition. 

Equation 15.4 can be used to specify the boundary condition on the interface 
of the perturbed sphere as 

c"@(K. )  = cap( ,  = 0) [I + r ~ . ]  = cap( ,  = 0) [I + r ~ . ]  (20.59) 

where r = yR/(lcT), s1 is the atomic volume, and K. = 61 + 6 2  is the mean 
curvature on the interface of the perturbed sphere. Mullins and Sekerka give 
the angular dependence of K. as 

n(n + l ) b  Y," 
K.(e,q5) = 2 (1 - F) + 

R2 r 
(20.60) 

By substituting Eq. 20.60 into Eq. 20.59, the boundary condition for cap is 
obtained: 
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iii. The general solution to Laplace's equation in the matrix surrounding the 
perturbed sphere is 

cu 

ca (T ,  8,4) = c (A,? + B;T-~- ' )  Y," (20.62) 
n=O 

Extracting the n = 0 term and rearranging, 

00 BO 
ca ( r ,  8,4) = A. + + (A,? + B ; T - ~ - ' )  Y," (20.63) 

n=l 

ca approaches Pa? as r approaches co. Thus, all A, = 0 and A0 = cam. The 
set of constants BL can be written as B, 6, giving 

iv. Now evaluate cap (0 ,4)  on the perturbed interface R + by,"; 

a? 

6 Y," ( 20.65) BO Bn 
n=l 

R + 6 Ynm + c ( R  + 6 Ynm)n+l cap (e,4) = + 

Since 6 is small, the leading terms of a Taylor expansion give 

1 1 - 6 Y T / R  
R+SY? % R  

and 
1 1 - (n  + 1)6YT/R 

( R  + 6 Ynm)n+l Rn+l 

Keeping linear terms in 6 and ignoring higher-order terms, the boundary 
condition on the perturbed interface is 

(20.66) Bo(1- 6Y,"/R) + BN~Y," 
R Rnfl cap (e ,  4) = cam + 

Equation 20.66 is the general solution for the problem, evaluated at the in- 
terface of the perturbed sphere and written for a single harmonic of order n 
(i.e., the summation has been dropped to simplify comparison with the cap- 
illarity condition as given in Eq. 20.61). These two equations can be equated 
to evaluate the unknown constants Bo and B, in Eq. 20.66. From terms not 
involving 6 Y," , 

B~ = [cap( ,  = 0) - R + 2rcaP( ,  = 0) (20.67) 

From terms involving 6 Ynm, 

Bn = [ cap ( ,  = 0 )  - cam] R" + I'cap(tc = 0)n (n + 1 )  Rn-l (20.68) 
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These equations for Bo and B, are now substituted into Eq. 20.64, giving 
the general solution which matches the capillarity boundary condition on the 
interface of the perturbed sphere and which is valid everywhere in the matrix, 

(cap(, = 0 )  - cam) R + 2rcap( ,  = 0 )  
r ca ( r ,  8,$) =earn + 

[ (cap(& = 0 )  - cam) R" + Fc"p(, = 0 )  n(n + l)Rn-l]  6YT 

(20.69) 
+ rn+ l  

Note that the summation over n in this equation has been omitted because 
we are considering only one spherical harmonic perturbation at a time. 

v. The final step is to extract from the growth-velocity expression an expression 
for the rate of change of the amplitude of the perturbation, d6/dt.  We have 
from Eq. 20.58 and the Stefan condition at the interface, 

- 
d r s  d R  d6 
dt dt dt r=rs 

v=-=- + - Ynrn = (20.70) 

where cp is the constant composition in the growing precipitate. 

Differentiating Eq. 20.69 and evaluating dc"/dr  at r = r s ,  then substituting 
into Eq. 20.70 gives the relation 

cap(, = O)I'[n (n + 1)2  - 41 
R3 

- (20.71) 

where cap(, = 2/R) = cap(, = 0 )  ( 1  + 2 r / R ) .  Equating the coefficients of terms 
in 6Ynm in Eqs. 20.70 and 20.71 gives the relation 

00 (n  - 1)  d6 - - -  
(20.72) dt (cP - C@(K = 2/R))  R2 

x [cam - cap(, = 0) 

] 6 (20.73) 

where G = [cam - cap(, = O)]/R is the concentration gradient in the matrix at 
the interface of the unperturbed sphere in the stationary-field approximation. This 
term favors the growth of the perturbation, as it tends to make db/dt positive. The 
second term in brackets in Eq. 20.73, which arises from capillarity effects, acts to 
stabilize the system because it is negative. So, from Eq. 20.72, perturbations for 

cap(K = o)r (n + 1)  (n  + 2 )  
R2 

0 a  (n - 1 )  - d6 _ -  
dt (cP - cap(, = 2 / R ) )  R 

which 
R[cQrn - cap(, = O ) ]  

r c q ,  = 0) 
(n + 1 )  (n + 2 )  + 2 < (20.74) 
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are unstable. Perturbations for which n is large enough always decay, as expected 
from interfacial free-energy considerations. For a given n, larger precipitate sizes 
always show instabilities. It is thus important to know how large R has to be 
for the onset of instability. A comparison can be made based on the size of the 
critical nucleus R, for homogeneous nucleation from a supersaturated solid solution 
of concentration cam [9].  Since at Rc the precipitate is in (unstable) equilibrium 
with the matrix at composition earn, Eq. 20.59 gives the relation 

Thus Eq. 20.74 can be expressed 

(n+ l ) ( n + 2 )  + 2 R < -  
2 Rc 

If the critical value for R at the stability limit is denoted R*, then 

[(n + 1 ) ( n  + 2)  + 2 ] R ,  
2 

R* = 

(20.75) 

(20.76) 

(20.77) 

Once the particle grows to a size that exceeds R*, morphological instabilities will set 
in. The minimum size for instabilities is found from the n = 2 spherical harmonic, 
giving R*(n = 2)  = 7R,.5 Thus the theory predicts instabilities at very small 
precipitate sizes. 

Another point of interest is how fast the amplitude of the perturbation grows 
relative to the growth rate of the sphere itself, 

(20.78) 

Relative to the growth rate of the precipitate, the growth rate of the perturbation 
is larger for larger values of n as long as R >> R*. Equation 20.78 shows that 
for R >> R*, when n = 2 the growth is shape-preserving, That is, an ellipsoidal 
shape will be maintained during growth under these conditions. This result was 
also obtained by Ham [lo]. 

Finally, there is a value of n for which the growth rate of perturbations is a 
maximum; the theory predicts that the “wavelength” Amax of the fastest-growing 
perturbation is given by 

(20.79) 

In spite of these theoretical results, dendritic-type forms for solid-state precipi- 
tation processes are the exception rather than the rule. This may happen because 
the theory is for pure diffusion-limited growth. Interface-limited growth tends to 
be stabilizing because the composition gradient close to a growing precipitate is 
less steep when the reaction is partly interface-limited. Thus, G is smaller, and 
Eq. 20.73 shows that this is a stabilizing effect. This and several other possible ex- 
planations for the paucity of observations for unstable growth forms in solid-state 

5Note that d6/d t  = 0 for n = 1, because n = 1 does not change the shape. 
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precipitation processes have been suggested [24, 251. Another possibly important 
stabilizing effect is the existence of fast interfacial short-circuit diffusion along the 
advancing interface. If this is rapid enough relative to the crystal diffusion in the 
matrix, it will be strongly stabilizing. Caroli et al. have shown that elastic stresses 
arising when the lattice constant is concentration dependent actually destabilize 
the interface during diffusional growth, due to a reduction in the critical radius 
for the shape instability [26]. This stability analysis also applies for a solidifying 
sphere in an undercooled fixed-stoichiometry melt by replacing composition with a 
temperature field [9]. 

Planar Liquid/Solid Interface during Alloy Solidification. Mullins and Sekerka an- 
alyzed this problem for the binary system described in Section 20.3.3 by again 
perturbing the interface and determining whether the perturbation would grow or 
decay [4]. In this case, sinusoidal perturbations of the flat interface were employed 
with a coordinate system pointed toward the liquid. Both temperature and so- 
lute concentration fields were determined consistent with boundary conditions at 
the interface, which included the effect of the liquid composition on the liquidus 
temperature (Eq. 20.52) and the effect of interface curvature on the melting tem- 
perature. Also, it was necessary to  satisfy the Stefan condition for both the heat 
flux and the diffusion flux at the interface. The results show that capillarity and 
positive thermal gradients (pointing toward the liquid) promoted stability as ex- 
pected. However, a third factor, representing the effect of solute concentration on 
the liquidus temperature (and therefore related to undercooling) , favored growth. 
Under some conditions, stability criteria were found that agreed fairly closely with 
the simple constitutional undercooling criterion given by Eq. 20.54. 
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EXERCISES 

CHAPTER 20: GROWTH OF PHASES IN CONCENTRATION AND THERMAL FIELDS 

20.1 

20.2 

20.3 

Equation 20.51 has sometimes been written in the form 

where R, is the critical radius of the edge at which the concentration of B in 
the Q phase in equilibrium with the curved edge [i.e., cg’(R,)], is just equal 
to cEm [27, 281. When R assumes this value, the platelet can no longer grow. 
Derive this form of the growth expression. 

Solution. The critical condition is 

cgm = c;’(R,) = c;’(cQ) (1 + 
yR 1 (20.81) 

Then 

cgW - cg’(R) = c”BP(oo)rn ( 1-- 2) = [ cg - cg’(oo)] (1 - %) (20.82) 
k T R ,  

Substitution o f  Eq. 20.82 into Eq. 20.51 then produces the required expression. 

In all our analyses of diffusion-limited layer growth, we have assumed that 
the interdiffusivities in the various phases were constants independent of con- 
centration. In each case, the interfaces between phases were found to move 
parabolically with time. Suppose that assumption is relaxed and the inter- 
diffusivities are allowed to vary with concentration. Will the interfaces still 
move parabolically? 

Solution. Yes. When D varies with concentration we have shown in Section 4.2.2 
that the difFusion equation can be scaled (transformed) from xt-space t o  7-space by 
using the variable 77 = x / a  (see Eq. 4.19). Also, under diffusion-limited conditions 
where fixed boundary conditions apply at  the interfaces, the boundary conditions can 
also be transformed t o  77-space, as we have also seen. Therefore, when D varies with 
concentration, the entire layer-growth boundary-value problem can be transformed into 
7-space. Since the fixed boundary conditions at  the interfaces require constant values 
o f  77 at  the interfaces, they will move parabolically. 

For the layer system shown in Fig. 20.5, show that the /?-phase layer will grow 
linearly when $1 is small and $2 is large (see Eqs. 20.31 and 20.32). 

Solution. According t o  the arguments in Section 20.1.4, when 41 is small and 4 2  is 
large, cPa % c!: and cPr 2 cPa 2 cf:. Then, by combining Eqs. 20.26 and 20.27, 

- dX1 ( c g  - c g )  = R2 ( c g  - c g )  
dt 

and by combining Eqs. 20.27 and 20.28, 

* ( c g  - c g )  = R2 ( c g  - 
dt 

(20.83) 

c g )  (20.84) 

When Eqs. 20.83 and 20.84 are combined t o  form dX/dt = d(X1 - Xz)/dt, i t  is seen 
that dx/dt = constant and the growth will therefore be linear. 
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20.4 Find an expression for the thickness of the growing B-rich P-phase surface 
layer shown in Fig. 20.3 as a function of time. Details of the growth of this 
layer have been discussed in Section 20.1.2, and a strategy for determining the 
growth rate has been outlined. Assume constant diffusivities in both phases. 
Solution. Solutions t o  the diffusion equation in the a: and p phases, which match the 
boundary conditions, are 

cp, - cp,” - e r f ( z / m )  - erf(Az/@) 

Cp - Cp,” - e r f ( A l / m )  - e r f ( A z / m )  
(20.85) 

where 

(20.86) 

(20.87) 

The Stefan conditions at  interfaces 1 and 2 are given by Eqs. 20.12 and 20.17, respec- 
tively. Substituting the appropriate relationships from those given above into these two 
equations then yields equations that can be solved simultaneously for A1 and Az: 

Q ’ a  cp,” - cp e - A : / ( 4 8 p )  

A1 = 
J;; cp - erf (A~/-) - erf (A~/&ZF) 

J;; 

(20.88) 
Qa- CEO - cag00 - A: / (48- ) 

- 

cp - CEO 1 - erf (A~/&Z) 

Finally, the layer thickness is given by x = XI  - x z  = (A1 - Az)fi’. 

20.5 Using the scaling method, find an expression for the diffusion-limited rate of 
growth of a cylindrical B-rich precipitate growing in an infinite a-phase ma- 
trix. Assume the same boundary conditions as in the analysis in Section 20.2.1 
(Eqs. 20.37-20.39) for the growth of a spherical particle. Note that Fig. 20.6, 
which applied to the growth of a sphericallarticle in Section 20.2.1, will also 
apply. Use the scaling parameter 7 = r / (4Dat ) l I2 .  You will need the integral 

(20.90) 

which has been tabulated [29]. 
Solution. Starting with the diffusion equation in cylindrical coordinates (see Eq. 5.8) 
and using the scaling parameter t o  change variables, the diffusion equation in 7-space 
becomes 

(20.91) 

This result, along with the boundary conditions given by Eqs. 20.37-20.39, shows that 
the particle will grow parabolically according t o  

Rit) = r l ~ d 4 6 t  (20.92) 
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Integrating Eq. 20.91 once, 
dcg e-72 

- =a1- 
d17 17 

where a1 = constant. Integrating again yields 

Determining a1 from the condition cg  = c"," when 17 = V R ,  

The Stefan condition at the interface is 

Finally, substituting Eq. 20.95 into Eq. 20.97, we have 

(20.93) 

(20.94) 

(20.95) 

(20.96) 

(20.97) 

(20.98) 

for the determination of V R .  

20.6 Find an expression for the rate of thickening of a B-rich /3-phase precipitate 
platelet in an infinite a-phase matrix in a A I B  binary system as in Fig. 20.6. 
Assume diffusion-limited conditions and a constant diffusivity, Ea, in the 
a-phase matrix. Also, assume that the atomic volume of each species is 
constant throughout so that there is no overall volume change and that the 
plate is extensive enough so that edge effects can be neglected. Use the scaling 
method. 

Solution. Let x be the distance coordinate perpendicular t o  the platelet. The boundary 

conditions will be the same as Eqs. 20.37-20.39 if T - IZ: and 77 -+ x / m .  The 
method is basically the same as that  used t o  obtain the solution for the sphere in 
Section 20.2.1. In the present case, ~ ( t )  will be the half-thickness of the plate. 77 will 

be constant a t  the interface at  the value vx = x(t)/&%, so that X ( t )  will increase 
parabolically with time according t o  

X ( t )  = T ) x a  (20.99) 

We now determine qx by solving for c g  and invoking the Stefan condition at the in- 
terface. The difFusion equation was scaled and integrated in Cartesian coordinates in 
Section 4.2.2 with the solution given by Eq. 4.28. When this solution is matched t o  the 
present boundary conditions, 

(20.100) 
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The Stefan condition at  the interface is 

(20.101) 

Use o f  Eqs. 20.99 and 20.100 in Eq. 20.101 then yields the desired expression for v x ,  

20.7 Consider again the problem posed in Exercise 20.6, whose solution had the 
form of a transcendental equation. A simple and useful approximate solution 
can be found by using the linear approximation to the diffusion profile shown 
in Fig. 20.14. Find the solution based on this approximation. 

Cam 

I I 

I I I 
I I 

o x  Z x +  

Figure 20.14: 
diffusion-limited thickening of a slab of thickness 2 x .  

Approximate composition vs. distance profile for determination of the 

Solution. The Stefan condition at the interface is 

(20.103) 

Using the linear approximation in Fig. 20.14, &/ax = (cgm - c;') / ( Z  - x ) .  Also, 

the conservation of B atoms requires that the two shaded areas in the figure be equal. 

Therefore, ( c g  - cSm) x = (cgm - CEO) (2 - x ) / 2 .  Putt ing these relationships into 

Eq. 20.103 gives 

an ( c y  - c y ) '  
2 (cp - cgp)  (cp - c y )  

x dX = d t  (20.104) 

Therefore, 

(20.105) 

Zener has compared the approximate solution above with the exact solution found in 
Exercise 20.6 and finds reasonably good agreement [30]. 

20.8 Consider a binary system consisting of a thin spherical shell of (u phase embed- 
ded in an infinite body of /3 phase. The phase diagram is shown in Fig. 20.15. 
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Figure 20.15: Binary phase diagram. 

The system is a t  the temperature T* and the p phase is essentially pure 
B ,  while the CY phase contains a moderately low concentration of B so that 
Henry's law is obeyed. The average radius of the shell is ( R )  and the thickness 
of the thin shell is 6R, where 6R << (R) .  Assume that the diffusion rate of 
B in the ,8 phase is extremely slow and can be neglected in comparison to 
its diffusion rate in the CY phase. Find an expression for the shrinkage rate of 
the shell and show that the shell will shrink at a rate inversely proportional 
to (R) .  Assume that the concentration of B in the CY phase is maintained 
in local equilibrium with the ,B phase at both the inner and outer interphase 
boundaries between the shell and the p phase. Also, neglect any small volume 
changes that might occur. 

Solution. The outer interface is concave and the inner interface is convex with respect 
t o  the p phase. The concentrations of B maintained in equilibrium in the a phase at 
the outer interface, cE,$, and a t  the inner interface, cy!, are given by Eq. 15.4. The 
concentration difFerence across the shell is therefore 

Aca = c:(t - cEb 

4yRc"(m) (20.106) 
=c"(m) 1-- -c rn (m)  1+- [ Z)] [ Z)] = - kT(R) 

The diffusion of B through the shell will be in a quasi-steady state, and since 6R << ( R ) ,  
the flux through the shell can be expressed t o  a good approximation as 

(20.107) 

The flux is therefore directed toward the outer interface, causing the spherical shell t o  
shrink toward its center under the driving force supplied by the decrease in interfacial 
energy that  occurs as a result of the shrinkage. (Note that  ultimately the shell will 
shrink t o  form a solid sphere o f  a phase at  the origin.) 

Since Aca << c a ( m ) ,  the equations of continuity (for Stefan conditions, see Sec- 
tion 20.1.2) a t  the inner and outer interfaces can be expressed as 

winc:fi = wincp + J (20.108) 
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where 2)in and vout are the velocities of the inner and outer interfaces, respectively. Using 
these relationships and neglecting small differences between ckp, cz$, and ca(oo), the 
average shell velocity is then 



CHAPTER 21 

CONCURRENT NUCLEATION AND 
GROWTH TRANS FO R MATI 0 N K I N ETI CS 

A discontinuous transformation generally occurs by the concurrent nucleation and 
growth of the new phase (i.e., by the nucleation of new particles and the growth of 
previously nucleated ones). In this chapter we present an analysis of the resulting 
overall rate of transformation. Time-temperature-transformation diagrams, which 
display the degree of overall transformation as a function of time and temperature, 
are introduced and interpreted in terms of a nucleation and growth model. 

21.1 OVERALL RATE OF DISCONTINUOUS TRANSFORMATION 

Consider homogeneous nucleation in a three-dimensional system. In the simplest 
model, these nuclei form at random locations. The nucleation rate, J ,  specifies 
the number of nuclei forming per unit volume per unit time. These nuclei form 
at locations that have not already been transformed by growth of any previously 
formed nuclei. Once nucleated, a particle grows at a rate R = dR/dt and the 
untransformed volume decreases. However, no particle can grow indefinitely. A 
particle nucleated near a surface can grow to impingement with the surface, and 
the transformation at  that location will cease. Similarly, two particles that nucleate 
near each other grow until they impinge and transformation ceases. Alternatively, 
growth can be driven by supersaturation and individual nuclei could have their 
growth limited by the decreasing supersaturation in the untransformed volume. 

In previous chapters we have developed models for discontinuous transforma- 
tions that treat nucleation and growth processes independently. However, when 
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these processes occur concurrently, the overall transformation rate (i.e., the volume 
transformed per unit time) and microstructural characteristics such as particle or 
grain size depend on the interplay of nucleation and growth processes. 

The theory of the kinetics of concurrent nucleation and growth reactions has a 
rich history that includes work by Kolmogorov [l] , Johnson and Mehl[2], Avrami [3- 
51, Jackson [6 ] ,  and Cahn [7]. Cahn's time-cone method for treating a class of these 
problems is the most general of these, with the most transparent assumptions, and 
is presented here. The method of Johnson, Mehl, and Avrami is covered in Section 
4 of Christian's text [8]. 

21.1.1 

The key to obtaining exact solutions to the transformation kinetics is to make 
explicit assumptions about the statistical homogeneity of nucleation and growth 
processes in the system. Following Cahn, we denote homogeneous nucleation on 
randomly dispersed sites in a volume by volume nucleation; heterogeneous nucle- 
ation on randomly dispersed sites on a surface or interface in a volume by surface 
nucleation, and heterogeneous nucleation on randomly dispersed sites along a linear 
feature in a volume by line nucleation. Exact solutions for transformation kinetics 
can be obtained when nucleation and growth rates are spatially homogeneous at  any 
instant within the system of interest. The method is applicable to finite samples 
with a wide range of geometries and can yield position-dependent transformation 
kinetics. 

Statistical homogeneity is necessary for application of the time-cone method. 
Statistical homogeneity is not a valid assumption during precipitation from super- 
saturated solution because the untransformed regions develop concentration gradi- 
ents around growing particles and hence the nucleation rate becomes nonuniform. 
Also, in a material with thermal gradients undergoing a discontinuous transfor- 
mation (e.g. , during continuous cooling) , the nucleation rate will be nonuniform. 
However, the theory is applicable to discontinuous transformations in which the 
parent and product phases have the same composition and in which the tempera- 
ture is essentially uniform at any instant. Examples include recrystallization, first- 
order order-disorder transformations, massive transformations, and crystallization 
during vapor-deposition processes. 

Time-Cone Analysis of Concurrent Nucleation and Growth 

Probability that a Point r 'wil l not be Transformed a t  Time t .  The probability that a 
point Fin the sample will be untransformed a t  the time t is obtained by computing 
the probability that no nuclei had formed at  any location r' and any previous 
time r that could have grown and led to prior transformation at  r' and t .  This is 
accomplished in three steps: 

i. The set of points that could possibly affect a given point grows with time; 
therefore, to specify this set of points, a time coordinate is required in addition 
to the spatial coordinates of the sample. For nucleation and growth in a 
sample of dimensionality 3, the augmented space has Cartesian coordinates 
x, y,  z ,  and t ;  more generally, coordinates r' and t for any spatial dimension. 
Emanating from the point (.',t) and extending to earlier times is a domain 
that is the set of all points in the augmented space that would have caused 
transformation at (r', t )  if nucleation had occurred at a nearby point and earlier 
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time ( F ,  T). This subset of points is called V,. For the d = 2 case, the domain 
V, is a cone of height t ;  Cahn refers to this domain as the time cone. The cross 
section of the time cone at any time depends on the growth rate function &t). 
Figure 21.1 is a representation of the transformation by random nucleation 
along a one-dimensional sample for the constant-growth-rate case. 

Distance, x 
(4 

Distance, x 
(b)  

Figure 21.1: Nucleation and growth along a one-dimensional specimen. ( a )  Growth 
cones. The apex of each cone coincides with the time and location of a nucleation event. 
Once nucleated, constant linear growth transforms the region surrounding a nucleus. Two 
nuclei have formed at t l ;  at t z  the sample is approximately half transformed; at t 3  it is fully 
transformed. Transforming regions impinge where growth cones intersect. ( b )  Time cone for 
the point (z, t ) .  For the point (2, t )  to be untransformed at time t ,  no prior nucleation can 
have occurred within the time cone volume, V,. 

11. 

iii. 

The nucleation rate can be integrated over the time cone to obtain the number 
of nuclei expected in V,, denoted by ( N ) , .  

The untransformed fraction 1 -C is obtained from the stochastic independence 
of the nucleation events-that is, any particular nucleation event in untrans- 
formed material is not influenced by any other nucleation event. Under these 
conditions, the theory can be formulated using the Poisson probability equa- 
tion [9], which states that if p = the mean rate at which events occur, then 
the probability, p ( k ) ,  that exactly Ic events occur in time t is 

(21.1) 

The probability that exactly zero events occurs is given by Eq. 21.1 as 

p ( 0 )  = e-p' (21.2) 

and the probability that at least one event that leads to some transformation 
is 

p ( k  2 1) = 1 - P(o)  = 1 - e-p' (21.3) 

In the context of nucleation and growth kinetics, the quantity p corresponds to 
the nucleation rate, J ;  the product pt corresponds to the number of nucleation 
events, ( N ) , ,  in the time cone; and the probability that exactly zero nucleation 
will have occurred within the time cone is equal to the untransformed volume 
fraction at time t, 1 - C, giving the relation 

1 - C = e - w ,  (21.4) 
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Equation 21.4 forms the basis of the theory for the kinetics of concurrent nu- 
cleation and growth transformations. Specific cases can be formulated by deriving 
appropriate expressions for the quantity (N), .  

Time Cone V, for Isotropic, Time-Dependent Growth Rate R(t) .  The time cone's 
geometry is given by simple relations. For isotropic (i.e., radial) growth, at time t 
the radius of a transformed region nucleated at  an earlier time T is given by 

t 
R ( t ,  T )  = R (t') dt' (21.5) 

For the transformation to have occurred at ?prior to time t ,  the radius of a trans- 
formed region nucleated earlier at r' must be larger than the distance between r' 
and 7, 

[ R ( ~ , T ) ] '  - I?-  JI2 2 0 (21.6) 

The time cone is the set of points Eq. 21.6. 

Number o f  Nuclei Expected in the Time Cone, (N) , .  For time-dependent nucleation 
rates J ( t )  and isotropic growth rates R ( t )  (such as in nonisothermal transforma- 
tions under conditions in which thermal gradients can be neglected), the number 
of nuclei in V, is given for the d = 3 case as 

t 
( N ) ,  ( t )  = $ / J ( t ' )  [R ( t ,  t')I3 dt' 

0 
(21.7) 

Expressions for Transformation Rate when Nucleation and Growth Rates are Constant. 
If the growth velocity R is isotropic and constant, Eq. 21.5 can be integrated and 
the time cone is the set of points ? that  obey 

2 
R2 ( t  - T ) 2  - I?- Jl 2 0 (21.8) 

The radius of the time cone, I?- Jl, is linear in time, and hence the time cone will 
be a right circular cone of height t - T .  The volume of the time cone, which Cahn 
calls the nucleation volume V,, for transformation in a system of dimensionality d 
is given by 

B(t  - r )  
d + 1  

v, = (21.9) 

where B is an appropriate measure of the base of the cone. Taking T = 0 as 
the earliest time that nucleation becomes possible, the following expressions are 
obtained for systems of dimensionalities 1, 2, and 3: 

B = 2Rt  V, = Rt2 (d  = 1) 
B = nR2t2 V, = 4jR2t3 (d  = 2) (2 1.10) 
B =  T R  47r ' 3  t 3 V - "k3t4 ( d = 3 )  

c -  3 

Equation 21.7 takes a particularly simple form when the nucleation rate is a 
constant: ( N ) ,  is equal to the product of J and V, for the d = 3 case. This result 
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can be generalized to systems of arbitrary dimensionality, d,  by use of Eq. 21.9, 
giving 

J B t  
( W C  = d+l (21.11) 

Substituting the appropriate factors from Eq. 21.10 into Eqs. 21.11 and 21.4 gives 
expressions for the fraction transformed in one, two, and three dimensions for the 
case of constant nucleation and growth rates J and R. The resulting expressions 
for the untransformed volume are 

1 - < = , - J R t 2  

1 - < = e - ( 7 7 / 3 ) J k 3 t 4  

( d  = 1) 

( d  = 3) 

1 - < = e - ( T / 3 ) J A 2 t 3  ( d  = 2) (21.12) 

The function <( t )  in Eq. 21.12 has a characteristic sigmoidal shape with a maximum 
rate of transformation at  intermediate times. Examples are shown in Fig. 21.2. The 
d = 3 form of Eq. 21.12 is commonly known as the Johnson-Mehl-Avrami equation. 

;- 0.8 
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Time, t 

Figure 21.2: Comparison of volume fraction transformed, 6, in the interior of a semi- 
infinite thin-film specimen and at the specimen edge, s = 0. Calculations for J = 1, R = 1. 

21.1.2 Transformations near the Edge of a Thin Semi-Infinite Plate 

Consider a semi-infinite thin plate that is effectively two-dimensional, lying in the 
zy-plane, with a single edge along x = 0. It is assumed that there is no heteroge- 
neous line nucleation at  the edge of the sheet. For constant-volume nucleation and 
growth rates and isotropic growth, points lying within the near-edge region x < Rt 
require special consideration. In the bulk of the plate away from this region, the 
time cone will be a right circular cone of height t ,  and the fraction transformed 
will be given by the d = 2 form of Eq. 21.12. Close to the edge, the time cone will 
be truncated by the plane x = 0, its volume will be less than in the bulk, and the 
number of nuclei ( N ) c  contained in the truncated cone will decrease as x + 0.l 
The transformation rate in the near-edge region will thus be slower than in the 

'Nuclei cannot form outside the sample and hence cannot influence the transformation anywhere 
inside it. 
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bulk, and the grain size after completion of the transformation will be larger near 
the edge. 

To apply Eq. 21.4, an expression for the volume of a right circular time cone of 
height t having its axis located at (s, y) is required. When s > Rt, the cone volume 
V, is given by Eq. 21.10 for the d = 2 case, and the edge s = 0 has no influence 
on the transformation kinetics. When s < Rt, the time cone is truncated as in 
Fig. 21.3a. Its volume may be expressed in terms of quantities shown in Fig. 21.3b 
and c: its base radius, Rt, height, t ,  and the distance of the truncated face from 
the cone axis, s. 

"R2t3 3 for s > At 
(21.13) 

Figure 21.3a compares the volume fraction transformed, <, vs. time for a location 
s 5 Rt where Eq. 21.12 applies with that calculated using Eq. 21.13 evaluated at 
the specimen edge, s = 0. This plot reveals the extent that the transformation rate 
is reduced near the specimen edge compared to the specimen bulk. 

- 
Rt 

Figure 21.3: (a) Truncated time cone. (b) Vertical cross section of time cone. (c) 
Horizontal cross section through truncated portion of time cone. 

21.2 TIM E-TEM PER ATU R E-TR A N  S FO R M  AT1 0 N (TTT) DIAGRAMS 

Useful insights into the kinetics of a phase transformation that proceeds by nucle- 
ation and growth can be obtained by observing the fraction transformed, 5, under 
isothermal conditions at a series of different temperatures. This is usually done 
by undercooling rapidly to a fixed temperature and then observing the resulting 
isothermal transformation. The kinetics generally follows the typical C-shaped 
behavior described in Exercise 18.4. If a series of such curves is obtained at differ- 
ent temperatures, the time required to achieve, for example, < = 0.01, 0.50, and 
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0.99 fractional transformation at each temperature can be obtained, and a time- 
temperut2lre-trunsformation (TTT) plot of the form illustrated in Fig. 21.4 can then 
be constructed. 

The C shapes of these curves are readily explained in a qualitative way on the 
basis of nucleation kinetics. As in Section 19.1.5, the overall activation energy for 
the rate of nucleation generally consists of the free energy to form a critical nucleus, 
AG,, plus an activation energy associated with the factor p, GY, which describes 
the rate at which atoms (or molecules) join a critical nucleus. The activation 
energy for nucleation is then [As, + Gy]  and the rate of nucleation is proportional 
to the factor exp[-(AGc + Gy)/(kT)] .  At T = Teq, there is no undercooling, 
AG, + 00, and the rate of nucleation is zero. The time thus required for any 
transformation is infinite at Teq. As the transformation temperature is decreased, 
the undercooling and the transformation driving force increase, which causes a rapid 
decrease in AG, while G F  remains constant. This rapid decrease in AG, causes 
[AG, + G y ]  to decrease more rapidly than kT ,  which, in turn, causes the factor 
exp[-(AG, + Gp)/(lcT)] to increase and the nucleation rate to increase. However, 
on further cooling, the rate of decrease of AGc slows and eventually kT decreases 
more rapidly than [AG, + Gp] ,  causing the factor exp[-(AG, + Gy))/(kT)]  to 
decrease and the rate of nucleation to decrease. Eventually, the entire system 
becomes “frozen in” and the time required for any significant transformation again 
becomes essentially infinite. 

An example of such TTT kinetics is solidification. According to Eq. 12.2, 

(21.14) 

if it is assumed that the entropy and enthalpy of solidification are each independent 
of temperature below T,. Here, AT is the undercooling and A H  is the enthalpy 
of solidification. According to Eq. 19.4, AG, then has the form AG, = A/(AT)’, 
where A is a constant independent of temperature. The nucleation rate below T, 
then has the temperature dependence 

J(T) o; e-[Gy+A/(Tm-T)l/(kT) (2 1.15) 

Time 

Figure 21.4: TTT diagram for a nucleation and growth phase transformation. At 
T = Teq the parent phase is at equilibrium, and no undercooling is present. The three 
curves indicate the attainment of C = 0.01,0.50, and 0.99 transformation, respectively. 
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The nucleation rate will therefore be a maximum at the temperature where the 
exponent in Eq. 21.15 is a minimum, which occurs at  the temperature 

1 1 + GTTm/A - 1 

GpTm / A  
(2  1.16) 

The nose of the C-curve in this case will therefore occur at  T,,,, which typically 
lies between T, and T,/2. 
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EXERCISES 

21.1 Consider transformation kinetics in one dimension, such as recrystallization 
(see Section 13.1) in a narrow wire. For a finite wire of length L ,  the proba- 
bility that a region will have transformed will depend on its proximity to the 
end of the wire. Investigate the end effects on transformation kinetics on a 
finite length of wire 0 < x < L. Assume that the nucleation occurs uniformly 
in the unrecrystallized regions at  a constant rate, J ,  and that the growth rate 
R is constant. Calculate the probability that a point x will have transformed 
at  time t .  

0 The solution should be symmetric around x = L/2. There are three 
separate cases to consider; one of them is x < Rt and L - x > Rt (see 
Fig. 21.5). 
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.L- 

Figure 21.5: Length-time area of influence for a point 2. 

Solution. Poisson statistics apply when events are random and mutually independent, 
which is assumed to  be the case both in time and along the wire. The probability 
p(n,  A )  that n events occur in an “area” (length x time) A with event rate J is given 
bv the Poisson distribution 

(21.17) 

Therefore, the probability that no event occurs is p ( 0 ,  A )  = e - J A ,  and the probability 
that some (one or more) events occur is 1 - p ( 0 ,  A ) ,  which is equal to  the probability 
that a region will have transformed. Therefore, the problem depends only on the area 
of the time cone illustrated in Fig. 21.5. 

Case 1: Very short times or effectively infinite L. There is no interference from the 
boundaries. The condition for this case is x > Rt. The area of the time cone is 
A1 = Rt x t. = Rt2. The probability that a point x will have transformed is independent 
of z when Rt < z < L/2: 

p(n 21, A ~ )  = 1 - eJRt2 (21.18) 

Case 2: Near the end of a finite wire. There is interference only from the boundary a t  
x = 0. The condition for this case is L > Rt and z < Rt (or, in a slightly different 
form, x < Rt and z < L - kt ) .  The area of the time cone, A2, is A1 minus the area 
where z < 0: 

(21.19) 
Rt - x Rt - x R2t2 -+ 2Rtx - x2 A2 = A1 - ~ - = 

2 R  2R 
so that p(n 2 1, A z )  = 1 - e J A 2 ,  or 

(21.20) 

Case 3: Very short wire or long times. There is interference from both boundaries. The 
condition for this case is L < Rt (or x < Rt and x < L - kt ) .  The area of the time 
cone, As, is A1 minus the area where X > L: 

Rt - (L - z) Rt - (L - x) - 2(LRt + Lz) - (L2 + 222) 
(21.21) - 

2 R 2R 
A3 = A1 - 
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21.2 Consider recrystallization and grain growth in an infinite thin sheet. Assume 
that the nucleation rate of recrystallized grains is a linear function of tem- 
perature above a critical temperature, T,, and the nucleation rate is zero for 
T < T, [i.e., at temperatures above T,, J = a(T - T,)]. Also assume that the 
grain-growth rate, R, is constant and independent of temperature. Suppose 
that a t  time t = 0 the sheet is heated at  the constant rate T ( t )  = Tc/2 + Pt.  
Using Poisson statistics, the probability that exactly zero events occur in a 
time t is po = exp(-(N,)). 

Solution. Nucleation begins when the sheet reaches the temperature T,; the time 
to  reach T, is TC/(2 ,B) .  The time cone in this two-dimensional sample, for a constant 
growth rate, is the right circular cone V, given by 

v, = 7rR2t3 (21 .23)  

and the expected number of nuclei expected in V, a t  time t is 

( N ) ,  = J t  J ( t )  V, d r  = J‘ a (,Br - 2) 7rR2t3 d r  

128,B4 

T c / 2 P  T c l 2 P  

- a7rk2(T, - 2,Bt)’(Tc + 2Pt)(T,2 + 4,B2t2) - 

The volume fraction transformed, C, is given by 

C = 1 - exp(-(N),) 

( 2  1.24) 

( 2 1 . 2 5 )  



CHAPTER 22 

S 0 L I D I F I CAT I 0 N 

The mechanisms of the motion of liquid/crystal interfaces during solidification were 
discussed in Section 12.3, and aspects of the heat-conduction-controlled motion of 
liquid/solid interfaces and their morphological stability under various solidification 
conditions were treated in Chapter 20. This sets the stage for considering the entire 
process of the solidification of a body of liquid into a solid. 

Solidification results in a wide range of structures depending upon the type of 
material and the conditions under which the solidification occurs [l-31. Although 
a huge literature describes and analyzes the many phenomena involved, we restrict 
ourselves to  two cases: when the liquid/solid interface is stable and plane-front 
solidification is achieved, and when the interface is unstable and cellular or dendritic 
growth occurs. The first mode of solidification has important uses as a method of 
removing impurities or producing uniform distributions of solute atoms in materials. 
The second is prevalent in the casting of many alloys and has been the subject of 
a vast amount of study. 

22.1 PLANE-FRONT SOLIDIFICATION IN ONE DIMENSION 

22.1.1 Scheil Equation 

In Fig. 2 2 . 1 ~  one-dimensional solidification is depicted; a liquid binary alloy initially 
of uniform composition co is placed in a bar-shaped crucible of length L. The bar 
is progressively cooled from one end, so it solidifies from one end to the other 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 543 
Copyright @ 2005 John Wiley & Sons, Inc. 
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Figure 22.1: (a) Bar-shaped specimen after plane-front solidification. Grayscale 
intensity indicates solute composition variation. (b) Composition distribution along the 
bar after plane-front solidification with different effective partition ratios. From Flemings [2].  

with a stable and planar liquid/solid interface (see the discussion of stability in 
Section 20.3). The eutectic phase diagram in Fig. 2 0 . 4 ~  shows the liquidus and 
solidus approximated as straight lines. It is assumed that the interface is a good 
source or sink (Section 13.4) and that the liquid and solid are essentially in local 
equilibrium at the interface. As described in Section 20.1.3, the first solid to form 
is of composition coSL, considerably less than CO. Excess solute is rejected by the 
solidifying material and deposited in the liquid because diffusion into the solid is 
usually negligible. However, for the solute to enter the liquid and become dispersed, 
it must first diffuse through the liquid boundary layer adjacent to the liquid/solid 
interface. Because, in this layer, any flow in the liquid is lamellar flow parallel to 
the interface, solute atoms can pass through it only by diffusional transport. Once 
the solute has diffused through the layer of thickness 6, it is quickly mixed into the 
remaining bulk liquid by convection, and it may be assumed that the concentration 
in the liquid is uniform up to the boundary layer. The boundary layer therefore 
acts as a “diffusion barrier” and limits the rate at which the rejected solute can be 
dispersed throughout the liquid. As a result, the solute concentration in the liquid 
builds up in front of the advancing interface. However, at some time after the onset 
of solidification, the distribution of solute in the boundary layer reaches a quasi- 
steady state, as shown in Fig. 20.4b, where a “spike” of concentration has formed. 
It may be assumed that local equilibrium prevails at the liquid/solid interface, and 
if the temperature there is TLIs,  the phase diagram in Fig. 2 0 . 4 ~  indicates that 
the solute concentration in the liquid directly at the interface, cLs, must be related 
to the concentration of the solid being formed at the interface, csL, by csL = kcLs. 
The quantity k ,  the ratio of the solidus concentration to the corresponding liquidus 
concentration, is known as the partition ratio. When the slopes of the solidus and 
liquidus curves are constant, as in Fig. 20.4a, the partition ratio is constant. 

As solidification continues and solute is continuously rejected into the remaining 
liquid, the concentration in the bulk liquid increases slowly and the quasi-steady- 
state solute distribution in the boundary layer evolves. This, in turn, produces 
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corresponding changes in the concentration in the solid being formed. Of primary 
interest is the final distribution of solute in the solid. 

Because the solute diffusivity in the solid is far smaller than in the liquid, any 
diffusion in the solid will be neglected. In most cases of interest, the transient 
period required to produce a quasi-steady-state solute distribution at the inter- 
face is relatively small.' At a relatively short time after the establishment of the 
quasi-steady-state concentration spike, the flux relative to an origin at the interface 
moving at velocity w is 

L L dCL L J = - D  - - w c  
dX 

The diffusion equation in the liquid is 

(22.1) 

(22.2) 

which has the general solution 

where x is the distance from the interface. The two constants a1 and a2 can be 
evaluated through use of the boundary conditions2 cL(0)  = cLs and cL(S)  = C O ,  

with the result 

co - cLSe-uG/(PDL) + ( C L S  - co)e-ux/DL 
1 - e u 6 / D L  

(22.4) 

Expressions for cLs and csL can now be found by using the Stefan continuity 
condition at the interface 

cL(x)  = 

dcL wcLs + D L  [=] - wcsL = 0 
x=o 

Substituting Eq. 22.4 into Eq. 22 .5  and using csL = k cLs,  

kco cub/ 
CSL = 

1 + k (eUblDL - 1) 

(22.5) 

(22.6) 

The effective partition ratio, k', is defined as the ratio of the concentration in the 
solid being formed over the concentration in the bulk liquid. Therefore, 

, CSL k k = - =  
co k + (1 - k)e-u6/DL (22.7) 

To obtain the final solute distribution in the solid, the relatively slow changes in 
the quasi-steady-state system must be considered. If the concentration spike moves 
forward by dx,  the amount of solute that must be rejected into the bulk liquid 
is (ck - cSL)dx,  where the slowly changing concentration in the bulk liquid is 

'When this is not true, the kinetics of the formation of the transient must be taken into account [4]. 
2Note that the amount of solute in the spike is negligible compared to that in the bulk liquid, and 
therefore the concentration in the bulk liquid remains approximately co. 
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represented by c& (rather than its initial value C O ) .  The change in concentration 
in the liquid is then dck = [ ( c k  - c s L ) / ( L  - x ) ]  dx. Using csL = k'cL 3 0 1  

which yields the Scheil equation, 

csL(x )  = k'co (1 - %) "-I 

(22.8) 

(22.9) 

Because any diffusion in the solid is neglected, csL(x)  in Eq. 22.9 represents the 
distribution of solute after the solidification. 

Equation 22.9 has two limiting forms. When the parameter 6v/DL >> 1, k' = 1 
according to Eq. 22.7. This situation is encouraged by a lack of convection, a high 
solidification rate, and a slow rate of diffusion in the liquid. The concentration 
spike in the liquid is then strong and cLs quickly reaches a level where, according 
to Eq. 22.9, csL = co and the composition of the solid being formed and the compo- 
sition of the bulk liquid are the same. On the other hand, when 6v/DL << 1, k' = k. 
There is then rapid mixing in the liquid, the diffusion barrier is nonexistent, and 
there can be a large difference between the compositions of the solid being formed 
and the bulk liquid, depending on the factor k. Some typical curves of cSL(x)  vs. x 
under these different conditions are shown in Fig. 22.lb for the system in Fig. 20.4. 
When k' < 1, the composition of the solid a phase increases continuously and even- 
tually reaches its maximum value, cSL(max), when the liquid reaches the eutectic 
composition. After that, the solid forms as a eutectic and its average composition 
is the eutectic composition, C E .  

As shown by Fig. 22.lb, the concentrations of solute atoms are significantly 
reduced in the material that is solidified early in the solidification process when 
k' < 1. One-dimensional plane-front solidification can therefore be used as a method 
of purification. However, purification is carried more effectively out by modifying 
the process and adopting a zone-melting technique. 

22.1.2 

In zone melting, a bar-shaped specimen as shown in Fig. 2 2 . 2 ~  is first melted at 
one end to form a melted zone of length 1. This zone is then moved along the entire 
specimen at a constant rate while keeping 1 constant. As it moves, it picks up 
solute atoms and eventually deposits them near the other end of the bar, thereby 
purifying one end. Each iteration of the process leads to increasing purity. 

The zone is generally much longer than the width of the liquid boundary layer 
(i.e., 1 >> 6 ) .  When the zone moves a distance dx,  the amount of solute gained by 
the zone is ( C O  - csL) dx,  and therefore 

Zone Melting and Zone Leveling 

co - C S L  dx 
1 

dcL = (22.10) 

where cL is the concentration in the liquid in the zone (effects due to the relatively 
negligible concentration spike in the zone can be ignored). Now csL = k'cL and, 
by combining this with Eq. 22.10 and integrating, 

(22.11) 
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L Distance along bar, x - b 
0 

Figure 22.2: 
solute composition variation. 
zone-melting pass. From Flemings [ 2 ] .  

(a) Bar-shaped specimen after zone melting. Grayscale intensity indicates 
(b) Composition distribution along the bar after a single 

where the lower limit to the first integral occurs because the initial composition of 
the liquid in the zone is CO. Integration then yields 

cSL(x) = co[l - (1 - k’)e-”’’L] (22.12) 

A characteristic plot of cSL(z) as a function of x is shown in Fig. 22.2b. 
Considerable purification is achieved during zone melting. The final transient at  

the end begins when the leading end of the zone reaches the end of the specimen. 
At that point, the solidification becomes very similar to plane-front solidification. 
Additional passes produce further purification and very small solute concentrations 
in the first part of the specimen. An asymptotic limit exists, however, as taken up 
in Exercise 22.2. 

When the zone length is relatively short, k’ is large, and when the number 
of passes is small, the bulk of the specimen solidifies at  very nearly a uniform 
composition corresponding to CO. Zone solidification can be used in this manner to 
produce compositional uniformity, a technique known as zone leveling. 

22.2 CELLULAR AND DENDRlTlC SOLIDIFICATION 

22.2.1 

When the liquid/solid interface is unstable according to the criteria discussed in 
Section 20.3.3, a cellular or dendritic structure is developed. When the degree of 
instability is relatively low, an array of protuberances develops on the interface as 
shown in Fig. 20 .8~ .  These protuberances, called cells, advance perpendicular to the 
interface. Their shapes vary depending upon the type of material, the orientation 
of the interface, and other factors. For (100) liquid/solid interfaces in cubic metals, 
equiaxed cells form like those in Fig. 20.8b. However, for a (110) interface, the cells 
take on a corrugated configuration of long hills and furrows. When the degree of 

Formation of Cells and Dendrites 
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instability is increased by increasing the rate of solidification, fully formed dendrites 
develop as in Figs. 20.9 and 22.3. As this transition progresses, crystallographic fac- 
tors play a role and the cell-growth direction deviates toward the preferred growth 
direction ((100) for cubic metals) as in Fig. 22.3b. Also, ridges develop along the 
dendrite sides as in Fig. 2 2 . 3 ~ .  Finally, secondary dendrite branches appear on the 
primary dendrites as in Fig. 22.3d. 

(4 (b)  (4 (4 

Figure 22.3: Transition from cellular to dendritic growth as the growth velocity is 
increased. (a) Cellular growth at low velocities. (b) Cellular growth deviated to the fast 
growing (100) direction. ( c )  Appearance of ridges along the primary dendrites. (d) Start 
of secondary dendrite branch formation. After Flemings [2]. 

22.2.2 

During dendritic growth, extensive solute segregation occurs in the interdendritic 
spaces; this phenomenon is a serious problem in the casting of alloys. The segrega- 
tion occurs because of the tendency of the solidifying solid to reject excess solute 
into the remaining liquid and can be understood using the model developed to an- 
alyze plane-front solidification. However, the geometry of the dendritic liquid/solid 
interface and the adjacent diffusion field is complex. 

As a reasonable approximation, the dendritic structure may be represented by 
the diagram in Fig. 22.4. The solidification in the interdendritic space can be 
described by constructing the cell (shown dashed) and assuming that solidification 
proceeds in a manner similar to the plane-front solidification of a bar (as discussed in 
Section 22.1). Under typical casting conditions, k’ = k. Therefore, the segregation 

Solute Segregation during Dendritic Solidification 

t 
c,, 

Figure 22.4: Simplified cell model for analyzing interdendritic segregation. 
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profile along x follows Eq. 22.9 approximately with k‘ = k and L equal to half 
the interdendritic spacing. A typical profile is illustrated in Fig. 22.1 for a system 
with the phase diagram shown in Fig. 20.4a. The formation of the eutectic in the 
last material to solidify can be expected. When well-defined secondary dendrite 
branches are present, the solidification cell must be located between the branches 
rather than between the primary dendrites. Much of the strong segregation present 
after solidification can be eliminated by solution treatments in which castings are 
annealed at elevated temperatures and the segregates are dispersed by solid-state 
diffusion [2]. 

22.3 STRUCTURE OF CASTINGS AND INGOTS 

Castings are typically produced by pouring liquid into a relatively cold mold and 
allowing solidification to take place. Heat is removed from the solidifying material 
by conduction out through the mold. The classic grain structure obtained after 
this type of solidification is illustrated in Fig. 22.5. 

Three distinct zones are often (but not always) present. The chill zone consists 
of small equiaxed grains and results from the relatively rapid cooling rate due to the 
initially rapid outward flow of heat to the cold mold. This produces considerable 
undercooling, and many small grains with random orientations are nucleated at, 
or near, the mold surface. These small grains grow until they impinge. Further 
into the casting, the grains that grow most rapidly in the direction of the thermal 
gradient will advance most rapidly. Grains that are oriented with slow mobilities in 
the growth direction will be assimilated by those with faster mobilities and result 
in a columnar structure. Finally, further into the casting in the liquid ahead of 
the advancing grains, a third zone consisting of equiaxed grains may form. Here, 
nuclei for the growth of new grains are provided by small pieces of secondary den- 
drite branches that have become detached from the stalks of the oncoming primary 
dendrites. This detachment occurs as a result of temperature fluctuations and con- 
vection. For materials of high symmetry (such as cubic metals), these nuclei will 
grow into approximately equiaxed grains because they are isolated and growing in 
a very slightly undercooled environment. The latent heat of solidification that is 
released makes the growing crystals local “hot spots,” and the growth therefore 

Chill zone 

Columnar zone 

Equixed zone 

Figure 22.6: 
zone, and equiaxed zone. From Bower and Fleming [5]. 

Classic grain structure of casting (or ingot) containing chill zone, columnar 
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occurs in a direction opposite to  the thermal gradient rather than parallel to it as 
in the case of the dendrites in the columnar zone. 
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EXERCISES 

22.1 An alloy of constant composition can be produced by adding a solute to a 
bar of pure material by zone melting. This can be done by putting all of 
the solute into the zone when the trailing end is a t  x = 0 and then moving 
the zone along the bar. Let S(x) = quantity of solute in the zone when the 
trailing end of the zone is at x during the pass. 

(a) Show that when the length of the zone, 1, is kept constant, 

S(X) = S(O)e-”l”/l (22.13) 

CSL(X) = CsL(o)e-k’”/l (22.14) 

(b) Now, show that csL can be held constant along the bar by continuously 

and therefore that 

Note that cSL(x) M csL(0) when k’ is small. 

reducing the zone-length during the pass according to 

L(x) = l ( 0 )  - k‘x (22.15) 

Solution. 

(a) I f  the zone moves by dz, the amount o f  solute that is lost from the zone is 

S(X) (22.16) S L  / L  d S ( z )  = -C (z) dz = - k  c (z) d x  = -k’-  dz 
1 

This relation may be integrated in the form 

(22.17) 

so that 

Also, 

S ( X )  = S(O)e-”l”/l (22.18) 

/ L  IC’s(Z)  - k ‘ x / l  - k - e  
1 

P ( z )  = k  c (z) = - - 
1 

- - k p ( 0 ) e - - k ’ 4 1  = csL(0)e-k/“/l 
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Now cL = S/1. If csL is constant, cL must be constant, and dl/ l  = d S / S .  But 
Eq. 22.16 shows that d S / S  = - ( k ’ / l )  dx .  Therefore, combining these relation- 
ships and integrating, 

dl = -k‘ lx dx 

so 
l ( x )  = l ( 0 )  - k’x 

(22.19) 

(22.20) 

22.2 Suppose that multiple zone-melting passes are made along a bar of length 
L in an effort to purify it as much as possible. As the number of passes 
increases, a limiting situation will be reached in which no further purification 
is obtained by increasing the number of passes. Let uSL(z) be the ultimate 
solute distribution along the bar after an infinite number of passes. 

(a) Show that uSL(z) is given by the solution of the integral equation 

(22.21) 

where 1 is the width of the molten zone. 
(b) Now show that the solution of this equation is 

uSL(z) = aleazx (22.22) 

where a1 and a2 are given by 

(22.23) 

Solution. 

(a) If u S L ( x )  is not to  change during a pass, the total amount of solute in the zone 
[which is of length 1 and uniform composition c L ( x ) ]  at each stage of the process 
must be equal t o  the amount of solute that was in the corresponding length 1 of 
the solid bar before it was overrun. Therefore, 

Because u S L ( x )  = k’cL(x) ,  

(b) Trying the solution 
u S L ( x )  = aleazx 

1) 
k’ a2 = -(eaa’ - 
1 

a2 must be 

The constant a1 is determined from the conservation of solute mass: 

L L 
coL = Jd  u S L ( x )  dx = Jd  aleaZx dx 

(22.24) 

(22.25) 

(22.26) 

(22.27) 

(22.28) 



CHAPTER 22: SOLIDIFICATION 552 

22.3 

Evaluation o f  the integral then leads t o  

(22.29) 

Consider the growth of an elongated body such as a columnar dendrite under 
solute-diffusion-controlled conditions. The tip will grow faster than the shank 
because the solute that must be rejected at the liquid/solid interface can be 
more rapidly dispersed into the surrounding liquid from the tip region than 
from the shank. Approximate the shape of the tip by a hemispherical cap 
and the shank by a cylinder. Now show that the quasi-steady-state velocity 
with which the dendrite can advance will vary inversely with the radius of 
the tip. Neglect any effect of capillarity on the solute solubility at the tip and 
assume that convection in the liquid is low enough so that its effect on mass 
transport in the liquid can be ignored. Use any reasonable approximations 
that you need. 

Solution. The concentration of solute at  the liquid/solid interface at the t ip  is shown 
in Fig. 22.6. If the hemispherical t ip  advances with the velocity w, the rate at  which 
solute must be rejected into the liquid from the t i p  is 

I1 x T R Z V ( C L S  - 2") x 7 r R 2 V C L S ( l -  k )  (22.30) 

In the quasi-steady state, this must be equal t o  the rate at  which the solute is transported 
from the t i p  by diffusion into the liquid. This is given t o  a reasonable approximation by 
half of the difFusion rate away from a sphere, which, according t o  Eq. 13.22, is given by 

I2 M 2TDLR(C'S - c,) (22.31) 

The Stefan condition is then 11 = 1 2 ,  which yields 

2DL(CLS - co)  1 
CLS(1-  k )  E u x  (22.32) 

I I 

R 
r +  

Figure 22.6: Concentration profile at the liquid/solid interface at the dendrite tip. 

22.4 Suppose that the capillarity effect of curvature on solubility is included in 
Exercise 22.3. Describe qualitatively what happens to the tip growth rate as 
the tip radius decreases without limit. 

Solution. As the hemispherical t ip  radius becomes smaller (at constant temperature), 
the equilibrium concentration, cLs,  will decrease. This is demonstrated in Fig. 22.7 
by employing the common-tangent construction used in Fig. 1 5 . 1 ~ .  Furthermore, the 
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Figure 22.7: 
X3eq in liquid in equilibrium with hemispherical tip of a phase of radii R1 > R2 > R3. 

Common-tangent construction showing concentration of B,  Xeq, Xzq, and 

change in concentration will vary as 1/R, as in the corresponding case of Eq. 15.4. When 
cLs is reduced t o  the point where cLs = co, equilibrium will prevail at the liquid/solid 
interface and growth will stop. A calculation of this efFect in the solidification of a 
AI/Cu alloy is plotted in Fig. 22.8. 

104 I I 

-- 102 

10-2 

1 n-4 
I "  10-6 10-4 10-2 1 

Tip radius R (mm) 

Figure 22.8: Dendrite tip velocity vs. tip radius for an Al/Cu alloy. The diffusion-limit 
portion of the curve is unaffected by capillarity. The capillarity limit indicates the point 
where the tip curvature causes the dendrite growth to stop. From Kurz and Fisher [3]. 



CHAPTER 23 

P R EC I P I TAT I0 N 

Precipitation occurs when a new phase forms discontinuously within a homogeneous 
metastable phase to form a two-phase mixture of lower energy. The process occurs 
by the nucleation and growth of particles (precipitates) of the new phase embedded 
in the original phase. The form of the precipitation may vary widely depending 
upon factors such as the degree of coherency between the precipitates and matrix, 
the degree of supersaturation, and the availability of heterogeneous nucleation sites. 

Basic aspects of nucleation and diffusional growth have been described in Chap- 
ters 19 and 20. In this chapter we focus on phenomena relevant to precipitation 
in binary systems such as the morphology and energy of the critical nucleus and 
precipitate evolution during growth, including loss of coherency. A description of 
precipitation in two contrasting systems illustrates the wide range of phenomena 
that can occur in different systems. 

23.1 GENERAL FEATURES OF PRECIPITATION 

Figure 23.1 is a phase diagram of a system that exhibits precipitation. If cooled 
along the path indicated, the a phase will become supersaturated with respect to 
the p phase when it crosses the phase boundary, and if there is no intervening 
spinodal, the p phase will then precipitate discontinuously in the a phase (matrix 
phase) as the system attempts to reach equilibrium. 

The nucleation and growth processes that produce precipitation can be varied 
and complex [1-7]. Precipitation will generally involve the formation of critical 
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Figure 23.1: Phase diagram for precipitation. 

nuclei possessing a morphology (shape and crystal orientation) of minimum energy 
and the system will follow the fastest path available. In the classical model, this 
energy will be the sum of the bulk free-energy change due to  the formation of the 
new phase (a  negative quantity) and the interfacial and strain energies (positive 
quantities that act as nucleation barriers). The interfacial energy is usually the 
more important barrier and depends upon the nucleus shape and the energies (per 
unit area) of the interface (or patches of interface) that may be present (see Sections 
19.1.1 and 19.1.4). The strain energy depends on shape as well as on the degree 
of coherence between the nucleus and matrix and the elastic moduli of the nucleus 
and matrix. To add to the complexity, the nucleation may be homogeneous or 
inhomogeneous, depending upon the availability of heterogeneous nucleation sites. 

23.2 NUCLEUS MORPHOLOGY AND ENERGY 

The simplest case occurs when the a-phase and @phase crystals have different 
compositions but still match almost exactly in all three dimensions. The critical 
nucleus can then form with a coherent interface and is therefore of relatively low 
energy.’ Also, any strain energy will be small. This condition is met during the 
precipitation of Ag-rich precipitates in a A1 + 4 at. % Ag matrix [8] and Co-rich 
precipitates in a Cu + 1 at. % Co matrix [9] where the precipitates are coherent 
and essentially spherical in shape. 

When closely matched atomic planes exist in the precipitate and matrix, a low- 
energy coherent interface can be formed parallel to these planes. A relatively low- 
energy nucleus can .then be produced in the form of a broad-faced disc (or platelet) 
lying parallel to  these planes. As shown by Eqs. 19.26 and 19.27, the strain energy 
will be relatively small in such a case because the precipitate shape eccentricity 
c/a << 1. This common form of precipitation results in platelet structures known as 
Widmanstiitten structures. Examples are precipitates in f.c.,c./h.c.p. systems with 
{lll}fcc parallel to  {OOO1}~c, as illustrated in Fig. B.6 and the 0” precipitate and 
a-matrix phase with their { 100) planes parallel in the A1-Cu system as illustrated 
in Fig. 23.2~.  In many cases, the narrow platelet edges may be incoherent and the 
broad faces semicoherent, but this will not change the general picture significantly. 

’As discussed in Section B.6, coherency must always be specified relative to a reference structure. 
In this case, it can he either the 01 or p crystal. 
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/ ( oAl, Cu) 

GP zone (b) -One plane thick 
on {loo) planes 

Ail faces coherent 

(001) Coherent or 
semicoherent 

(loo), (010) 
not coherent 

(el a. 
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Figure 23.2: Structures and morphologies of the Cu-rich precipitates which form during 
precipitation in an A1 + 1.7 at. % Cu matrix. (a) a-matrix phase. (b) Guinier-Preston 
Zone precipitate. ( c )  6” precipitate. (d) 8’ precipitate. ( e )  Final stable 6 precipitate. From 
Porter and Easterling [4]. 

When there is no near lattice matching between precipitate and matrix struc- 
tures in any dimension, the interfacial energy will be relatively high. In such cases, 
homogeneous nucleation will be slow to occur and the nucleation will be inho- 
mogeneous. When this occurs at  grain boundaries, the nuclei are generally more 
equiaxed because no unusually low-energy interfaces are available. However, the 
small precipitates formed in this way still possess interfaces which are generally 
faceted and often contain arrays of line defects [lo]. Evidently, these interfaces are 
semicoherent with respect to bicrystal reference structures (see Section B.6) and 
are of sufficiently low energy to induce faceting. 

23.3 LOSS OF PRECIPITATE COHERENCY DURING GROWTH 

Just after nucleation, a small coherent precipitate generally possesses both inter- 
facial energy and strain energy. Its strain energy increases linearly with its size 
(see Eq. 19.1), which is proportional to N .  On the other hand, its total interfacial 
energy increases linearly with its area, which is proportional to N 2 / 3 .  Figure 23.3 
shows that the interfacial energy dominates at  small sizes where the interface-to- 
volume ratio is large. However, the strain energy eventually becomes dominant as 
the size increases. Nuclei and small-sized precipitates therefore tend to be coherent 
because this minimizes the interfacial energy (and the total energy). When this 
strain energy becomes sufficiently large, it can be reduced if the precipitate is made 
semicoherent by the introduction of anticoherency dislocations into the interface, 
as in Figs. 19.8, B.7, and B.8. The anticoherency dislocations, in effect, cancel the 
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Size, N+ 

Figure 23.3: 
coherent precipitate as a function of its size as measured by N. V = precipitate volume. 

Relative increase of strain energy (Ag,V) and interfwid energy (?A) of 

coherency dislocations (which produce the coherency strains) and thereby reduce 
the coherency-strain energy. Figure 23.4 illustrates a mechanism, known as pris- 
matic dislocation punching, by which anticoherency dislocations can be introduced 
at the interface of a three dimensional spherical precipitate. 

Dislocation 

Precipitate I 
interfacial 
dislocation 

Figure 23.4: Prismatic dislocation punching at spherical precipitate. (a) A dislocation 
dipole loop is generated in the interface. One side expands into the matrix while the other 
remains in the interface. (b) Segments of the loop in the matrix glide downward to form 
additional loop length in the interface. ( c )  The loop in (b), which is partially in the interface 
and partially in the matrix pinches together at its lowest point and splits into two loops, 
with one remaining in the interface and the other gliding into the matrix. From Porter and 
Easterling [4]. 

23.4 PRECIPITATION IN TWO CONTRASTING SYSTEMS 

23.4.1 Cu-Co System 

The Cu-Co system is a particularly simple precipitation system in which a Co- 
rich p phase precipitates in a Cu-rich terminal cy phase. The f.c.c. lattices of both 
phases are well matched in three dimensions, so that the precipitate interfaces .are 
coherent with respect to either lattice as a reference structure and the interfacial 
energy is sufficiently isotropic so that they are almost spherical, as in Fig. 19.2. 
Both the interfacial energy and strain energy are therefore relatively low and the 
nucleation of the ,8 phase is therefore relatively easy and occurs homogeneously. 
This system has been used to test the applicability of the classical nucleation theory 
(Section 19.1.1) [ll, 121. In this work, the experimental conditions under which 
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Figure 23.5: 
at.  % Co alloy during annealing at 600°C. From LeGoues and Aaronson [ll]. 

Measured density of precipitates, np, forming as a function of time in Cu-1 

nucleation might be measurable were first determined by means of calculations. 
Nucleation rates in this nucleation “window” were then determined experimentally 
by electron microscopy. Some results shown in Fig. 23.5 were compared with values 
predicted by the classical model for nucleation using Eq. 19.17. Reasonably good 
agreement was found, indicating that the classical model is realistic in at least this 
case. Two nonclassical models for the critical nucleus were also tested; the first used 
the Cahn-Hilliard gradient-energy continuum formalism described in Section 18.2 
and the second employed a detailed discrete-lattice calculation. The results in 
both cases predicted a somewhat diffuse nucleus/matrix interface and a chemically 
inhomogeneous critical nucleus. A typical result showing the concentration profile 
along the nucleus radius is shown in Fig. 23.6; the nucleus has a small inner core 
of uniform concentration and an interface with a thickness that is about half the 
nucleus radius. However, the nucleation rates predicted by the three models were in 
reasonable agreement. The significance of this result is discussed in Section 19.1.7. 
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Figure 23.6: Calculated concentration profile (normalized) through a Co-rich critical 
nucleus in a Cu-1 at. % Co precipitation system. a = lattice constant. From LeGoues and 
Aaronson [ll]. 
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23.4.2 AI-Cu System 

In contrast to the Cu-Co system, precipitation in the A1-Cu system is highly com- 
plex. Figure 23.1 resembles the phase diagram for the A1-Cu system on the Al-rich 
side. If an a-phase alloy with 1.7 at. % Cu is rapidly quenched from TQ to below 
the solvus, held at TA, and aged, it will be supersaturated and the equilibrium p 
phase (i.e., CuA12) will tend to precipitate. However, in this system, the equilib- 
rium phase is poorly matched to the cy matrix in all dimensions and can nucleate 
only with difficulty by forming nuclei with relatively high interfacial energies. The 
precipitation therefore takes place instead by the formation of a series of transition 
copper-rich phases that nucleate more easily in a largely coherent or semicoherent 
manner and therefore form more rapidly. The sequential nucleation, growth, and 
dissolution of these transition phases leads eventually to the formation of the equi- 
librium phase. Figure 23.2 shows their structures and morphologies forming in the 
sequence 

Guinier-Preston zones -+ 0“ --$ 8’ -+ 6’ 

where the final equilibrium phase (CuA12) is indicated by 8. The Guinier-Preston 
zones ( G P  zones)form first and are copper-rich discs of no more than a few atomic 
layers coherent with respect to a reference structure consisting of either the matrix 
or precipitate lattice. As time progresses, they serve as preferred sites for the for- 
mation of 6’’ precipitates that grow in situ on the zones. Eventually, 8’ precipitates 
form on the 0’’ precipitates or nucleate heterogeneously on crystal dislocations while 
the 0” precipitates dissolve. Finally, stable 0 precipitates nucleate heterogeneously 
on either grain boundaries or @/matrix interfaces. As shown in Fig. 23.2, the broad 
faces of the transition precipitates are either low-energy coherent or semicoherent 
interfaces which make their nucleation easy. Schematic bulk free energy vs. com- 
position curves for these phases are shown in Fig. 23.7. The free energies of the 
precipitates decrease in the order: GP zones -+ 0” -+ 8’ -+ 8. The common-tangent 
construction shows that their solubilities in the a phase therefore decrease in the 
same order. The dissolution of, for example, the 0” phase and the simultaneous 

9) 
9) 

Figure 23.7: Schematic free energy vs. composition curves during precipitation in the 
Al-Cu system. From Jena and Chaturvedi [7]. 
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growth of the more stable 8’ phase can be understood in terms of diffusion through 
the matrix from the phase of higher solubility to the one of lower solubility. The 
phase diagram solvus lines for the transition precipitates in Fig. 23.8 show that the 
full sequence of transition precipitates will be observed only if annealing is carried 
out below the GP zone precipitate solvus. If annealing is carried out above the 
8‘ solvus, only the 0 precipitate will form and it will nucleate and grow heteroge- 
neously on grain boundaries. Also, if GP zones have formed at a given temperature 
below the GP solvus and the system is heated to above the GP solvus, the GP 
zones will dissolve-a phenomenon known as reversion. 

This complex form of precipitation in the A1-Cu system is of great practical 
importance. The finely dispersed precipitates act as effective barriers to the glide 
movement of dislocations during plastic deformation and harden and strengthen the 
material. This has led to the development of a number of widely used precipitation- 
hardened A1-Cu alloys [ 11. 
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Figure 23.8: 
the A1-Cu system. From Hornbogen 1131 and from Jena and Chaturvedi [7]. 

Solvus curves for Guinier-Preston zones and f?”, f?’, and 0 precipitates in 
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CHAPTER 24 

MARTENSITIC TRANSFORMATIONS 

Martensitic transformations are discontinuous transformations that are diffusionless 
and displacive and occur by the forward glissile motion of the interface between the 
growing martensite and its parent phase. The theory of the crystallography of 
these transformations is presented by employing either a pole-figure description 
or a deformation-tensor formulation. Topics include the prediction of the crystal 
orientation relationship between the martensite and parent phase, the habit plane 
of the martensite in the parent phase, and the macroscopic specimen shape change 
due to the transformation. The glissile nature of the martensite/parent phase 
interface is explained in terms of a coherency-anticoherency dislocation model. 
The nucleation of martensite is also considered and found to be heterogeneous in 
nature. Finally, martensitic transformations in three widely contrasting systems 
are described to illustrate the wide range of phenomena that can occur. 

24.1 GENERAL FEATURES OF MARTENSITIC TRANSFORMATIONS 

Martensitic phase transformation is similar in a number of respects to mechanical 
twinning (as described in Section 13.3.1). Both processes are displacive because 
they occur by the local transfer of atoms across an advancing interface by a highly 
organized “military” shuffling of atoms across the interface at conservatively mov- 
ing dislocations. In both cases, this induces a macroscopic shape change of the 
specimen. Both processes are conservative; no long-range diffusion is involved, and 
the martensite and its parent phase must therefore be of the same chemical compo- 
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Copyright @ 2005 John Wiley & Sons, Inc. 
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sition. In both cases, thermal activation is of little importance, and both martensite 
and twin interfaces often advance at  high speeds at relatively low temperatures. 

However, important differences exist. Martensite and its parent phase are dif- 
ferent phases possessing different crystal structures and densities, whereas a twin 
and its parent are of the same phase and differ only in their crystal orientation. 
The macroscopic shape changes induced by a martensitic transformation and twin- 
ning differ as shown in Fig. 24.1. In twinning, there is no volume change and the 
shape change (or deformation)  consists of a shear parallel to the twin plane. This 
deformation is classified as an invariant plane strain since the twin plane is neither 
distorted nor rotated and is therefore an invariant plane of the deformation. 

Twin Habit 
plane Parent Parent plane 

Figure 24.1: 
formation. 

Macroscopic shape changes due to (a) twinning and (b) martensite 

As described below, martensite forms in a manner that produces good dimen- 
sional matching along the martensite/parent-phase interface (called the habit plane)  
to reduce any elastic misfit energy between the phases. The habit plane is therefore 
also an invariant plane to a good approximation. The volume change associated 
with the martensite phase transformation then appears in the form of a dilation 
normal to the habit plane, and the total deformation can be factored into a shear 
parallel to the habit plane and a dilation normal to it as seen in Fig. 24.lb. Fig- 
ure 24.2 shows the typical shape change when the martensite traverses a single 
crystal of the parent phase. When the martensite develops in the form of inclusions 
within the parent phase, the inclusions form as thin lenticular platelets with their 

A 

Figure 24.2: Macroscopic shape change produced when a martensite plate traverses a 
single crystal of the parent phase. A straight fiducial line DE in the parent crystal becomes 
DF after the formation of the martensite plate. 



24.2: CRYSTALLOGRAPHY 565 

broad faces parallel to the habit plane, thereby minimizing the elastic strain energy 
as discussed in Section 19.1.3. 

The driving pressure for a martensitic transformation usually arises from the 
decrease in bulk free-energy change per unit volume, A g B ,  which occurs in the 
transformation. However, since the transformation produces a change in specimen 
shape, an additional pressure can arise if an applied stress is present. This pressure 
is similar in origin to the pressure exerted by an applied stress on a mechanical twin 
because of its shape change as discussed in Section 13.3.1. Since the martensite 
shape change can be factored into an invariant plane strain shear and a dilation 
normal to the invariant plane, the pressure has two components: the first, due to 
the shear, can be expressed as 3sEs, where ZS is the resolved shear stress along the 
invariant plane in the direction of the shear and E, is magnitude of the shear; the 
second, due to  the dilation, can be expressed as unncnn, where unn is the resolved 
stress normal to  the invariant plane and E~~ is the normal dilation. The total 
pressure is then 

(24.1) 

Martensitic transformations are usually induced by cooling the parent phase be- 
low the point where A g B  turns negative. Martensite then nucleates and grows in 
conservative glissile fashion under the driving pressure given by the first term on 
the right side of Eq. 24.1. In some cases, this growth can be very rapid, approach- 
ing the speed of sound. However, martensite formation can also be induced by 
applied stress, as might be expected from the second and third terms in Eq. 24.1. 
Section 24.3 discusses these aspects of martensite formation. However, it is first 
necessary to describe how martensite can form with a habit plane that is an invari- 
ant plane and an interface that is glissile. 

nphase trans - - - A g B  + 8 s E s  + UnnEnn 

24.2 C R Y  STA L LO G RAP H Y 0 F M A R T  E N S I TI C T R A N S  FO R M AT I 0 N S 

The crystallography of martensitic transformations has been widely analyzed [ 1- 
91. We shall mainly follow Wayman's description [5] which is largely based on 
the original work of Wechsler et al. [l].  The famous f.c.c.+b.c.t. (body-centered 
tetragonal) transformation in iron alloys is the basis for the hardening of steel and 
will be the focus of the discussion. 

24.2.1 Lattice Deformation 

Structures of the f.c.c. parent and b.c.t. martensite phases are shown in Fig. 24.3. 
The f.c.c. parent structure contains an incipient b.c.t. structure with a c la  ratio 
which is higher than that of the final transformed b.c.t. martensite. The final b.c.t. 
structure can be formed in a very simple way if the incipient b.c.t. cell in Fig. 24.3a 
is extended by factors of ql = 72 = 1.12 along xi and xi and compressed by 
q3 = 0.80 along xi to produce the martensite cell in Fig. 24.3b. This deforma- 
tion, which converts the parent phase homogeneously into the martensite phase, is 
known in the crystallographic theory as the lattice deformation1 Unfortunately, 

'In transformations where the parent crystal structure has a basis, the homogeneous lattice de- 
formation may not move every atom within the parent unit cell into its proper position in the 
martensite unit cell. In such cases, small local shuffles of some of the atoms will be required. 
However, this is irrelevant with respect to  the overall macroscopic shape change. 
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Figure 24.3: Lattice transforination and lattice correspondence in the f.c.c.+b.c.t. 
niartensitic transformation. (a) Initial f.c.c. st,ructure. (b) Final b.c.t. structure. Crosses 
denote interstitial sites partially occupied by C: atoms in F e C  solid solutions. 

the lattice deformation in the present case is not an invariant plane strain defor- 
mation because there is no plane in the system that remains both undistorted and 
unrotated. Additional operations are therefore necessary to produce an invariant 
plane in the transformation. 

The absence of an invariant plane in the deformation above can be demonstrated 
by using some general results for homogeneous deformations. Any homogeneous 
deformation deforms a unit sphere into an ellipsoid possessing axes corresponding 
to  the three principal deformations as illustrated in Fig. 24.4. Here, the cross section 
of a unit sphere is assumed to  be in the parent phase. It is deformed by the lattice 
deformation into an ellipsoid in the martensite possessing a shape given by 

xi2 Xh2 xi2 - + + + f = l  
7l? 712 713 

(24.2) 

The Ohf, O&, O e ,  and OBI in the martensite remain unchanged in length in 
the deformation. The figure has circular symmetry around the x$ axis, and all of 
the vectors in the system that satisfy this condition fall on two cones centered on 
the xi axis with their apexes a t  0 and passing through O%', OBI, 02', and OBI, 
respectively. To find these same vectors in the parent phase, we make use of the 

de 
el 
rn 

Figure 24.4: Deforniittion ellipsoids involved in the lattice deforniation in the 
f.c.c.+b.c.t. martensitic trniisfortnation. 
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reciprocal deformation ellipsoid, which is the particular ellipsoid in the parent phase 
that is converted into a unit sphere in the martensite by the lattice deformation. 
The reciprocal deformation ellipsoid therefore has the form 

(24.3) 

The corresponding vectors in the parent phase lie on the two cones that intersect 
O A  and OB and OC and OD,  respectively. An invariant plane must contain two 
noncollinear vectors in the material (defining a plane) which are unchanged in length 
and unrotated. The vectors on the AOB and COD cones in the parent phase are 
the only vectors that remain unchanged in length. However, they are all rotated 
away from the xk axis by the deformation through the angle +I - 4,  and therefore 
there is no invariant plane in the deformation. 

The angle + may be found from the equation for the AOB cone, which can be 
obtained by setting the equation for the unit sphere, x i 2  + xL2 + xb2 = 1, equal to 
Eq. 24.3, to obtain 

( r ] ?  - 1) x i2  + ( r ] ;  - 1) X L 2  + (7; - 1) x i2  = 0 

Setting x; = 0 yields 

(24.4) 

(24.5) 

A corresponding expression for +I may be found by the same general method. 

24.2.2 Undistorted Plane by Application of Additional Lattice-Invariant 
Deformation 

Since invariant planes do not exist in the lattice deformation, additional operations 
are required. A plane that is undistorted can be produced if the parent phase is 
subjected to two operations: the lattice transformation; and a shear deformation 
that does not change the crystal structure and is therefore termed a lattice-invariant 
deformation. This lattice-invariant deformation can be accomplished by shearing 
the crystal by passing perfect dislocations through it (Lee, by dislocation slip). 
However, even though these operations produce an undistorted plane, they do not 
generally produce an invariant plane since the undistorted plane they produce is 
generally rotated away from its inclination in the original parent phase. However, 
this is easily remedied since the undistorted plane can then be brought back to its 
original inclination by a final rigid-body rotation. Three operations are therefore 
required: a lattice deformation, a lattice-invariant deformation (shear), and a rigid- 
body rotation. 

These operations do not occur separately and in any particular sequence but 
are simply a convenient way to conceptualize the transformation as a series of 
operations, each of which can be analyzed separately, but which working together 
produce a martensitic structure containing an invariant plane. As such, they can 
be imagined to occur in any sequence. For purposes of analysis, it is convenient to 
imagine that the lattice-invariant deformation occurs first, followed by the lattice 
deformation, followed finally by the rigid-body rotation. We now show that a 
lattice-invariant shear by slip followed by the lattice deformation analyzed above 
can produce an undistorted plane. 
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The geometrical features of shear deformation are shown in Fig. 24.5. Here, the 
shear is on the K1 plane in the direction of d. The initial unit sphere is deformed 
into an ellipsoid and the K1 plane is an invariant plane. The K2 plane is rotated by 
the shear into the Kh position and remains undistorted. A reasonable slip system 
to assume for the lattice-invariant shear deformation is slip in a (111) direction on 
a (112) plane in the b.c.t. lattice, which corresponds to slip in a (110) direction on 
a (110) plane in the f.c.c. lattice. 

Before After 
shear, K2, ? ,Ki /shear 

Figure 24.5: 
by shear. After Wayman [5]. 

Cross-sectional view of upper half of a unit sphere deformed into an ellipsoid 

At this point, it is advantageous to switch to the use of stereographic projections 
to visualize fully the three-dimensional geometry.2 The stereographic projection in 
Fig. 24.6 shows the geometry of the shear illustrated in Fig. 24.5 when the shear 

[iool 

Trace 

[ oio] 

Figure 24.6: 
f.c.c. lattice. Same geometry as in Fig. 24.5. Figure referred to f.c.c. axes. After Wayman [5]. 

occurs by slip in the f.c.c. structure on the (101) plane in the [TO11 direction. The 
(101) K1 slip plane and [Toll slip direction are shown along with the undistorted 
(but rotated) K2 plane. Vectors on this plane, such as those at the c positions, 
will remain undistorted but will rotate on great circles that pass through the slip 
direction [Toll. The stereographic projection in Fig. 24.7 shows the geometry of the 
lattice deformation discussed in Section 24.2.1. The traces of the cones containing 

Stereographic representation of lattice-invariant shear deformation in the 

2Stereographic projections and their uses are described by Barrett and Massalski [lo]. 
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[ oio] 

[ioo] 

Figure 24.7: Stereogra hic re resentation of lattice deformation in f.c.c.+b.c.t. 
martensitic transformation. 8gure  re%rred to f.c.c. axes. After Wayman [5]. 

all of the vectors that are unchanged in length appear as circles concentric to the 
2 3  axis (i.e., [ O O l ] ) .  The lattice deformation causes the vector at e to move outward 
from its initial position on the inner cone to its final rotated position on the outer 
cone along a path that is radial with respect to the central [ O O l ]  pole. 

The procedure for finding an undistorted plane is shown in Fig. 24.8. If a vector 
initially a t  the position a is rotated to the position a’ by the lattice-invariant shear 

[ioo] 

[ oio] 

Trace K, 

Fi ure 24.8: Stereographic re resentation of lattice-invariant deformation plus lattice 
dekrmation to produce undistorteaplane in f.c.c.4b.c.t. martensitic transformation. Figure 
referred to f.c.c. axes. After Wayrnan [5]. 
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and then subjected to the lattice deformation, it will end up at a” with its length 
unchanged. A second vector, initially at c, will remain unchanged at c during the 
lattice-invariant deformation since it lies in the K1 shear plane. Then, during the 
lattice deformation, it will rotate to c” with its length unchanged. The great circle 
traces of the two planes containing the vectors at a and c and a” and c“, respectively, 
are shown in Fig. 24.9. By adjusting the amount of shear, an arrangement of these 
vectors can be arrived at in which the included angles between a and c and a“ 
and c”, respectively, can be made equal. The two traces then represent the initial 
and final positions of a plane that is undistorted since it contains two noncollinear 
vectors which have remained unchanged in length and which have maintained a 
constant included angle with each other. 

[Too] 

Figure 24.9: Stereographic representation of undistorted plane produced by the lattice- 
invariant deformation and lattice deformation illustrated in Fig. 24.8. Traces h and h” 
represent initial and final positions of the undistorted plane, respectively. Their poles are at 
h and h”. Figure referred to f.c.c. axes. After Wayman [5]. 

24.2.3 

The plane containing a and c in Fig. 24.9 is the plane in the f.c.c. phase that 
initially contained the vectors a” and c”. If the b.c.t. phase is now given a rigid- 
body rotation so that a” + a and c” + c, the undistorted plane in the b.c.t. 
phase will be returned to  its original inclination in the f.c.c.-axis system and will 
therefore be an invariant plane of the overall deformation. In the present case, 
this can be achieved by a rotation around the axis indicated by u in Fig. 24.9 (see 
Exercise 24.3). The solution of the problem is now complete. The invariant plane 
is known, and the orientation relationship between the two phases and total shape 
change can be determined from the combined effects of the known lattice-invariant 
deformation, lattice deformation, and rigid-body rotation. 

Invariant Plane by Addition of Rigid-Body Rotation 
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24.2.4 

The problem above can also be solved analytically using tensor methods-the pre- 
ferred technique when higher accuracy is required. In general, any homogeneous 
deformation can be represented by a second-rank tensor that operates on any vector 
in the initial material and transforms it into a corresponding vector in the deformed 
material. For example, in the lattice deformation, each vector, V'f,,, in the initial 
f.c.c. structure is transformed into a corresponding vector in the b.c.t. structure, 

dbct = B dfcc (24.6) 

Tensor Analysis of the Crystallographic Problem 

c b c t ,  by 

where B is the lattice deformation tensor given by 

0 0  1.12 0 0 
(24.7) 

0 0 r13 

If S is the lattice-invariant deformation tensor and R the rigid-body rotation ten- 
sor, the total shape deformation tensor, E ,  producing the invariant plane can be 
expressed as 

E = RBS (24.8) 

Wayman describes in detail how the tensor formalism can be used to solve the 
crystallographic problem [5]. A simple graphical demonstration, in two dimensions, 
of how an invariant line (habit plane) can be produced by the deformations B ,  S, 
and R is given in Exercise 24.6. 

24.2.5 

The input data for the model consist of the description of the lattice deformation 
and the choice of the slip system in the lattice-invariant shear. The model has 
successfully predicted the observed geometrical features of many martensitic trans- 
formations. The observed and calculated habit planes generally have high indices 
that result from the condition that they be macroscopically invariant. 

Because of the four-fold symmetry of the [OOl]  pole figures in Figs. 24.6-24.9, 
additional symmetry-related invariant planes can be produced. Also, further work 
shows that additional invariant planes can be obtained if a lattice-invariant shear 
corresponding to a = 7.3" rather than a = 11.6" (see Fig. 24.8) is employed [5]. 
Multiple habit planes are a common feature of martensitic transformations. 

In many cases, the martensite phase is internally twinned and is composed of 
two types of thin twin-related lamellae, as illustrated in Fig. 24.10. In such cases, 
the lattice-invariant shear is accomplished by twinning rather than by slip as has 
been assumed until now (see Fig. 24.10b). The critical amount of shear required 
to produce the invariant habit plane is then obtained by adjusting the relative 
thicknesses of the two types of twin-related lamellae shown in Fig. 24.10b. 

The crystallographic model for martensite described above is primarily due to 
Wechsler et al. [l]. A similar model, employing a different formalism but leading 
to  essentially equivalent results, has also been published by Bowles and MacKen- 
zie [2-41. In both models, a search is made for an invariant (or near-invariant) 
plane which is then proposed as the habit plane, since the selection of this plane 

Further Aspects of the Crystallographic Model 
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Internally Internally 
slipped twinned 

martensite martensite 
plate ,’ plate 

Figure 24.10: (a) Internally slipped martensite. (b) Interiially twinned martensite. 
The two types of twin-related laniellae present are labeled 1 and 2. 

by the system minimizes the amount of distortion and corresponding strain en- 
ergy that accompanies the transformation. More recently, the problem has been 
approached differently by searching directly for the transformation crystallography 
that minimizes the energy [ll-131. Not too surprisingly, this direct free-energy- 
minimization approach leads to habit plane results similar to those predicted by 
the invariant-plane approach [ll, 121. 

24.3 GLlSSlLE INTERFACE 

The dislocation structure of the glissile martensite interface can be deduced by 
following the same sequence of deformation steps as those employed in the crys- 
tallographic model above. Consider first the simple case where the martensite 
forms as a slab with its habit plane extending across the entire specimen as in 
Fig. 24.2. Figure 24.11a shows the slab-shaped region (dashed lines) of the parent 
phase, which will be transformed to  martensite by this sequence of steps. After the 
lattice-invariant shear deformation, S, an array of lattice dislocations is deposited 
at the incipient interface by the dislocation slip process that produced the required 
lattice-invariant shear. At this point (Fig. 24.11b), the specimen consists entirely 
of the parent phase, but it contains the array of anticoherency dislocations shown, 
which produce long-range internal stresses. When the transformation is completed 
by applying the lattice deformation, B ,  and rotation, R (Fig. 24.11c), the material 
in the slab has been transformed to martensite, the interfaces have become invari- 
ant planes, and the long-range stresses have been eliminated. In this process, arrays 
of coherency dislocations have been generated at the interface as shown, which ac- 
commodate (coherently) the difference in lattice structure across the interface and 
also cancel the long-range stress field of the first set of lattice dislocations. The 
lattice dislocations may therefore be classified as anticoherency dislocations and the 
Burgers vectors of these anticoherency dislocations and the coherency dislocations 
cancel, as described in Section B.6. The diagrams in Fig. 24.11 are schematic and 
show only the total Burgers vector content of the interfaces in an idealized fash- 
ion. The detailed way in which this Burgers vector strength is distributed depends 
upon the atomic structure of the interface [9]. The interface is seen to be glissile, 
since the coherency dislocations can move conservatively in any direction, and the 
anticoherency (lattice) dislocations have slip surfaces running into the parent phase. 

Consider next the case where the martensite forms in the parent phase as an 
inclusion. The procedure for obtaining the dislocation structure of the interface is 
the same as previously. However, the martensite slab is now no longer free to  shear 
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Figure 24.11: Formation of martensite slab spanning cross section of parent phase. 
(a) Region in parent phase to be transformed. (b) Anticoherency dislocations present in 
interfaces after lattice-invariant deformation, S, by slip. ( c )  Coherency dislocations added 
as a result of the lattice deformation, B ,  and the final rotation, R. 

at its ends or to expand in a direction normal to the invariant plane. If the shape 
change is relatively small and is therefore accommodated coherently, everything 
remains the same as in the previous case except that additional arrays of coherency 
dislocations will be generated at the ends of the slab, as illustrated in Fig. 2 4 . 1 2 ~ ~ .  In 
this coherent case, these arrays are not canceled by any anticoherency dislocations 
and they will therefore generate long-range stress fields. In such cases, martensite 
inclusions generally assume a lenticular shape as in Fig. 24.126 to decrease the 
elastic strain energy. The added coherency dislocations are then spread out along 
the two faces of the inclusion in a manner similar to the coherency dislocations in 
the lenticular twin shown in Fig. 13.2a, where there are only shear displacements 
parallel to the twin plane that must be accommodated. Again, both interfaces in 
Fig. 24.12 are glissile. 

Figure 24.12: Formation of martensite inclusion. (a) Slab-shaped inclusion. Coherency 
dislocations present at ends that generate long-range stresses. (b) Lenticular inclusion. 
Coherency dislocations present at the ends in (a) are now distributed along the lens-shaped 
faces. 
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When the shape change is relatively large, the parent phase will no longer be 
able to accommodate the inclusion elastically, and anticoherency lattice dislocations 
will be generated to  relieve the long-range stress field and reduce the elastic energy. 
Plastic deformation will therefore occur in the parent phase, and anticoherency 
dislocations will be added to the interface. These dislocations will generally tend 
to reduce the mobility of the interface. 

Because martensite interfaces can be represented as arrays of dislocations, the 
velocity with which they move will generally be controlled by the same factors that 
control the rate of glide motion of crystal dislocations. As discussed in Section 11.3, 
these include dissipative drag due to phonons and free electrons and interactions 
with a large variety of different types of crystal imperfections which hinder their 
glide motion. When the martensite forms as enclosed platelets as in Fig. 24.12, 
additional work must also be done to produce the increase in interfacial area that 
occurs as the platelets grow. An extensive discussion of the factors involved in 
the motion of martensite interfaces has been given by Olson and Cohen [9]. As 
pointed out in Section 11.3.4, there is no clear evidence for the supersonic motion 
of martensite interfaces. However, velocities on the order of the speed of sound can 
be achieved in the presence of large driving forces. 

24.4 NUCLEATION OF MARTENSITE 

The homogeneous nucleation of martensite in typical solids is too slow by many 
orders of magnitude to account for observed results. Calculations of typical values 
of AGc using the classical nucleation model of Section 19.1.4 (see Exercise 19.3) yield 
values greatly exceeding 76 kT. Furthermore, nearly all martensitic transformations 
commence at very sparsely distributed sites. Small-particle experiments [14] have 
yielded typical nucleation densities on the order of one nucleation event per 50 pm 
diameter Fe-Ni alloy powder p a r t i ~ l e . ~  Thus, nucleation of martensite is believed 
to occur at a small number of especially potent heterogeneous nucleation sites. 

The most likely special site for martensitic nucleation is a pre-existing dislocation 
array, such as a portion of a tilt boundary [9]. The nucleation process involves dis- 
sociation of the boundary dislocations, so as to produce periodic faults in the parent 
crystal and thereby provide a mechanism for the lattice deformation. The process 
of superimposing lattice-invariant deformation onto the deformation that occurs in 
the dissociation of the original tilt boundary is used to obtain the equivalent of the 
lattice deformation RB in the crystallographic model of Section 24.2.4. The rate of 
initiating such a nucleus is limited by the rate at which the dislocations required to 
form and then expand the configuration can move under the available driving force. 
The entire process may be free of any energy barrier under sufficiently high driving 
forces, or else involve local barriers to certain critical dislocation movements which 
can be surmounted with the assistance of thermal activation. Details of the specific 
defects required for the mechanism have been worked out for common structural 
changes (e.g., f.c.c.+ h.c.p., f.c.c.+ b.c.c.) [8, 91. 

3Small-particle experiments are carried out by studying nucleation in small particles of the parent 
phase and are useful in distinguishing between homogeneous and heterogeneous nucleation. If 
the nucleation is homogeneous, the nucleation rate is simply proportional to  the volume of the 
particle. On the other hand, if it is heterogeneous, the rate goes essentially to zero when the 
particle size is lower than l / p ,  where p is the density of heterogeneous nucleation sites. 
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24.5 MARTENSITIC TRANSFORMATIONS I N  THREE CONTRASTING 
SYSTEMS 

We now describe briefly martensitic transformations in three contrasting systems 
which illustrate some of the main features of this type of transformation and the 
range of behavior that is found [15]. The first is the In-T1 system, where the lattice 
deformation is relatively slight and the shape change is small. The second is the 
Fe-Ni system, where the lattice deformation and shape change are considerably 
larger. The third is the FeNi-C system, where the martensitic phase that forms 
is metastable and undergoes a precipitation transformation if heated. 

24.5.1 In-TI System 

Upon cooling, an In-T1 (19% T1) alloy undergoes an f.c.c. solid solution + f.c.t. solid 
solution martensitic transformation in which the lattice deformation is relatively 
slight, corresponding to 

(24.9) 
0 1.0238 O I  

0.9881 0 
B = [Bij] = 0 0.9881 0 

[ o  
and the shape change is correspondingly small. The lattice-invariant deformation is 
accomplished by means of twinning in this system, so the low-temperature marten- 
sitic phase consists of twin-related lamellae. If a rod-shaped single crystal of the 
parent f.c.c. phase is carefully cooled in a small temperature gradient from above 
the transformation temperature, the transformation can be induced so that the 
martensite first appears at  the cooler end of the specimen as a region separated 
from the parent phase by a single planar interface that spans the entire cross sec- 
tion of the specimen. As cooling continues, the single interface advances along the 
rod until the entire specimen is transformed. Upon subsequent reverse heating, the 
transformation is found to be reversible and the original single crystal of the parent 
phase is recovered with a temperature hysteresis of only about 2", as shown in 
Fig. 24.13, where the progress of the transformation is indicated by measurements 
of the length change of the specimen. 

L '  ' ' I '  ' ' I '  ' J  

w66 68 70 72 74 76 
Temperature ("C) 

Figure 24.13: Temperature dependence of the martensitic transformation in In-20.7 
at. % T1. The extent of transformation is revealed by changes of specimen len th  caused 
by the transformation. The dashed line shows the reversible transformation res5ting from 
continuous cooling and heating. The solid line shows stabilization of the transformation 
induced during the heating part of the cycle by a hold of 6 h at constant temperature. From 
Burkart and Read [16]. 
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Figure 24.14: Temperature dependence of martensitic transformation in In-20.7 at. '% 
T1 under two different com ressive stresses. Phase fraction of martensite is proportional to 
the permanent strain whicl? can be determined by the stress-free specimen length. From 
Burkae and Read [16]. 

The interface motion is jerky on a fine scale and requires a continuous drop in 
temperature. This indicates that the interface requires a continuous increase in 
driving pressure (brought about by increased undercooling) to maintain its motion. 
This may be taken as evidence that the interface must be accumulating defects due 
to interactions with obstacles in its path which progressively reduce its mobility. 
If the heating (or cooling) is interrupted by a hold at  constant temperature, the 
interface becomes stabilized as shown in Fig. 24.13. During the holding period, no 
further transformation occurs, and then a jump in temperature is required to restart 
the transformation. This is apparently due to an unidentified time-dependent re- 
laxation at the interface that occurs during the hold. The extent of transformation 
therefore depends primarily on the temperature and not on time. The transfor- 
mation is therefore considered to be athermal to distinguish it from an isothermal 
transformation, which progresses with increasing time at  constant temperature. 

The transformation can be influenced by an applied stress. As seen in Fig. 24.13, 
the stress-free transformation to martensite results in a decrease in specimen length. 
Data in Figs. 24.14 and 24.15 were obtained by applying a series of constant uniax- 
ial stresses a t  constant ambient pressure, P. The data show that the transforma- 
tion temperature increases approximately linearly with applied uniaxial compressive 
stress. This dependence of transformation temperature on stress state follows from 
minimization of the appropriate thermodynamic function. For a material under 

I- 60- 
0 0.1 0.2 0.3 

Compressive stress (MPa) 

Figure 24.15: 
of applied compressive stress. 

Martensite transformation temperature in In-20.7 at. % T1 as a function 
From Burkart and Read [16]. 
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uniaxial stress, this function takes the form 

G u n i  = Uuni - TS + p v - v, ,+p,uni(l + p a s , u n i  1 (24.10) 

where Uuni is the reversible adiabatic work to take a system from a reference state 
to  a state of uniaxial m tress.^ aapp ,uni  is the applied uniaxial stress above the gauge 
hydrostatic stress, -P,  and E ~ ' ~ ~ + ~ ~  is the elastic strain in the axial direction. V, is 
a reference molar volume, which can be taken to be the molar volume of the parent 
phase at one atmosphere (i.e.' V, = Vpar). 

Let the uniaxial strain associated with the martensite transformation be SE;$~, 

Emeas,uni . The and parent phases, respectively. It is not necessary that EEF'~~~  = par 
elastic parts of the uniaxial strains in the two phases will be related through their 
respective elastic constants because the normal components of stress must be equal 
at the interface. 

The differential forms of the molar free energy for the parent and martensite 
phases are 

and let p F , u n i  and p a s , u n i  par be the measured uniaxial strains in the martensite 

meas,uni 
dGEdrt = - Smar t  dT + Vmart d P  - Vo(l + emart - &girt) dc7app3uni 

(24.11) 

This analysis shows that a compressive load decreases the molar free energy- 
and that a positive &:$, reduces the magnitude of the decrease for the marten- 
site phase thereby resulting in an increased transformation temperature, consistent 
with Fig. 24.16. Further analysis shows that the observed shift in transformation 
temperature results from differences in the Young's moduli of the two phases (see 
Exercise 24.5). This result is consistent with LeChatelier's principle. 

dG:i? = - Spar dT + Vpar d P  - V, (1 + E ~ ~ ~ ' ~ ~ ~ )  daaPP,uni 

t 
s 
F 
C 

Figure 24.16: Free energy of parent and martensite phases as a function of temperature, 
illustrating the effect of compressive uniaxial stress on martensite transformation 
temperature in In-T1 crystals. 

4U has the differential dU""' = T dS - P d V  + VouaPP,uni dcelas~uni. Considering that this energy 
change must reduce to  the fluidlike P dV work under pure hydrostatic loading, the (1 + cii)-terms 
must appear because C E . ~  = AV/Vo = V/Vo - 1. 
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Further work found that the transformation in In-TI alloys could be induced 
isothermally (i.e., without any cooling whatsoever) by the application and removal 
of a sufficiently large compressive load [16]. This is consistent with the data in 
Fig. 24.15, which show that there are conditions where the transformation temper- 
ature on cooling of the stressed specimen is above the transformation temperature 
of the unstressed specimen on heating, as would be required. 

24.5.2 Fe-Ni System 

Upon cooling, an Fe-Ni (29.3 wt. % Ni) alloy undergoes an f.c.c. solid solution + 

b.c.c. solid solution martensitic transformation in which the lattice deformation is 
an order of magnitude larger than in the In-T1 transformation and is 

B = [Bij] = 0 1.13 0 (24.12) [ l: 1 010 1 
The transformation is again found to  be reversible and to exhibit hysteresis as 

shown in Fig. 24.17, which shows a cooling and heating cycle, detected by means 
of electrical resistivity measurements. However, the hysteresis, corresponding to 
about 450°C, is much larger than in the In-T1 system, indicating that a much larger 
pressure is required to drive the transformation. Examination of the morphology 
of the transformation shows that it is quite different than in the In-T1 case. The 
martensite now forms as small lenticular platelets embedded in the parent phase, 
with their habit planes parallel to  variants of the invariant plane, as shown in 
Fig. 24.18. The manner in which the transformation progresses during cooling is 
also quite different. After forming, each platelet grows very rapidly to a final size 
and then remains static. As cooling continues, the transformation then progresses 
by the formation of new platelets. This behavior is attributed to the large lattice 
deformation, causing a large shape change in this system, which is too large to be 
accommodated elastically. Instead, plastic flow occurs in the parent phase in the 
form of the generation and movement of dislocations, and anticoherency dislocations 
are introduced in the platelet interfaces, causing them to lose their mobility as 
described in Section 24.3. This explanation is consistent with the large amount of 
hysteresis observed upon thermal cycling, since this reduction of mobility makes it 
difficult to reverse the direction of motion of the platelet interfaces. 

2.0 
G 

1.6 - 1.2 
- 
8 s 0.8 
c 
v) .- 

0.4 
lx 

-100 0 100 200 300 400 500 
Temperature ("C) 

Figure 24.17: Temperature dependence of the martensitic transformation in the Fe-Ni 
(29.3 wt. %) system during thermal cycle. Extent of transformation revealed by change of 
specimen electrical resistivity. From Kaufman and Cohen [17]. 
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Figure 24.18: 
Fe-32 wt. % Ni alloy. From the ASM Metals Handbook, Vol. 8, p. 198. 

Martensite platelets formed in the f.c.c. -+ b.c.c. transformation in an 

The phenomenon of stabilization is also observed in this system if the cooling 
is interrupted and the specimen is held isothermally before cooling is resumed. 
In this case, the transformation resumes only after the driving force is incremen- 
tally increased by a significant drop in temperature. Again, the transformation is 
primarily athermal, depending upon decreases of temperature which provide corre- 
sponding increases in the driving pressure for the formation of more platelets. Also, 
a relatively small amount of isothermal formation of martensite is observed if the 
specimen is rapidly quenched into the temperature range where martensite forms 
and is then held isothermally [18]. However, the isothermal transformation occurs 
by the formation of new platelets and not by the growth of existing ones. 

In general, the result that the platelets form very rapidly (at speeds of the order 
of the speed of sound) at relatively low temperatures, at rates that are not signifi- 
cantly temperature-dependent, indicates that the platelet growth is not thermally- 
activated and occurs only when a sufficiently high driving pressure is available. 

24.5.3 Fe-Ni-C System 

The crystallography of the f.c.c.-+ b.c.t. martensitic transformation in the Fe-Ni-C 
system (with 22 wt. %Ni and 0.8 wt. %C) has been described in Section 24.2. In 
this system, the high-temperature f.c.c. solid-solution parent phase transforms upon 
cooling to a b.c.t. martensite rather than a b.c.c. martensite as in the Fe-Ni system. 
Furthermore, this transformation is achieved only if the f.c.c. parent phase is rapidly 
quenched. The difference in behavior is due to the presence of the carbon in the Fe- 
Ni-C alloy. In the Fe-Ni alloy, the b.c.c. martensite that forms as the temperature 
is lowered is the equilibrium state of the system. However, in the Fe-Ni-C alloy, the 
equilibrium state of the system in the low-temperature range is a two-phase mixture 
of a b.c.c. Fe-Ni-C solid solution and a C-rich carbide phase.5 This difference in be- 
havior is due to a much lower solubility of C in the low-temperature b.c.c. Fe-Ni-C 
phase than in the high-temperature f.c.c. Fe-Ni-C phase. If the high-temperature 

5The true equilibrium state is the FeNi-C phase plus graphite. However, the carbide phase is so 
strongly metastable that it can be regarded as an “equilibrium” phase. 
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f.c.c. Fe-Ni-C parent phase were to be slowly cooled under quasi-equilibrium condi- 
tions, it would undergo diffusional phase changes resulting in the ultimate formation 
of the two-phase mixture. However, if the parent phase is rapidly quenched, these 
phase changes are bypassed and it transforms martensitically to the solid-solution 
b.c.t. phase, which is therefore a nonequilibrium phase that is metastable to the 
formation of the equilibrium two-phase mixture. During the quench, the C atoms 
are trapped in the interstitial positions they occupied in the parent phase, as shown 
in Fig. 24.3. By comparing these positions with Fig. 8.8a, it may be seen that they 
are a subset of the complete set of lattice-equivalent interstitial sites that carbon 
atoms can occupy in the b.c.c. structure.6 Carbon atoms occupying interstitial sites 
generally act as positive centers of dilation that push most strongly against their 
nearest-neighbors. The carbon atoms that randomly occupy the sites in Fig. 24.3 
push most strongly along the z axis and so produce the observed tetragonality. The 
b.c.t. phase can be considered as a b.c.c. structure that has been forced into tetrag- 
onality by quenched-in C atoms that occupy positions inherited from the parent 
f.c.c. phase. 

Once the system is cooled to a low enough temperature to preclude any carbide 
formation due to diffusion, further martensite can be produced by further drops 
in temperature. The overall transformation on cooling then has many of the fea- 
tures of the transformation in the F e N i  alloy described above. The shape change 
is large, the martensite forms as embedded lenticular platelets, and the formation 
is athermal and requires continuously decreasing temperatures to proceed signifi- 
cantly. However, the transformation is not reversible as in theFe-Ni system. When 
the Fe-Ni-C martensite is heated, it decomposes by precipitating the more stable 
carbide phase before it is able to transform back to the high-temperature f.c.c. 
parent phase. 

This behavior is typical of steels that are alloys composed mainly of iron and car- 
bon and, in many cases, additional alloying elements such as nickel, chromium, or 
manganese. The martensite formed directly after quenching is exceedingly hard but 
quite brittle. However, it can then be toughened by subsequent heating (temper- 
ing), which allows some controlled carbide precipitation. Extraordinary mechanical 
properties can be obtained by this combination of quenching and tempering, and 
it forms the basis for the heat treatment of steel [15]. 
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EXERCISES 

24.1 It has been stated that “a martensitic phase transformation can be considered 
as the spontaneous plastic deformation of a crystalline solid in response to 
internal chemical forces” [9]. Give a critique of this statement. 

Solution. According t o  Eq. 24.1, forward and reverse martensitic transformations can 
be driven either by internal chemical forces derived from the bulk “chemical” free-energy 
change, AgB, or by forces due t o  applied stress. In all cases, the transformation causes 
a shape change that corresponds t o  plastic deformation. I f  we regard transformations 
that occur due t o  heating or cooling in the absence of applied stress as spontaneous 
and transformations that occur due t o  applied stress as driven then the statement is 
true. A more inclusive statement might be: “a martensitic phase transformation can 
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be considered as the plastic deformation of a crystalline solid in response to  internal 
chemical forces and/or applied mechanical forces." 

24.2 Find an expression for the cone angle, #l, in Fig. 24.4 in terms of 771 and 773. 

Solution. 
equation for the unit sphere, x i 2  + zL2 + zL' = 1, equal t o  Eq. 24.2 t o  obtain 

First find the equation for the A'O'B' cone in Fig. 24.4 by setting the 

(1 - +) z;' + (1 - $) x:' + (1 - 2) xi2 = 0 (24.13) 

Then, setting z; = 0 yields 

(24.14) 

24.3 Section 24.2.3 claims that the rotation axis in the final rigid-body rotation, 
R, which rotates a'" -+ a' and I?' + E'in Fig. 24.9 is located at the position ii. 
By using the stereographic method, show (within the recognized rather low 
accuracy of the method) that this is indeed the case. 

0 The axis of rotation required to bring a''' -+ a' by a rigid-body rotation 
must lie somewhere on a plane normal to the vector (a''' - a'). 

0 Similarly, the axis of rotation required to bring ?' + E'must lie some- 
where on a plane normal to (?' - Z). 

0 These two rotations can therefore be accomplished simultaneously by 
a single rotation around a common axis lying along the intersection of 
these two planes. This axis will therefore be parallel to 

ii= (a'" - a') x (2' - q (24.15) 

[Too] 

Figure 24.19: 
rigid-body rotation, R! in Section 24.f.3. From Lieberman [19]. 

Stereogram showin the method for locating the rotation axis, 3, for the 
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Solution. First find the poles of the vectors (2’’ - 2) and (E” - Z). The rotation axis, 
ii, will be the pole of the plane containing these vectors. On a stereogram, this will be 
the pole of the great circle containing both (a“’ - 2) and (2’ - Z). The vector (5’’ - Z) 
is perpendicular t o  the vector (2’’ + a), and they both lie in the same plane. The vector 
(8’ + Z) lies on a great circle going through both 3’’ and ti and lies midway between 
them as indicated in Fig. 24.19. Therefore, (5’’ - 2) lies on this same great circle 90” 
away from (6’ + 3). A similar procedure yields the pole of (E“ - ~7‘). The final step is 
to  locate u’ at the pole of the great circle going through both (a“’ - 2) and (2’ - Z). 

24.4 In Section 24.3 we pointed out that martensite platelets (Fig. 24.12) can be 
accommodated elastically in the parent phase when the lattice deformation 
and shape change are small. Consider such platelets in a polycrystalline par- 
ent phase where the platelets have grown across the grains and are stopped at 
the grain boundaries as in Fig. 24.20. Upon thermal cycling, such a plate will 
reversibly thicken during cooling and thin during heating due to a “thermo- 
elastic” equilibrium that is reached between changes in its bulk free energy, 
A g B ,  and the elastic strain energy in the system. Approximate the platelet 
shape by a thin disclike ellipsoid of aspect ratio c /a  as in Section 19.1.3 
(Eq. 19.23) and show that the platelet thickness, c, and A g B  are related by 

a 
2A g B  

c =  - - A  (24.16) 

where A = constant. Assume an invariant plane strain habit plane and use 
the elastic-energy expression for an invariant plane strain described in Sec- 
tion 19.1.3. 

Figure 24.20: 
phase. 

Martensite platelet stopped at grain boundaries in polycrystalline parent 

Solution. According t o  Section 19.1.3, the elastic strain energy (per unit volume of 
platelet) is proportional to  c /a .  The free energy associated with the platelet can then 
be written in the usual way as the sum of a bulk term, an elastic energy term, and an 
interfacial energy term, 

(24.17) 
4 4 C 

3 3 a AG = -.rra2cAgB + -.rra2c A-  + 2.rra27 

Here, the interfacial area has been approximated by that of a thin disc. Because a is 
held constant, the thermoelastic equilibrium requires that aAG/ac  = 0, and this leads 
directly to  the condition 

(24.18) 
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Figure 24.15 shows that the martensitic transformation temperature in the 
In-T1 system is raised by applying a constant uniaxial compressive stress. 
Using the thermodynamic formalism leading to Eq. 24.11, develop a Clausius- 
Clapeyron relationship that relates the observed effect of applied stress on 
transformation temperature to thermodynamic quantities. 

Solution. Taking AG"', AS,  and AV as the molar changes for the transformation 
parent+rnartensite, then 

dAGuni = -AS dT + AV d p  - v o ( Emart meas.uni - p a w n i  par - dE;irt) duaPP.uni (24.19) 

At equilibrium, AGUni = 0 and 

(24.20) 

if the applied stress is below the elastic limit for each phase and Emaa and Epar are 
the Young's moduli for each phase.7 At thermodynamic equilibrium subject to  linear 
elasticity, the Gibbs-Duhem equation is 

uapp,uni - meas,uni mear,uni - (~m3t- t  - d ~ C L ) E m a r t  = €par Epar  

(24.21) 

At fixed (ambient) pressure, a Clausius-Clapeyron equation relates the change in trans- 
formation temperature with applied uniaxial load: 

dT v o  VoTo(Ew - Emart)  (24.22) 

where A H  is the heat absorbed during transformation under no load a t  the reference 
temperature To. 

d(@PPM)z 2EparEmart AH 

Figure 24.21 shows a two-dimensional martensitic transformation in which 
a parent phase, P ,  is transformed into a martensitic phase, M ,  by a lattice 
deformation, B. Note that there is no invariant line in this two-dimensional 
transformation. Find a lattice-invariant deformation, S, and a rigid rota- 
tion, R, that together with the lattice deformation, B, produce an overall 
deformation given by 

E = RSB (24.23) 

-B+ 

Figure 24.21: 
M, by the lattice deformation, B. 

71t is assumed that the interface is normal to the applied load. If either phase has anisotropic 
elastic coefficients, the generalized Young's modulus should be calculated as described by Nye [20]. 

Two-dimensional transformation of parent phase, P, to  martensitic phase, 
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which produces an invariant line which could then serve as the habit line of 
the transformation. Accomplish the lattice invariant deformation by means 
of slip. 

0 There are many possible solutions to this exercise. Find any one of them. 

Solution. One solution is: 

(1) Select the proposed interface between the parent phase and the region of the 
parent phase that will transform t o  martensite. This lies between AB and A’B’ 
in Fig. 24.22a. 

(2) Detach the portion on the right and transform it t o  martensite as shown in 
Fig. 24.226 by imposing the lattice deformation, B ,  illustrated in Fig. 24.21. 

(3) Next, as shown in Fig. 24.22c, impose a lattice invariant deformation, S, on the 
martensite by means of slip on planes of the type indicated so that lABl = (A‘B’I. 

(4) Finally, rotate the martensite by R as shown in Fig. 24.22d t o  produce an invariant 
line along A B .  The interface is shown in the unrelaxed state. 

Similar procedures can be used t o  find alternate solutions. 

Figure 24.22: Production of an invariant line (habit line) along AB in a two-dimensional 
transformation of a parent phase, P,  to a martensitic phase, M .  The degree of matching of 
phases is indicated in (d) by shading shared sites in the interface. 



APPENDIX A 

DENSITIES, FRACTIONS, AND ATOMIC 

VOLUMES OF COMPONENTS 

A . l  CONCENTRATION VARIABLES 

Care is required in defining concentration variables for materials. In the following, 
consider a material comprised of Ni atoms or molecules of type i in a system of N, 
components which together occupy a volume Vtot. The atomic or molecular weight 
of each component is M;. 

Crystalline materials have distinct structures with sites distinguished by their 
symmetry, and it may be important to specify occupancies of particular types of 
sites. Vacant sites must be considered as well. 

A . l . l  Mass Density 

The mass density of material, p ,  is the amount of mass of the material per unit 
volume (i.e., kg m-3). For component i, the mass density, p i ,  is therefore 

where components (1 ,2 , .  . . , N,) include all of the species that make up the material 
possessing total density p .  For example, an alloy of copper and zinc has five stoi- 
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chiometric phases-a (pure Cu), p (CuSZng), y (CuZn), E (CuZnS), and 7 (pure 
Zn)-but only two of the five are independent in a closed system. 

Note that for vacancies in crystalline phases, pv = 0 because = 0. 

A.1.2 Mass Fraction 

The mass fraction, ti, is the fraction of the total mass of the material associated 
with component i: 

A.1.3 Number Density or Concentration 

The number density or concentration, ci, is the number of atoms, molecules, moles, 
or other entities of component i per unit volume. Therefore, 

Note that for vacancies in crystalline phases, cv 2 0. 

A.1.4 

The number fraction of component i is 

Number, Mole, or Atom Fraction 

A set of independent number fractions (Xl, X2, . . . , X N - ~ )  specifies a composition. 

A.1.5 Site Fraction 

The site fraction is the number of species of a particular component that occupy 
a particular site divided by the total number of sites of that type. For example, 
in sodium chloride (NaC1) there is a distinction between cation and anion sites. 
Impurity species and vacancies may also be present. If there is a total of s distinct 
types of sites (s = 2 in NaC1) and there is a total number, 
j on which are distributed N j  atoms (molecules) of component i, the fraction of 
sites of type j occupied by component i is 

of sites of type' 

A.2 ATOMIC VOLUME 

The atomic volume of component i, Ri, is the volume associated with one atom, 
molecule, or other entity. The total volume, Vtot, is comprised of contributions 



from each comDonent: 

Therefore, upon an Euler-type integration, 

N ,  

i=l 

where Ri = dVtot/dNi is the atomic volume of component i.' 
Dividing Eq. A.7 through by Vtot yields the relation 

A.Z: ATOMIC VOLUME 589 

(A.6) 

NC 

CRaca  = 1 
i= 1 

Two differential relationships between the Ri and ci can be derived as follows: 

N C  N C  NC 

C ci dRi = 2% Ntot dRi and dVtot = C (Ni dRi + Ri dNi) 
i=l i=l i=l 

and because the total differential of 1 = C Rici must vanish, 

NC 

i=l 

The average atomic volume, (a), is 

Also, 

(A.lO) 

(A.l l )  

(A.12) 

'As defined here, Ri  is the partial atomic volume; for simplicity, we will refer to  it as the atomic 
volume. 



APPENDIX B 

STRUCTURE OF CRYSTALLINE 

I N T E RFAC ES 

The interfaces of importance in kinetic processes possess a wide range of structures 
and properties. In this appendix we classify and describe concisely the different 
types of crystalline materials' interfaces relevant to kinetic processes. The different 
types of point and line defects that may exist in these interfaces are also described.' 

B.1 CRYSTALLINE INTERFACES A N D  THEIR GEOMETRICAL DEGREES 
OF FREEDOM 

Interfaces that involve a crystalline material may be classified in different ways. 
The broadest system of classification is based on the state'of matter abutting the 
crystal: 

0 Crystal/vapor interfaces 

0 Crystal/liquid interfaces 

0 Internal interfaces in solid and/or crystalline materials 

'Further information and references may be found in several references [l-31. 
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These interface types are listed in order of increasing complexity. Crystal/vapor 
and crystal/liquid interfaces both possess two macroscopic geometrical degrees 
of freedom corresponding to the parameters required to specify the inclination of 
the interface plane with respect to the crystal axes2 (A convenient choice is the 
two direction cosines necessary to define a unit vector normal to the interface.) 
However, the structure of crystal/liquid interfaces is generally more complicated 
because the first few atomic layers on the liquid side of the interface are significantly 
affected by the presence of the interface and therefore act as part of the interface. A 
crystal/crystal interface possesses five macroscopic geometrical degrees of freedom 
corresponding to the three parameters that specify the misorientation of the two 
crystals which abut the interface and the two parameters that specify the inclination 
of the interface plane which separates them. (If the misorientation is described as 
a rotation of one crystal with respect to the other about a specified axis, the three 
parameters are then the two direction cosines necessary to specify the rotation axis 
as a unit vector and the magnitude of the rotation angle.) 

B.2 SHARP A N D  DIFFUSE INTERFACES 

Interfaces may be sharp or dzffuse. A sharp interface possesses a relatively narrow 
core structure with a width close to an atomic nearest-neighbor separation dis- 
tance. Examples of sharp crystal/vapor and crystal/crystal interfaces are shown in 
Figs. B.l and B.2. 

Figure B.l:  
interface. Body-centered positions are darkened for contrast only. 

Ledged surface in a b.c.c. structure that is vicinal to the (100) singular 

On the other hand, a diffuse interface possesses a significantly wider core that 
extends over a number of atomic distances. A diffuse crystalline/amorphous phase 
interface is shown in Fig. B.3. Similar structures exist in crystal/liquid interfaces [5 ] .  

Diffuse crystal/crystal interfaces often appear in systems subject to incipient 
chemical or structural instabilities associated with phase separation, long-range 
ordering, or displacive phase transformations [2]. Examples of interfaces associated 
with the first two types are shown in Fig. 18.7. 

2The number of geometrical degrees of freedom is the number of geometrical parameters that 
must be specified in order to define the interface. 
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Figure B.2: Symmetric large-angle (113)fllOl tilt boundary in A1 viewed along the El01 - - - .  , .  , - . .  
tilt axis by high-resolution electron microscopy. The tilt angle is 50.48'. The inset shows a 
simulated image [4]. Reprinted, by permission, from K.L. Merkle, L.J. Thompson, and F. Phillipp, "Thermally 

activated step motion observed by high-resolution electron microscopy at a (113) symmetric tilt grain-boundary in 

aluminum,'' Philosophical Magazine Letters, vol. 82, pp. 589-597. Copyright @ 2002 by Taylor and Francis 

Ltd., http://www.tandf.co.uk/journaIs. 

(4 (b) 

Figure B.3: (a) High-resolution TEM image of interface between Si3N4 and amorphous 
yttrium silicate. (b) Digitally averaged according to the 0.76 nm periodicity along the 
interface] revealing a gradual loss of order in the interfacial region. Micrographs courtesy Markus 
Doblinger. 

B.3 SINGULAR, VICINAL, AND GENERAL INTERFACES 

Interfaces can be further classified as singular interfaces] vicinal interfaces, and 
general interfaces. An interface is regarded as singular with respect to a degree of 
freedom if it is at a local minimum of energy with respect to changes in that degree 
of freedom. It is therefore of relatively low energy and is stable against changes in 
that degree of freedom. Singular crystal/vapor and crystal/liquid interfaces tend 
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to have dense, relatively close-packed atomic planes in the crystalline phase lying 
parallel to the interface plane [3]. Singular crystal/crystal interfaces have dense 
planes parallel to the interface, and their structures have short two-dimensional 
periodicity in the interface plane [2]. An example is shown in Fig. B.2. 

A vicinal interface possesses an interfacial free energy near a local minimum 
with respect to a macroscopic degree of freedom. The structure of such an inter- 
face generally consists of the singular interface at the local minimum containing a 
superimposed array of discrete line defects, which may be ledges, dislocations, or 
line defects possessing both ledge and dislocation character. The superimposed ar- 
ray of line defects accommodates the difference between the misorientation and/or 
inclination of the vicinal interface and that of the nearby singular interface. Vicinal 
interfaces adopt this type of structure because most of the interface area corre- 
sponds to the minimum-energy structure of the nearby singular interface. In the 
example of a vicinal crystal/vapor interface shown in Fig. B.l, the inclination of 
the interface is almost parallel to the nearby (100) singular interface and differs 
from that of the singular interface by a small rotation around the axis shown.3 The 
vicinal interface therefore consists of the nearby singular interface with a superim- 
posed array of ledges which accommodates the difference between the inclination 
of the interface and the inclination of the nearby singular interface. 

Examples of vicinal crystal/crystal interfaces are shown in Figs. B.4c, B.5, and 
B.6. The vicinal interface therefore consists of the singular interface containing a 

Figure B.4: (a) Singular large-angle symmetrical tilt boundary in f.c.c. structure viewed 
along (100) tilt axis. The tilt angle is 53.1". The grid is the DSC-lattice of the bicrystal. (b) 
Establishment of a slightly increased tilt angle [relative to (a)] while maintaining coherence 
across the boundary. (c) Introduction of dislocations to eliminate the long-range stresses 
generated in (b). The added dislocation array results in a boundary free of long-range stress 
and vicinal to the boundary in (a). 

3Although no vapor phase is present in the figure, the surface is interpreted as' being in equilib- 
rium with its vapor phase. For many materials, the equilibrium vapor pressure is very small- 
nevertheless, the differences of surface structure in a vacuum environment compared to the struc- 
ture in low vapor pressures can be significant. 
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f- 

f- 

f- 

I I 

Figure B.5: (a) Small-angle asymmetric tilt boundary in a primitive cubic lattice viewed 
along the [loo] tilt axis. (b) Small-angle twist boundary in a primitive cubic lattice viewed 
along the [loo] twist axis. The open circles represent atoms just above the boundary 
mid lane, and the solid circles are atoms just below. Arrows indicate screw dislocations 
in tRe interface structure. From Read [6]. 

superimposed array of dislocations that accommodates this difference in misorienta- 
tion angle. In this example, the Burgers vectors of the dislocations are translation 
vectors of the DSC-lattice (see Fig. B.4a) which is associated with the bicrystal 
containing the singular interfa~e.~ In Fig. B.5, interfaces of small crystal misorien- 
tation are vicinal to corresponding singular “interfaces” possessing zero degrees of 
crystal misorientation. In these instances, the perfect crystal is the limiting case of 
a bicrystal with zero crystal misorientation. 

A general interface is far from any singular interface with respect to its macro- 
scopic geometric degrees of freedom. It is therefore far from any local energy min- 
imum. General interfaces tend to have high-index planes of the adjoining crystal 
or crystals running parallel to the interface and possess either very long-period or 
quasi-periodic structures. 

B.4 HOMOPHASE A N D  HETEROPHASE INTERFACES 

Interfaces may also be classified broadly into homophase interfaces and heterophase 
interfaces. A homophase interface separates two regions of the same phase, whereas 
a heterophase interface separates two dissimilar phases. Crystal/vapor and crys- 
tal/liquid interfaces are heterophase interfaces. Crystal/crystal interfaces can be 
either homophase or heterophase. Examples of crystal/crystal homophase interfaces 
are illustrated in Figs. B.2, B.4, and B.5. Examples of heterophase crystal/crystal 
interfaces are shown in Figs. B.6 and B.7. Figure B.6a shows an interface between 
f.c.c. and h.c.p. crystals where the small mismatch between close-packed { lll}fcc 

4A full description of the DSC-lattice is given by Sutton and Balluffi [2]. Note that the DSC-lattice 
of a single crystal is the crystal lattice itself. 
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I+ j! 
I: 

Figure B.6: (a) Singular heterophase interface between an f.c.c. and h.c.p. structures 
viewed along the [ l l O ] f c c .  Close-packed {lll}fcc and {OOOl}~,, planes match along the 
interface. The grid is the DSC-lattice corresponding to the bicrystal. (b) Same as (a) 
except that the interface is now rotated into a slightly different inclination about an axis 
normal to the paper. This interface has adopted a stepped structure and is vicinal to the 
one in (a). From Interfaces in Crystalline Materials by A.P. Sutton and R.W. Balluffi (1995). Reprinted 

by permission of Oxford University Press (21. 

and {OOOl}~,, planes is accommodated by elastic strains. If the interface plane 
is rotated slightly around an axis normal to  the plane of the paper while keeping 
the crystal misorientation constant, the new interfacial structure will consist of the 
original interface containing an array of superimposed line defects of the type shown 
in Fig. B.6b. These line defects possess both ledge and dislocation character. Such 
an interface is therefore vicinal to the singular interface in Fig. B.6a. 

B.5 GRAIN BOUNDARIES 

Homophase crystal/crystal interfaces are often called grain boundaries. It is custom- 
ary to classify such boundaries as either small-angle grain boundaries or large-angle 
grain boundaries. 

Small-angle grain boundaries, which are interfaces for which the angle of crystal 
misorientation is less than about 15", consist of arrays of discrete dislocations as 
illustrated in Fig. B.5. The dislocations possess Burgers vectors that are translation 
vectors of the crystal lattice, and the dislocations accommodate the crystal misori- 
entations of the boundaries. These boundaries are vicinal to corresponding singular 
boundaries possessing no crystal misorientation in the fictive perfect-crystal lattice. 
As the crystal misorientation increases, more dislocations must be added to com- 
pensate for the increased misorientation, and the dislocation spacings therefore 
decrease. When the misorientation reaches about 15", the dislocation spacing be- 
comes sufficiently small so that the cores of the dislocations begin to overlap. At 
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P 

a a -  

Figure B.7: Construction of a heterophase interface. (a) Reference crystal taken to be 
the a phase. (b) Transformation of the region on the right of the desired interface into the 
p phase while maintaining coherence. ( c )  Elimination of the long-range stresses present in 
(b) by the introduction of an array of dislocations in the C Y / ~  interface. 

this point, the boundaries become, in essence, continuous slabs of dislocation core 
material that can no longer be described as arrays of discrete lattice dislocations. 
Boundaries of this misorientation, or larger, are termed large-angle boundaries. 

Grain boundaries can also be classified as tilt boundaries, twist boundaries, and 
mixed boundaries. A tilt boundary’s plane is parallel to the rotation axis used 
to  define its crystal misorientation, as in Fig. B.4c. The crystals adjoining the 
boundary are related by a simple tilt around this axis. A twist boundary, as in 
Fig. B.54 is a boundary whose plane is perpendicular to the rotation axis. The 
two crystals adjoining the boundary are then related by a simple twist around this 
axis. All other types of boundaries are considered to be mixed. 

B.6 COHERENT, SEMICOHERENT, AND INCOHERENT INTERFACES 

All sharp crystal/crystal homophase and heterophase interfaces can be classified as 
coherent, semicoherent, and incoherent. The structural features of these interfaces 
can be revealed by constructing them using a series of operations which always 
starts with a reference structure. 

The construction of the heterophase interface between a and p phases in Fig. B.7c 
starts with a reference structure, which is taken to be the single crystal of Q phase 
in Fig. B.7a. The interface is to be located along the plane indicated by the dashed 
line. In the first operation, the portion of the Q crystal on the right of the desired 
interface plane is transformed into the ,B phase while maintaining registry along the 
interface as illustrated in Fig. B.7b. The resulting interface is coherent because the 
two crystals adjoining it are maintained in registry. Long-range coherency stresses 
are required to maintain the interface registry. 

In a further operation, these stresses can be eliminated by introducing an array 
of dislocations in the interface as in Fig. B.7c. The resulting interface consists of 
patches of coherent interface separated by dislocations. The cuts and displacements 
necessary to introduce the dislocations destroy the overall coherence of the inter- 
face, which is therefore considered to be semicoherent with respect to  the reference 
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structure in Fig. B.7a. Because of the good atomic matching across coherent in- 
terfaces, the energetic contribution from mismatch is generally small. The energy 
of semicoherent interfaces is minimized when most of interfacial area consists of 
patches of the coherent reference structure. This reduces the core width of the 
line defects that delineate the coherent regions of the interface, and the result is 
well-defined fit-misfit structures containing line defects with localized cores. 

Semicoherent interfaces can also be constructed by employing a bicrystal con- 
taining a periodic interface as a reference structure. The initial reference structure 
is the bicrystal in Fig. B.4a. A new boundary of increased misorientation can be 
produced by increasing the misorientation angle while maintaining coherence every- 
where as in Fig. B.4b. Long-range stresses are required to maintain coherency, but 
they may again be relieved by introducing an array of dislocations as in Fig. B.4c. 
The result is a semicoherent interface consisting of patches of the coherent interface 
of the reference structure separated by dislocations that have destroyed the overall 
boundary coherence. In this example, the Burgers vectors of the dislocations are 
translation vectors of the DSC-lattice of the reference bicrystal. 

The coherence attributed to  a semicoherent interface is the coherence of the ref- 
erence structure, which in different situations can be either a single crystal or a 
bicrystal containing a periodic interface. (A single crystal is the limiting case of a 
bicrystal containing an interface of zero misorientation.) The reference structure 
must be specified in any meaningful description of interface coherence. The Burgers 
vectors of the dislocations in a semicoherent interface will generally be translation 
vectors of the DSC-lattice of the reference structure. The bicrystal reference struc- 
tures, which are of most physical relevance, will generally contain interfaces of 
relatively low energy. 

It is often useful to  describe the dislocation content of coherent and semicoherent 
interfaces in terms of another framework which employs coherency dislocations and 
anticoherency dislocations. The basic idea is illustrated in Fig. B.8, which shows 
the same two boundaries shown previously in Fig. B.7b and c. The coherency 
dislocations possess a stress field equivalent to the long-range coherency stresses 
associated with the coherent interface. They are not “real” dislocations in the 

B 
a -  - B 

a -  - 

Figure B.8: (a) Same structure as in Fig. B.7b. However, the presence of an array 
of coherency dislocations is indicated. (b) Same structure as in Fig. B.7c. The coherency 
dislocations shown in (a) are again present (in a more localized distribution), and an array 
of anticoherency dislocations has been added. From Interfaces in Crystalline Materials, by A.P. 

Sutton and R.W.  Balluffi (1995). Reprinted by permission of Oxford University Press [ Z ] .  
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conventional s ense they  are line defects, but they do not contain bad material 
in their cores. However, they serve as constructs to model the displacement and 
stress fields associated with the coherent interface. These long-range stresses are 
then eliminated by adding anticoherency dislocations as shown in Fig. B.8b. These 
dislocations destroy the boundary coherence, and the result is the same semicoher- 
ent interface free of long-range stress as in Fig. B.7c. However, the interface is now 
considered to contain two sets of dislocations-coherency dislocations and antico- 
herency dislocations-whose long-range stress fields (and Burgers vectors) cancel. 
Coherency and anticoherency dislocations are often useful in modeling interfaces 
in cases where there is incomplete cancellation of the coherency and anticoherency 
dislocations and residual long-range stresses are therefore present. 

Finally, incoherent interfaces can be regarded as the limiting case of semicoherent 
interfaces for which the density of dislocations is so great that their cores overlap 
and that essentially all of the coherence characteristic of the reference structure has 
been destroyed. The cores of incoherent interfaces are therefore continuous slabs of 
bad material, and consequently the interfaces lack long-range order. 

8.7 CLASSIFICATION OF LINE DEFECTS IN CRYSTAL/CRYSTAL 
I N T E R FAC ES 

The line defects that can exist in crystal/crystal interfaces can be classified as pure 
dislocations, dislocation/ledges (i.e. , line defects with both dislocation and ledge 
character), and pure ledges. Examples of pure dislocations are shown in Figs. B.4c 
and B.7c. In these cases, there is no ledge in the boundary at the dislocation. An 
example of a dislocation/ledge is shown in Fig. B.6b1 and a pure ledge without any 
dislocation content is shown in Fig. B.9. 

The line defects which are either dislocations or dislocation/ledges may be fur- 
ther classified as intrinsic or extrinsic. So far, only intrinsic line defects have been 
considered. These line defects are arranged in uniform arrays and accommodate de- 
viations of interface misorientation and/or inclination from certain reference struc- 
tures. As part of the minimum-energy equilibrium structure of the interfaces, they 
are termed intrinsic. On the other hand, similar line defects can be present in 
interfaces in a more or less random fashion, so that their Burgers vectors cancel. In 

Figure B.9: Example of a pure ledge in the boundary shown previously in Fig. B.4a. 
The ledge has zero dislocation character. A detailed discussion of the topological basis of 
these different types of line defects is given by Sutton and Balluffi [2]. 



600 APPENDIX B: STRUCTURE OF CRYSTALLINE INTERFACES 

such cases they do not systematically accommodate deviations from any reference 
structures. Such defects are not part of the minimum-energy equilibrium structure 
of the interface. They are in a sense “extra” line defects and are therefore termed 
extrinsic. Such line defects could, for example, be present in an interface as a result 
of the impingement of lattice dislocations from one of the adjoining crystals during 
plastic deformation or annealing. 
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APPENDIX C 

CAPILLARITY AND MATHEMATICS OF 

SPACE CURVES AND INTERFACES 

Reviews of the theory of capillarity and its application to solid-state processes 
have been written by Herring [l], Mullins [2], and Blakely [3]. Adam wrote a 
classic text on fluid surfaces [4]. For modern mathematical treatments of capillarity, 
consult Finn’s book [ 5 ] .  For a mathematical treatment of curvature and anisotropic 
interfaces written for materials scientists, see Taylor’s review article [6] .l There 
are useful analogies between interfaces and phase diagrams which are particularly 
instructive for materials scientists [7]. Anybody with a milligram of curiosity and 
a sense of humor must read C.V. Boys’s book on soap bubbles; although written 
for children, the book is full of usefui insights about the nature of interfaces [8]. 

C . l  SPECIFICATION OF SPACE CURVES AND INTERFACES 

C . l . l  Space Curves 

A space curve is a trajectory of points in three dimensions and can be described 
mathematically in terms of a position vector ? that  depends on a parameter u (see 

‘For convenience in this appendix, we refer to all interfaces in materials, including free surfaces 
and internal interfaces, simply as interfaces. 

Kinetics of Materials. By Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. 601 
Copyright @ 2005 John Wiley & Sons, Inc. 
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Z I  

Figure C.l:  Space curve 6(u) and unit tangent t^ at point P. 

Fig. C.1); for example, 
r'= ?(u) 

In Cartesian coordinates, u may be the parameter that specifies position in terms 
of coordinates z, y, and z ,  giving the functional form 

r'= m.)1 = W u ) , y ( u ) ,  .(.)I (C .4  

The unit tangent vector at a point P on the curve F(u) is defined as 

dr'(u) t = -  
ds 

where ds is an element of arc length of the curve r'(u). It is often convenient to 
specify the curve using the arc length, s, as a parameter, r' = r ' (s).  Because this 
vector is between points infinitesimally separated on the space curve at any point, 
it is tangent to the curve at that point, consistent with Eq. C.3. 

The curvature of a space curve, K" ,  is equal to  the rate at which the tangent 
vector changes as the curve is traversed and is therefore given by the relation 

dt* 
ds 
- = Kcfi 

where f i  is called the principal normal vector. It is a unit vector normal to the curve 
"in the plane of the curve." For the time being, K" is considered to be a positive 
quantity, and thus fi points toward the center of curvature of the curve. The radius 
of curvature R" is the reciprocal of K ~ ,  which may be interpreted as the radius of a 
circle (the osculating circle) constructed so that it touches the curve at P and has 
the same unit tangent vector and derivative dt*/ds as the curve at P (i.e., a circle 
that most closely matches the curve in the immediate neighborhood of P ) .  In two 
dimensions, for a plane curve described by the function y = y(z), the curvature is 
given by 

The minus sign in Eq. C.5 is a matter of convention; it can be either plus or minus, 
and one should always question or verify which convention is being used. 
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For the more general case of a curve in three dimensions, note that 

ds ds 

so that, by taking the derivative of Eq. C.6 with respect to  arc length, 

0 
t ^ . - =  dt^( s) 

ds 

This defines a new vector, it" = dt^/ds, which is perpendicular to t̂  and has magni- 
tude 

where the sign again depends on the convention used (e.g., the curvature vector 
may be considered to be positive if it points in the same direction as the curve is 
bending). Note that Eq. C.5 can be obtained by using Eq. (2.8 and the identity 
ds2 = dz2 + dy2 + dz2.  

C. 1.2 Interfaces 

Interfaces are two-dimensional objects embedded in three dimensions. There is, 
therefore, one relationship between the three space variables, (z1,x2,  5 3 ) .  If that 
relation is F ,  then 

F(z1,22,23)  = constant (C.9) 

expresses an interface (sometimes called a level set) for any chosen constant. A 
vector V F ,  which is normal to the interface, can be obtained by considering nearby 
level sets (i.e., two slightly different constants). The unit normal must be 

(C.10) 

where the derivative is evaluated at a particular point P and on a particular inter- 
face (a given constant in Eq. C.9). 

There are two different varieties of the curvature of an interface which are conve- 
nient to use in capillarity studies: mean curvature, denoted by K ,  and the weighted 
mean curvature, denoted by ts7. 

Mean Curvature of  an Interface. The mean curvature is simply the sum of the 
curvatures of two curves on the interface that intersect at right angles. Any two 
such curves, c1 and c2, can be obtained by the intersection of orthogonal planes with 
the interface, as illustrated in Fig. C.2. The planes are chosen so that the interface 
normal A lies completely in each plane; the line of intersection between the planes 
is parallel to A (a crystallographer might think of A as a zone axis). There are an 
infinite number of choices for these planes, but all are related by rotation around 
the axis A. 

Let the coordinate system have z3 parallel to A, z1 normal to one plane, and 
z2 normal to the other (a local orthonormal coordinate system). Then 5 3  can be 
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V 
Figure C.2: 
interface normal f i .  

Orthogonal planes intersecting interface with plane intersection parallel to  

expanded in the Taylor series,' 

(C.11) 
a 2  C 

2 2 
x3 = f ( X l ,  2 2 )  = -21 + b X l X 2  + -x; + .  . . 

There is one particular rotation of the planes about 23 where the cross term van- 
ishes, 

((2.12) rc.1-2 K Z - 2  

2 2 f (22,23) = + -22  f ' ' ' 

where K I  and ~2 are the eigenvalues of a Hessian matrix and 21 and 22 are the 
axes of the principal coordinate system. Choosing the sum of the eigenvalues is 
useful because that sum is independent of the rotation and therefore is an invariant 
definition of the curvature, 

(C.13) 

Equations (2.12 and C.13 correspond to the curvatures along space curves in inde- 
pendent directions when the derivative in Eq. C.8 is applied. The curvature formula 
corresponding to the choice of coordinates in Eq. (2.11 is 

1 1  
rc. = rc.1 + ~2 = - + - Rf: R.!j for any c1 I c2 at P 

where 

K =  (1 + f3f l l  - 2flfZf12 + (1 + fw2 

(1 + fi" + f33/'  
((3.14) 

(C.15) 

2We assume that the interface is twice differentiable. Very often, this is not  the case for mate- 
rial interfaces, and in this case, anisotropy and the anisotropic equivalent to curvature must be 
considered [6]. 
3The expansion in the local coordinate system is 

( ;:; ;;: ) ' [ :; ] + 

f("1, "2) = f(0,O) + [ ;; ] . ["l, 4 + - 2 ["l, "21 
1 

The first two terms vanish because of the particular choice of local coordinate system. In the 
principal coordinate system, the Hessian (i.e, the matrix of second derivatives) is diagonal. 
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For the particular case of an axisymmetric surface r ( z ) ,  the curvature is the sum 
of the radius of the osculating circle (in the plane shared by the surface normal) 
and the curvature of r ( z )  in two dimensions: 

(C.16) 

The convention that a convex interface of a solid body has positive mean curvature 
and a concave interface has negative mean curvature is adopted throughout this 
book (see Section 14.1). A table of surface formulae is provided in Table C. l .  

As will become evident below, mean interface curvature is useful when the in- 
terfacial energy is isotropic (not dependent on interface inclination). 

Weighted Mean Curvature o f  an Interface. The weighted mean curvature, K ~ ,  has 
exactly the same geometrical properties as the mean curvature except that it is 
weighted by the possibly orientation-dependent magnitude of the interfacial tension. 
I t  is particularly useful for addressing capillarity problems when the interfacial en- 
ergy is anisotropic, that is, dependent upon the interface orientation (Section C.3). 

C.2 ISOTROPIC INTERFACES AND MEAN CURVATURE 

The curvature of an interface generally introduces a driving force for mass transport. 
Because this quantity relates to the potential for an interface to move in such a way 
that interfacial energy decreases, the curvature is very important when considering 
how the shape or morphology of a material changes. As seen in Chapters 3, 14, 15, 
and 16, it is the essential driving force for many types of morphological evolution, 
such as surface smoothing, particle coarsening, grain growth, and sintering. 

C.2.1 Implications of Mean Curvature 

There are several geometrical aspects of interface mean curvature that are particu- 
larly important when the interfacial energy is isotropic and the curvature becomes a 
driving force for mass transport. We present several equivalent cursory statements 
regarding mean curvature that have rigorous counterparts in differential geome- 
try [GI. 

The mean curvature is the local rate of interface area change with a local 
addition of ~ o l u m e . ~  This is perhaps the most important aspect of curvature, 
especially when combined with y, which is the work required to create an 
interface per unit area, A. Imagine that in a pure material the addition of 
a small volume makes an interface develop a localized small “bump.” The 
statement above implies that K = AA/AV in the limit of small volumes; 
therefore, the work to create the bump is y A A  = ~ K A V ,  where y is the 
interfacial energy per unit area (see Eq. 3.73). Equating this work to the 
work done by the system P AV, where P is the net pressure on the interface 

4See Exercise 3.11 for a demonstration of this. 
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Table C.l: Geometrical Formulae in Various Surface Representations 
Level Set Surfaces: Tangent Plane, Surface Normal, and Curvature 

F ( x ,  y,  z )  = const 

Tangent Plane ( 2  = (z, y, z ) ,  f =  ( E ,  r ) ,  C)) 

Parametric Surfaces: Tangent Plane, Surface Normal, and Curvature 
2 = (P(% v), d u ,  v), 4% v)) or x = P(% V ) Y  = 4% V)Z = 4% v) 

Tangent Plane ( 2  = (z, y, z ) ,  f =  (5, r ) ,  C)) 
d 2  dZ 

du dv 
( f - . ' ) . ( -  x - ) d e t  

Graph Surfaces: Tangent Plane, Surface Normal, and Curvature 

2 = f (x, Y) 

Tangent Plane (2 = (a, y, z ) ,  f =  (5, r ) ,  5)) 

Normal 
5 - x  1 7 - Y  c-z 2 a - - 1  

aY 

Mean Curvature 
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due to  its curvature, establishes the Gibbs-Thomson equation, 

P = Y K  = Y (f + 4) (C.17) 

The quantity Y K  may be regarded as the local potential due to the interface 
curvature to  add a chemical species per unit volume of the species. On inter- 
faces where the mean curvature is constant everywhere (such as on a sphere 
where K = 2/RC, on a cylinder where K = l / R C ,  and on a plane and a catenoid 
where K = 0), this potential is uniform and thus these are equilibrium inter- 
faces. There is an infinite number of equilibrium interfaces; a three-parameter 
family of minimal interfaces has been described [9]. 

0 Of all local motions occurring with the velocity iJ(3 of an interface which 
pass the same amount of volume from one side to the other, the motion that 
is normal to the interface with magnitude proportional to the curvature [i.e., 
v'(4 cx ~ f i ] ,  increases the area the most quickly. This provides a variational 
statement which is useful for calculating the evolution of interfaces of nonuni- 
form c ~ r v a t u r e . ~  

0 The mean curvature is the interface divergence of the normal vectors. The 
interface divergence is the divergence in two dimensions, calculated with the 
local coordinates in the interface as in Eq. C . l l  (see Fig. C.3a).  It can be 
tedious to calculate using the interface divergence as an operator because of 
its explicit dependence on the interface geometry. The divergence operator 
indicates how rapidly vectors in a vector field in the bulk vary through the 
volume; the interface divergence of the interface normals indicates how rapidly 
the normals are varying along the interface. On a flat interface, the normals 
are all the same and the interface divergence is zero. On an interface that has 
large curvature, the normals vary rapidly, so the interface divergence is large. 

Figure C.3: The mean curvature of an interface is related to (a) the interface divergence 
of the interface normal vectors and (b) the divergence of the normal vectors to the level sets. 

0 The mean curvature is the divergence of the normals to the level sets. This 
is usually a much easier calculation than the one employing the interface 
divergence. The interface is represented as a level set of F ( x ~ , z ~ , Q )  as in 
Eq. C.9. The normals to the level sets are given by Eq. (3.10 and are defined 
on all ( 2 1 ,  2 2 ,  zs)(see Fig. C.3b). The mean curvature is then 

(C.18) 

5This particular statement lacks rigor in the comparison between interfaces with the same amount 
of volume. A more precise statement involves those interfaces where the integral of the squared 
difference are equivalent. This is called the L2 n o r m  on  functions. 
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This extension to all of space is used in the derivation of the Cahn-Hoffman 
c-vectors-a convenient way to  study capillarity when the interfacial energy 
depends on the inclination, A [7, 101. 

Curvature relates to the local change in interface area when an interface moves. 
The energy change per unit volume swept out by the interface is equal to the product 
of n and the interfacial energy per unit area y. Normally, for fluids, y is independent 
of the interface inclination A; in this case, the interface is isotropic. For example, 
a soap bubble has isotropic interface tension. If perturbed, a floating individual 
soap bubble will quickly re-establish its equilibrium form-a sphere of fixed volume. 
Such a soap bubble will also shrink slowly-the gas will diffuse out of the bubble 
because of a pressure difference across the soap film ( A P  = yn = 2y/RC). Thus, 
there are two kinds of equilibrium being established: at short times, the interface 
changes so that its curvature becomes uniform; at long times, that same curvature 
drives gas through the interface and the bubble slowly shrinks. 

A fixed amount of condensed phase enclosed by an interface will undergo essen- 
tially the same process, except that the time scales may differ greatly. For solid 
phases, the interfaces will reduce gradients in curvature by diffusional processes 
such as interface diffusion, crystal diffusion, and vapor transport. At similar time 
scales (in the case of crystal diffusion) interfaces will move because atoms will expe- 
rience differences in diffusion potential across an interface arising from differences 
in the curvature according to Eq. 3.76. 

C.3 ANISOTROPIC INTERFACES AND WEIGHTED MEAN CURVATURE 

C.3.1 

The y-plot and a variety of geometric constructions based upon it are highly useful 
in the treatment of anisotropic interfaces (see Section 14.2.1). Several important 
examples of these constructions are illustrated in Fig. C.4. The y-plot in Fig. C.4a 
represents the energies of macroscopically flat interfaces of all possible inclinations. 
However, some of these interfaces are unstable with respect to breakup into a 
faceted structure. This may be shown by constructing the reciprocal y-plot shown 
in Fig. C.4b. Here, inclinations of relatively high energy appear in the depressions, 
and the common-tangent construction on the plot indicates that the regions of 
inclination between segments such as between B and C are unstable against the 
breakdown of the surface into facets with inclinations corresponding to the points 
of common tangency at B and C [ l l ] .  As discussed by Cahn and Carter, there is a 
close resemblance between this construction and the common-tangent construction 
applied to free-energy curves of binary systems (shown in Fig. 17.6), which reveals 
the region in composition space where the single phases are unstable with respect 
to  the formation of two phases with compositions corresponding to the points of 
common tangency [12]. Because the reciprocal y-plot of a spherical y-plot that 
intersects the origin at one point is a plane, the common-tangent construction on 
the reciprocal y-plot in Fig. C.4b is equivalent to  the tangent-sphere construction on 
the y-plot shown in Fig. C.4c. Those inclinations for which a tangent sphere with 
one point a t  the origin lies completely within a y-plot are stable. The tangent- 
sphere construction in Fig. C.4c therefore shows that the regions of inclination, 
such as between A and B, are stable, whereas regions such as between B and C 

Geometric Constructions for Anisotropic Surface Energies 
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c D c D 

Figure C.4: Constructions in two dimensions used to determine equilibrium shapes of 
anisotropic surfaces. (a) Plot of y(A) as a function of A for macroscopically flat nonfaceted 
surfaces, some of which are unstable. (b) Plot of l/y(A) as a function of A. Plot is reciprocal 
to the plot in (a). ( c )  Same as (a) but including tangent circles (dashed). (d) Plot of y(A) 
as a function of A for macroscopically flat but stable surfaces. Segments such as between A 
and B are smooth interfaces inherited from the stable regions of the plots in (a) and (b). 
Segments such as between B and C are faceted with the facets corresponding to the surface 
inclinations at their endpoints. The segment between B and C is circular and coincides with 
the portion of the tangent circle shown between B and C in (c). ( e )  Wulff shape obtained 
by Wulff construction applied to the y-plot in (a). ( f )  Plot of capillarity vector f ( A )  as a 
function of A. 
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are unstable, in agreement with the results of the common-tangent construction in 
Fig. C.4b. Surfaces in the unstable region between B and C delineated in Figs. C.4b 
and c can reduce their energies by breaking down into stable structures consisting 
of facets with inclinations corresponding to those at B and C. The energies of these 
faceted structures will fall on the tangent circles shown in Fig. C.4c, and the y-plot 
for stable surfaces of minimum energy at all inclinations will then appear as dashed 
tangent in Fig. C.4d. Here, the solid curve segments represent smooth nonfaceted 
surfaces, whereas the dashed segments represent faceted surfaces. 

Another topic of interest is the shape that an isolated body of constant volume 
with an anisotropic surface energy will adopt to minimize its total interfacial energy. 
This can be resolved by means of the Wulff construction shown in Fig. C.4e. Here, 
a line has been drawn at each point on the y-plot which is perpendicular to the 
A corresponding to that point. The interior envelope of these lines is then the 
shape of minimum energy (i.e., the Wulff shape). The Wulff shape for the y-plot in 
Fig. C.4a contains sharp edges and contains only inclinations that have been shown 
to be stable in Fig. C.4b and c. 

Note that when the interfacial energy is isotropic and the y-plot is a sphere, the 
Wulff shape will also be a sphere. However, if the y-plot possesses deep depressions 
or cusps at certain inclinations such as in Fig. C.4a, the planes normal to the radii 
of the plot at these inclinations will tend to dominate the inner envelope, and the 
Wulff shape will be faceted. In such cases, the system is able to minimize its total 
interfacial energy by selecting patches of interface of particularly low energy even 
though the total interfacial area increases. 

Another useful construct in the treatment of anisotropic interfaces is the capil- 
larity vector, ((A) [13]. This vector has the properties 

((A). A = y(A) 

A * &(a) = 0 

It can also be expressed in the form 

(C.19) 

(C.20) 

where y(A) = IAly(A) is the surface energy of the surface of area lAl and inclination 
f i  = i//I/i [6, 141. A gplot can also be produced by making a polar plot of f ( f i )  
as a function of A. According to Eqs. C.19, the projection of ((A) on A must be 
equal to y( f i ) ,  and the inclination of the surface of the plot at {(A) must be normal 
to  A. The $plot corresponding to the y-plot in Fig. C.4a is shown in Fig. C.4f. 
It has the same form as the Wulff shape, as may be seen by comparing Figs. C.4e 
and f. The swallowtail-shaped “ears” at the four corners of the plot correspond to 
nonequilibrium inclinations of the y-plot in Fig. C.4a and may be ignored because 
they are not part of the Wulff shape. 

C.3.2 

The capillarity vector, {(A), plays the same role as the interfacial energy multiplied 
by A [i.e., y( f i ) f i ] .  Just as the mean curvature was related to derivatives on the vector 

Implications of Weighted Mean Curvature 
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field A, the weighted mean curvature is related to  derivatives on ( [ 6 ] .  We now make 
cursory statements about K-,,  along the same lines as our previous remarks about 
K .  These statements do not require the interface to  be everywhere differentiable. 

The weighted mean curvature is the local rate of interfacial energy change with 
a local addition of volume. This establishes the connection to the work, 6W, 
to  pass a small volume of material, 6V, through an interface. 6W/6V = ~ ~ ( 3 ,  
in the limit of small volumes. 

Of all local motions, v ( 3 ,  of an interface that pass the same amount of volume 
from one side to the other, the motion that is normal to the interface with 
magnitude proportional to the weighted mean curvature, v ( 3  0: I C - , ~ ,  increases 
the interfacial energy the fastest. However, “fastest” depends on how distance 
is measured. How this distance metric alters the variational principles that 
generate the kinetic equations is discussed elsewhere [14]. 

The weighted mean curvature is the interface divergence of the f evaluated 
on  the unit sphere. The interface divergence is defined within the interface, 
and if the interface is not differentiable, subgradients must be used. The 
convex portion of ( i s  equivalent to the the Wulff shape, so the interface 
divergence is operating from one interface onto another. This form can get 
very complicated. 

The weighted mean curvature is the divergence of ( ( s e e  Eq. 14.40). This is a 
simple form. (is a vector defined on all space, so there is no confusion in the 
application: K-, = V . [. + 

C.4 EQUILIBRIUM AT A CURVED INTERFACE 

C.4.1 Gibbs-Thomson Equation 

Consider a two-phase system of fixed total volume, with constant T and p (an open 
system with respect to  matter flow), as illustrated in Fig. (3.5. Under these condi- 
tions, the function a =  E - T S  - p1N1 - p2N2 is the appropriate thermodynamic 
potential. For any small variation at equilibrium, such as an infinitesimal variation 

Figure C.5: 
a/@ interface. 

An open isothermal system that allows for reversible motion of a curved 
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dX in position of the Q/,8 interface, d R  = 0. The R function is appropriate for such 
changes at an interface because, in general, the phases involved are so extensive 
relative to the volume of the interfacial region that they behave essentially like 
chemical reservoirs. 

For the variation being considered, 

d R  = -Pa dV" - PP d V P  + y d A  = 0 (C.21) 

Since the total volume is constant, d V a  = -dVP. For an interface of area A 
moving a distance dX, as illustrated in Fig. C.5, d V @  = AdX and the interfacial 
area change according to Section C.2.1 is d A  = K d V ,  where d V  = dVP.  So the 
free-energy change is 

d R  = Pa d V P  - P" d V P y r ; d V P  = 0 (C.22) 

or 
PP - P" = T K  = y(K1 + Kz)  (C.23) 

Equation C.23 is the form of the Gibbs-Thomson equation introduced in Eq. C.17. 
It is a conditionfor mechanical equilibrium in a two-phase system with a curved 
interface. The phase located on the side of the interface toward its center of cur- 
vature (e.g. the ,8 phase in Fig. C.5), has the higher pressure. Note also that for a 
flat interface, Eq. C.23 gives P" = PP, as expected. 

C.4.2 

Consider a two-component, two-phase fluid system. Let ,8 be a spherical fluid 
droplet of radius r surrounded by a,  the second fluid phase. The equilibrium 
conditions are 

Equilibrium Solubilities of Small Dispersed-Phase Particles 

((2.24) 

To find the equilibrium concentration of component B in Q as a function of r ,  the 
change of p2 with r is considered first. Let X e q  be the equilibrium solubility of 
component B in Q for a system with a planar a / @  interface. Then 

p s ( P " , X e q )  = &P") (C.25) 

(C.26) 

where Eq. (2.25 holds for a planar interface, Eq. C.26 holds for a curved interface, 
and X is to be determined. The variation of p i  with P is given by the Gibbs- 
Duhem equation, 

vP d P  = Sp d T  + N$ d p A  + Ni d p B  (C.27) 
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By assuming that p is pure component B (i.e., N i  = 0), at constant temperature 
Eq. C.27 yields 

f l ~ d P = d p ~ g  or *I = f l ~  (C.28) 

where f l ~  is the atomic volume in the /3 phase. The change of chemical potential 
is then 

Tconstant 

Assuming that p is incompressible and that f l ~  is independent of P ,  

For a spherical particle of radius r ,  the chemical potential difference is 

2flBT &(PO) -&(Pa)  = - r 

(C.30) 

(C.31) 

Therefore, in a system with a small p particle that is rich in component B ,  the 
value of pz characteristic of equilibrium is raised compared with a system in which 
the mean curvature of the (u/P interface is zero. 

This finding is illustrated on a free energy vs. composition diagram in Fig. C.6. 
The free-energy "curve" for the /3 phase is a vertical line at X = 1, because the /3 
phase has been assumed to be pure component B. Note especially that the change 
in pz with P (or r )  causes a change in the equilibrium solubility of component B 
in a.  

If the temperature dependence of the free-energy curves is considered in addition 
to the p particle size, a temperature-composition diagram for the system can be 
plotted. This is illustrated in Fig. C.7, which shows clearly the way in which the 
solubility of component B in (u increases with decreasing p particle size. 

0 1 

Atomic fraction B, X 

> P") 

= P") 

Figure C.6: 
with pressure in the p phase. 

Free energy vs. mole fraction diagram, showing a shift of chemical potentials 



614 APPENDIX c, CAPILLARITY AND MATHEMATICS OF SPACE CURVES AND INTERFACES 

I I I  
I I  

I I 1  

, ,  
0 x e q  x 1 

Atomic fraction B, X 

Figure C.7: Temperature vs. mole fraction diagram, illustrating shift of an CY/P 
coexistence curve with the radius of the p phase and the resulting change of solubility 
of component B in a. 

The effect of p particle size on the solubility of component B in cr can be quan- 
tified. For the cr phase, 

Substituting Eqs. C.25 and (2.26 into Eq. (3.32 gives 

By combining Eqs. C.30 and C.33, we find that 

(C.32) 

(C.33) 

(C.34) 

For a dilute solution (in which the activity coefficient is independent of concentra- 
tion), 

The final result for the shift of equilibrium solubility with p particle size is 

kT 

((3.35) 

((3.36) 

Equivalently, 

which is valid subject to all of our assumptions. Note in Eqs. C.36 and C.37 that 
X > Xeq ,  so that the solubility is always enhanced as the curvature of the p particle 
increases, or as the p particle size decreases. 

X = Xeqe"BT(KlfKZ)/(kT) (C.37) 
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The main assumptions in the preceding derivation are: 

0 The phase p is pure component B. 

The phase ,Ll is incompressible. 

0 The matrix phase CY is a dilute solution. 

Each of these assumptions has been made only for the sake of algebraic simplicity. 
In principle, the same derivation could be repeated with fewer assumptions, but 
the result would be more complicated. 
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accumulation, 78 
and divergence theorem, 12 
of conserved and nonconserved quantities, 12 

activated processes, 145 
activation energy 

diffusion in amorphous metals, 233 
diffusion in network glasses, 241 
diffusion of interstitial solute atoms, 170 
dislocation diffusion, 210 
for particle migration, 148, 154 
grain-boundary diffusion, 210, 221 
grain-boundary migration, 309, 311, 316, 329 
self-diffusion by vacancy mechanism, 171 
self-diffusion in ionic materials, 179-180, 182 
surface diffusion, 210, 213 

activation volume, 159, 233 
activity coefficient, 24, 47, 237 
Ag, 179, 222, 399, 406, 556 
AgBr, 168, 177, 179 
Al. 212. 222. 271. 315. 317. 556. 593 , / , , ,  
A1203, ‘349 
A1-Ag, 320 
Al-Cu, 556, 560-561 
Al-Zn,’ 448,’ 451, 454 
alkali halides, 177 
Allen-Cahn equation, 441 

critical wavelength, 444 
numerical simulations, 441 

amorphous glasses, 232 
amorphous metallic alloys, 232 
anelasticity, 183 

analog model for, 186 
Debye peak, 189 
dissipation of energy, 185 
due to  dislocations, 266 
due to  reorientation of anisotropic point 

frequency dependence of logarithmic 

general formulation of, 184 
hysteresis, 185 
internal friction, 186 
logarithmic decrement, 186 
relaxed vs. unrelaxed compliances, 184 
standard anelastic solid, 187 
stress-strain relationships, 184 
torsion pendulum, 186 
use in determination of diffusivities, 189 
vibrating-string model for oscillating 

diffusion and conduction, 88, 95, 197 
interfacial energy, 346, 608 
of forces and fluxes, 94 
tensor formulation of, 14 
thermal conductivity, 88 

motion of, 312 

average displacement due t o  a series of 
jumps, 154 

barrier to, 146 
correlated, 158 
mean-square displacement due to  series of 

jumps, 154 
random walks and diffusion, 156 
rate of 

defects, 183 

decrement, 188 

dislocation segment, 266 
anisotropy, 88, 610 

antiphase boundaries, 427, 442, 445 

atom jumping 

activation energy, 148 
activation volume, 159 

atomic vibrational “attempt” frequency, 

Boltzmann-Arrhenius factor, 149 
149, 191 

effect of pressure on, 159 
isotope effect, 174 
many-body model, 149 
one-particle model with parabolic 

potential-energy wells, 148 
one-particle model with square 

potential-energy wells, 146 

atomic volume, definition of, 588 

Au-Ni, 448 
averaging, 4 
bad material, 209 
Bessel functions, 110, 271 
Bitter-Crum theorem, 471 
boundary grooving at  surfaces, 342, 357, 379 
brass, p, 424, 450 
Brownian motion, 243 
C, 167, 170, 192, 206, 580 
CaC12, 1.79 
Cahn-Hilllard equation, 440 

critical wavelength, 443 
kinetic wavelength, 443 
numerical simulations, 441 

thermally activated, 145 

Au, 116, 292, 317-319 

caDillaritv vector 
6 350 

capillarity, theory of, 601 
carbide. 579 
carbon tetrabromide, 516 
center of symmetry, 436 
chemical potential 

Co, 139, 556, 559 

coarse graining, 8 
coarsening of particle distribution, 363 

classical mean-field theory of, 363 
diffusion-limited, 365 

experimental observations, 369 
growth law for average particle size, 368 
matrix solubility as a function of particle 

mean-field approximation, 365 
particle size distribution function, 368 

during spinodal decomposition, 449 
effects of elastic particle/particle 

source-limited, 369 

stress-induced, 372 
volume fraction effects, 371 

Coble creep, 395, 398-399 
coherency strain energy 

effects on martensite formation, 573 
effects on nucleation, 470 
effects on spinodal, 445 

general expression for, 24 
in nonequilibrium system, 6 

CO-CU, 476-477 

radius, 365 

interactions, 372 

growth law for average particle size, 371 

coherent spinodal, 447 
complementary error function, erfc, 112 
concentration, definition of, 588 
conjugate forces and fluxes, 27 

for constrained components, 30 
for unconstrained components, 27 

constraint, network, 30 
continuum limit, 8 
convolution function, local, 9 
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COO, 181 
correlation during solute diffusion, 175 
correlation factor for diffusion 

Cottrell solute-atom atmospheres around 

coupling terms 

creep, 395 
critical nucleus, 461 
critical wavelength, 345, 443-444 
crystal growth, 290 

definition of, 158 
for vacancy diffusion mechanism, 171, 195 

dislocations, 64, 73, 482 

in linear kinetics, 29 

from liquid, 292, 351, 543 

from vapor, 286, 288, 351 
in solid matrix, 512, 518 

thermodynamic driving force, 286 
velocity, 294 

CsCl structure and ordering, 424 

Cu20, 168 

CU, 92, 165, 176-177, 191, 316, 320, 404, 556, 
559, 588 

Cu-A1, 320 
CU-CO, 558 
Cu-Ni-Mn, 516 
Cu-Zn, 143, 424, 588 

curvature 
dislocations, 257 
interfaces, 603 

formulae for, 606 
mean, 603 
weighted mean, 350, 605, 610 

CuA12, 560 

plane curves, 602 
space curves, 603 

delta function, 103-104 
detailed balance, 35 
diffuse-interface method, 437 
diffusion equation, 77 

analogy to heat equation, 99 
anisotropic, 3 
geometrical interpretation of, 81 
Green’s functions, 106 
linearization of, 78 
multi-component systems, 131 

concentration-dependent diffusivities, 139 
constant diffusivities, 135 
diffusion paths, 139 
diffusivity diagonalization method, 135 
general formulation, 131 

regularization of, 435 
scaling of, 81 
solutions of 

cylindrical, steady-state, 101 
estimate of penetration depth, 113 
finite slab, 107 
fundamental solutions for instantaneous 

localized sources, 103 
Laplace transforms, 110 
line source, 106 
Matano graphical method when 

D = D(c),  86 
one-dimensional, steady-state, 100 
point source, 100, 103 
separation-of-variables, 107, 322 
spherical, steady-state, 102 
superposition, 83, 103, 105 
time-dependent boundary conditions, 110 
variable diffusivity, steady-state, 102 
when D is a function of concentration, 85 
when D is a function of direction, 88 
when D is a function of time, 87 
when D is constant, 81 

sources of worked solutions, 99 
steady-state, 100 

time-dependent, 103 
variational interpretation of, 80 

diffusion potential, 32 
summary list of, 53 

diffusional creep, 59-60, 64. 395 
by climb of crystal dislocations, 411 
diffusion-limited, 398 
of three-dimensional polycrystals, 398 
as cause of grain rotation, 400 
boundary-sliding rate-controlled, 399, 409 
Coble type, 398 
deformation map for, 399 
Nabarro-Herring-type, 399 

hexagonal grains, 395 
role of grain-boundary sliding, 396 
strain due to diffusional transport, 398 
strain due to grain-boundary sliding, 398 

of wire with bamboo grain structure, 389, 

soura imi ted ,  399, 408 

dislocations, 222 
free surfaces, 223 
grain boundaries, 214 
spectrum, 209-210 

diffusion, by series of particle jumps 
average particle displacement, 154 
correlated particle walk, 158 
mean-square particle displacement, 154 
random particle walks, 156 
relation of D to the mean-square particle 

displacement, 158 

multi-component systems, 136 
time to approach, 114 

of two-dimensional polycrystal with 

392 

diffusion, along crystal imperfections 

diffusion, models for crystalline materials 

electrical charge neutrality, 177 
extrinsic self-diffusion in KC1, 179 
extrinsic vs. intrinsic behavior, 177, 180 
Frenkel pairs, 179 
intrinsic self-diffusion in KCI, 177 
intrinsic self-diffusion in silver halides, 179 
nonstoichiometry, 181 
Schottky defects, 177 

by interstitial mechanism, 167 
by interstitialcy mechanism, 165 
by ring mechanism, 164 
by vacancy mechanism, 164 
dissociative mechanism, 168 
kick-out mechanism, 168 
self-diffusion by interstitialcy mechanism, 

176. 
self-diffusion by vacancy mechanism, 31, 

42, 171 
self-interstitial defect diffusion by 

interstitialcy mechanism, 176 
solute-atom diffusion by interstitial 

mechanism, 167, 169 
solute-atom diffusion by vacancy 

mechanism, 31, 45, 164, 174 

229 

glasses, 240 

chains, 245 

ionic crystals, 177 

metal crystals 

diffusion, models for noncrystalline materials, 

B r o w x n  motion, 243 
diffusion of alkali ions in network oxide 

diffusion of densely entangled polymer 

effect of chain length, 247 
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diffusion of polymer chains in dilute 
solution, 243 

239 

229 

alloys, 234 

effect of viscosity, 245 
diffusion of small atoms in glassy polymers, 

free-volume model for diffusion in liquids, 

interstitial diffusion in amorphous metallic 

reptation, 245 
self-diffusion in amorphous metallic alloys, 

232 
direct collective mechanism, 233 
isotope effect, 234 

diffusion, motivations for 
capillarity, 57 
concentration gradient, 41, 52 

electrical potential gradient, 54 
stress, 61 
thermal gradient, 56 
uphill diffusion, 56, 69, 435 

D = D ( c ) ,  85 
D = D ( t ) ,  87 
D = constant, 81 
algebraic signs of, 53, 435 
anisotropy of, 88 
definition of, 42 
interdiffusivity, 49-50, 53-54, 87 

in spinodal region, 433-435 
intrinsic, 47, 53-54 
self, 43, 53-54 
self-diffusivity of solute, 44, 54, 236 
self-diffusivity, values in metals, 174 
thermal, 99 

Kirkendall effect, 44 

diffusivities 

dihedral angle at interface junction, 342, 376, 

dislocations in crystals, 253 
association with growth spirals on surfaces, 

291 
climb of, 266 

379, 478 

Bardeen-Herring source/sink for 

climb force due to stress, 255 
diffusion-limited kinetics, 267 
dislocations as sinks for excess vacancies, 

edge, mixed, and screw dislocations, 268 
efficiency, 268 
experimental observations, 269 
formation of helical dislocations, 268, 279 
osmotic force, 256 
role of stacking-fault energy, 269 
shrinkage of dislocation loops, 271 
source-limited kinetics, 267 

dissociation of, 222 
energy of prismatic loop, 257 
energy of straight screw dislocation, 260 
forces on 

vacancies, 280 

269 

due to curvature, 257 
due to  stress, 255 
osmotic. 256 

glide of, 253 
by thermally-activated double-kink 

formation, 262 
drag effects in perfect crystals, 260 
effective mass, 278 
experimental observations, 264 
Rank-Read source, 281 
in imperfect crystals containing obstacles, 

in perfect crystals, 258 
263 

Peierls force, 261 
relativistic effects, 258 
solute-atom drag, 263 
supersonic, 265 

glide vs. climb, 253 
jogs, 262 
kinks, 262 
line tension of. 257 

i -  

dislocations in interfaces 
anticoherencv dislocations. 598 
as sources and sinks for atomic fluxes, 317 
coherency dislocations, 598 
dislocations vs. dislocation/ledges vs. ledges, 

in small-angle grain boundaries, 596 
in vicinal interfaces, 595 
intrinsic vs. extrinsic, 599 
role in interface motion, 305 
role in relief of coherency stresses, 448, 557 
role of spirals in interfacial motion, 310 
role of their glide and climb in interfacial 

599 

motion, 308 
divergence theorem, 12 ,  78 
dumbbell interstitial configuration, 166, 176 
eigenfunctions, 108, 322 
eigensystem, 14, 137 
eigenvalues, 15, 33, 89, 96, 108, 135, 322 
eigenvectors, 15, 135 
elastic coherency energy, 446, 470 
electric field, 24, 55 
electrical conductivity, 27 
electrochemical diffusion potential, 32 
electromigration, 55 
entropy 

concept of entropy flux, 25 
production in dynamic systems, 23, 26 
role in irreversible thermodynamics, 25 

equilibrium, 6 
error function, erf, 83, 105 
error function, complementary, erfc, 112 
faceting of surface, 347, 609-610 
Fe, 30, 167, 169, 192, 206, 221, 317, 579 
Fe-A1, 451, 456 
Fe-C, 69, 566 
Fe-C-Si, 69 
F e C r .  451 
Fe-Crko,  451 
Fe-Mo, 451, 456 
Fe-Ni. 574-575. 578-580 
FeNi-C, 575, 579-580 
Fe-Ni-Co. 139 

- - i  ~-~ ~~ ~ ~ 

Fe-Zr, 233 
FeO, 181-182 
Fermi-Dirac statistics, 235 
Fick’s law, 27, 42, 77,’170, 237 

Fick’s second law, 78 
field 

anisotropic, 89 

gradient of, 7 
scalar and vector, 7 
variations of, 1 
and accumulation, 78 
charge, 55 
conjugate forces and fluxes, 27 
definition of, 10 
linear relation to  driving forces, 29 
reference frames 

C-frame, 45 
V-frame, 48 

flux 

Fourier series, 109 
Fourier’s law, 27-28, 30 
free surfaces 
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grooving at  intersections with grain 

roughening transition, 223, 287 
smoothing 

free volume, 229 
Frenkel defects, 177, 179 
Ga, 293 
gamma-plot, 346 

Gauss's theorem, 12 
Ge, 168 
Gibbs-Duhem equation, 46, 435 
Gibbs-Thomson equation, 286, 607, 611-612 
glass-transition temperature, 232 
glissile interfaces, 305, 572 
gradient energy, 435, 437, 559 
gradient, definition of, 7 
grain boundaries, 596 

nucleation on, 477 
grain growth, 373 

in three dimensions, 379 

in two dimensions, 373 

boundaries, 342, 357, 379 

by surface diffusion, 338 
by volume diffusion, 354 

reciprocal gamma-plot, 609 

See elso interfaces 

topology of, 379 

computer simulation of, 377, 382 
Euler's theorem, 374, 380 
growth law for average grain area, 377 
growth law for effective rms grain radius, 

(N - 6)-rule, 376 
self similarity, 377, 

grain-boundary sliding, 395 
graphite, 88, 122, 579 
Green's functions, 106 
growth of phases 

378 

topology of, 373 

analysis of interface growth stability, 515 
constitutional undercooling, 518 
diffusion-limited, 504 
heat conduction-limited, 502 
interface source-limited, 510, 514 
of spherical particles, 512 
planar layer growth, 502 
platelets and needles, 514, 552 

effect of capillarity, 552 
Stefan condition, 503-504 

Guinier-Preston zones, 560 
hard-sphere model for liquid, 229 
harmonic functions, 100 
He, 239 
heat of transDort. 57 
Henry's law, '35 ' 
In, 575-576 
In-TI, 575, 578, 584 . ,  
inclusions 

coherent, 470 
disc-shaped, 469, 472 
elastic strain energy of, 468 
ellipsoidal, 470-473 
incoherent, 469 
with invariant plane strain, 472 

inhomogeneous material 
free energy of, 435-436 
gradient energy in, 437 
gradient-energy tensor, 436 

interface divergence, 607 
interface motion when v' = v'(A), 351 

characteristics, 351, 360 
particle dissolution, 352 
particle growth, 352 

interfaces, crystal/crystal 
as sources and sinks for atomic fluxes, 317 

by uncorrelated shuffling, 320 
diffusion-limited vs. source-limited 

efficiency of, 321 
experimental evidence for, 319 

coherent, semi-coherent, and incoherent, 597 
reference structure, 597 

compatibility stresses, 303 
grain boundaries, 596 

large-angle, 597 
small-angle, 596 
tilt, twist, and mixed, 597 

line defects in, 599 

ledges, 599 
motion of, 303 

kinetics, 317, 321, 324 

dislocations, dislocations/ledges, and 

conservative by atom shuffling, 305, 311 
conservative by interfacial dislocation 

conservative by interfacial dislocation 

conservative vs. nonconservative, 304 
driving pressures, 303-304 
experimental observations of, 315 
intrinsic vs. extrinsic mobility, 313 
military vs. civilian, 306 
pinning by embedded particles, 314, 329 
solute-atom drag, 312-313, 329 
thermally activated unpinning, 330 

glide and climb, 308 

glide, 305 

structure of 
- 

degrees of freedom, 592 
singular, vicinal, or general, 593 

interfaces, crystal/liquid- 
motion in undercooled liquid 

general interfaces, 293 
singular and vicinal interfaces, 292 

structure of 
degrees of freedom, 592 
roughening, 292 
singular, vicinal, or general, 292, 593 

interfaces, crystal/vapor 
efficiency as adatom sinks, 289 
motion in supersaturated vapor 

general surfaces, 291 
singular and vicinal surfaces, 286 

from destruction of supersaturated 
vacancies, 287, 291 

in its supersaturated vapor, 288 
nucleation of ledges, 290 
role of ledges, 288 
role of surface diffusion, 289 

motion of 

nucleation of ledges on singular surface, 290 
structure of, 287 

degrees of freedom, 592 
general, 287, 595 
line and point defects, 287 
roughening, 287 
singular, 287, 593 
vicinal, 287-288, 594 

interfaces, diffuse, 435, 592 
diffuse vs. sharp, 592 
examples, 445, 593 
motion of, 312 
structure and energy of, 437 

interfaces, driving pressure on 
due to curvature, 286 
due to specimen shape change, 304 
thermodynamic driving forces, =, 303 

interfaces, equilibrium constructions 
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y-plot constructions, 346, 608 
reciprocal y-plot , 608 

capillarity vector, 350, 609-610 
Frank tangent-sphere construction, 608-609 
Herring construction, 347 
Wulff construction, 609-610 
Young’s equation, 342, 390-391, 478 

formulae, for 
interfaces, mathematics and geometry of, 603 

graph interfaces, 606 
interface normal and curvature, 606 
level set interfaces, 606 
parametric interfaces, 606 

level sets, 603, 606 
mean curvature, 603 

implications of, 605 
normal vector, 603, 606 
tangent plane, 606 
weighted mean curvature, 605 

implications of, 611 
internal friction, 183 

See also anelasticity 
interstitial point defects 

as cause of anelasticity, 183 
configurations in f.c.c. crystal, 166 
Frenkel defects, 177, 179 
in grain boundaries, 221 
interstitialcy diffusion mechanism, 165 
relation to Kirkendall effect, 190 
role in self-diffusion, 176 
split dumbbell in f.c.c. crystal, 165-167 

invariant plane strain, 472 
inversion center, 436 
irreversible thermodynamics 

and entropy, 25 
basic postulate of, 27 
coupling coefficients, 29 
coupling of forces and fluxes, 28 
direct coefficients, 29 
linear theory, 28 

isotope effect in diffusion, 174 
Jackson c1: parameter, 292-293 
Johnson-Mehl-Avrami equation, 537 
jumping rate of particle 

activation energy, 154 
energetics, 145 
fluctuations, 146 
frequency, 147 
theory, 145 

KC1, 177, 179-180 
kinetic wavelength, 346, 443 
kinetics of materials 

and averaging, 4 
and irreversible thermodynamics, 5 
and mechanisms of kinetic processes, 1 
construction of theories for, 2. 
general description of, 1 
relation to classical thermodynamics, 2 

Kirkendall effect 
analysis of, 44 
Darken treatment, 46 
due to interstitialcy diffusion mechanism, 

due to vacancy diffusion mechanism, 45 
motion of embedded inert markers, 45, 50, 

structural effects in diffusion zone, 51 
Kolmogorov-Johnson-Mehl-Avrami analysis, 

Krogerxink notation for ionic crystals, 178 
Lagrange multipliers, 231 
Landau expansion, 420 
Laplace equation, 60, 100 

190 

92 

533 

Laplace transforms, 110 
definition, 110 
table, 112 

cylindrical coordinates, 101 
spherical coordinates, 102 

Laplacian 

large-angle grain boundaries, 21 1, 596-597 

LeChatelier’s principle, 153, 577 
level set, 603 
LiF, 264-265 
linear kinetics, 29 

classification, 211: 597 

liquid 
diffusion in, 229-231 
free volume in, 229 

local equilibrium, 1-2, 8, 24 
martensitic transformations, 863 

crystallography of, 565 
analysis using stereographic projection, 

lattice deformation, 565 
lattice invariant deformation, 567 
rigid-body rotation, 570 
tensor analysis, 571 
twinned vs. slipped martensite, 571 

general features of, 563 
driving pressure for, 565 
invariant plane (habit plane), 564 
macroscopic shape change, 563 
military atom shuffling, 563 

coherency and anticoherency dislocation 

velocity of motion, 574 
in Fe-Ni system 

hysteresis, 578 
lattice deformation, 578 
morphology of, 578 

effects of carbon, 579 
irreversibility of transformation, 580 
quenching and tempering, 580 

effect of applied stress, 576 
hysteresis, 575 
lattice deformation, 575 
stabilization, 576 

nucleation, 574 
platelet structure, 572 
thermoelastic equilibrium of, 583 

568 

glissile interface, j72 

structure, 572 

in Fe-Ni-C system 

in In-T1 system 

mass density, definition of, 587 
mass fraction, definition of, 588 
Matano interface, 87 
mathematical formulae for surfaces 

curvature, 606 
tangent plane, 606 
unit normal, 606 

Maxwell relations, 33 
mean-field theory, 367, 412 
metallic glasses, 232 
microcrystallites, 233 
microscopic reversibility , 34-35 
mobility, 27, 52 

sign of, 28 
morphological stability 

of a cylinder, 343 
critical wavelength, 346 
kinetic wavelength, 346 
Rayleigh condition, 345 

Nabarro-Herring creep, 395, 399 
NaCI, 204, 588 
Nernst-Einstein equation, 52 
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network-constrained crystal, 30-31 
Neumann’s principle, 90 
Ni, 139, 579 
Ni-A1, 372 
Ni-Si,’ 372 
NiO, 168, 181, 213 
normal vector 

to curve, 602 
to interface, 603, 606 

a longar row wire, 540 
in infinite sheet during heating, 542 
time-cone analysis, 534 
time-dependent growth rate, 536 
time-independent growth rate, 536 
TTT diagrams, 539 

nucleation with concurrent growth kinetics, 
533 

nucleation 
heterogeneous, 477 

at  conical pit, 491 
at  crack, 493 
barrierless, 478 
critical particle size, 479 
distribution of sites, 480 
during ingot solidification, 549 
of ledges at  crystal edges during growth 

from vapor, 298 
of martensite, 574 
on dislocations, 481 
on grain boundaries, 477 
on grain corners, 479 
on grain edges, 479 
thermal activation, 479 

classical theory of, 460 
critical nucleus, 461 
during precipitation in Cu-Co alloys, 558 
incoherent nuclei, 469 
non-steady-state rate of, 466 
nonclassical models, 476 
nucleus shape, 473, 490 
of ledges during crystal growth from 

one-component system, 460 
steady-state rate of, 463 
strain-energy effects, 468 
two-component system, 468 

homogeneous, 460 

vapor, 289, 298 

on singular crystal/vapor interface, 290 
regimes, 481 
with concurrent growth, 533 

time-dependent, 536 
time-independent, 536 

Ohm’s law, 27, 36 
Onsager’s symmetry principle, 33 
order parameters, 420 
order-disorder transformations 

Allen-Cahn equation, 441 
antiphase boundaries, 442, 445 
critical wavelengths, 444 
CsCl (B2) structure, 424 
diffuse interface, 437, 445 
free energy of inhomogeneous system, 436 
free energy vs. order parameter, 444 
gradient energy, 436 
initial stages, 444 
numerical simulation using phase-field 

method, 441 
occupational probabilities, 425 
pairwise interaction model, 425 
potential to change order parameter, 440 
structural order parameter, 424 
sublattices, 424 

oxide network glass, 240 
Pb-Sb, 516 
Pb-Sn, 369 
Peach-Koehler force on dislocation, 255 
Peierls force, 261 
Peltier effect, 37 
perturbation analysis, 343, 519 
phase transformations, 419 

See also growth of phases, martensitic 
transformations, nucleation, nucleation 
with concurrent growth kinetics, 
order-disorder transformations, 
precipitation, solidification, spinodal 
transformations 

phase transformations, general features of 
classification, 430 
continuous vs. djscontinuous 

free-energy changes during, 428 
Landau expansion of free energy, 420 
order of a phase transformation, 420 
order parameters, 420 

conserved vs. non-conserved, 428 
phase-field method, 441 
Poincare, 2 
point-source solutions to diffusion equation, 

103 
Poisson statistics, 535, 542 
polarization, 24 
polymer chains 

polymers, 241 

transformations, 420, 431 

diffusion of, 243 

diffusion in, 239, 245 
structure of linear, 241 
theta solvents, 242 

general features of, 555 
Guinier-Preston zones, 560 
in A1-Cu system, 560 
in Cu-Co system, 558 
interface coherency, 557 
nucleus energy, 556 
nucleus morphology, 556 
precipitate reversion, 561 
prismatic dislocation punching, 558 
solvus curves for transition precipitates, 561 

precipitation 

rafting G f  particles, 372 
random walks, 156-157 
Raoult’s law, 24 
Rayleigh instability of a cylinder, 345 
recrystallization, 303, 540, 542 
reptation, 245 
reversion of precipitates, 561 
roughening interface transition, 287, 292 
saddle point, 150, 235, 489 
Scheil equation, 546 
Schottky defects, 177-178 
Schrodinger’s equation, 99 
second law of thermodynamics, 6 
Seebeck effect, 36 
short-circuit diffusion, 209 
shuffling of atoms 

definition of, 305 
role in interfacial motion. 311 
role in martensitic transformations, 565 

Si, 168 
Si3N4, 593 
silica glass, 240 
silver halides, 179 
sintering 

force balance, 390, 416 
mechanisms, 401 
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maps for, 405 
of pipe, 412 
of pores in grain boundary, 414 
of powders, 401 

scaling laws, 403-404 
systems of simple geometry, 403 

bundle of parallel wires, 391 
two spherical particles, 394 
wires with bamboo structure, 389 

site fraction, definition of, 588 
site occupation probabilities, 235, 425 
small-angle grain boundaries, 21 1, 595-596 
sodium silicate glass, 240-241 
solidification 

castings and ingots, 549 
cellular, 547 
dendritic, 547 

solute segregation, 548 
effective partition ratio, 545 
partition ratio, 544 
plane-front, 543 
Scheil equation, 546 
zone leveling, 547 
zone melting, 546, 550-551 

spinodal transformations, 433 
Cahn-Hilliard equation, 440 
chemical spinodal and miscibility gap, 430 
coarsening, 449-450 
coherency strain effects, 445 
critical and kinetic wavelengths, 443 
diffuse interfaces, 437 
diffusion potential, 439 
experimental observations 

diffraction patterns, 450 
microstructures, 451 

initial, intermediate, and final stages of, 
402 

free energy of inhomogeneous system, 436 
free-energy curve and chemical spinodal, 430 
gradient energy, 433, 437 
initial stages, 443 
interdiffusivities at unstable comDositions. 

433-435 
numerical simulation using phase-field 

method, 441 
uphill diffusion, 435 

Stefancondition, 503-505, 507, 509, 513, 515, 
524 

Stirling, 157 
Stokes's law, 244 
strain aging, 64 
stress coarsening, 372 
stress effects 

diffusional creep, 395 
force on dislocation, 255 
on diffusion, 61 
on equilibrium, 31 
on martensite platelet, 583 
on martensite transformation, 565, 576, 584 
pressure on interface, 304 

stress-free strains, 446, 469 
superlattice reflections in diffraction patterns, 

surface evolution, 338 
Ta205, 201 
tangent plane to interface, 606 
tangent vector 

temperature 

445 

to dislocation line, 255 
to space curve, 602 

continuum limit, 7 
in nonequilibrium system, 6 

tensor 
conductivity, 14 
deformation, 571 
diagonalization of, 16 
diffusivity, 89 
gradient-energy coefficient, 436 
resistivity, 14 
rotation, 571 
stress, 7, 255 
transformation, 571 
transport tensors for anisotropic material, 94 

thermal conductivity, 27 
thermal diffusivity, IE ,  79 
thermoelectric effect, 28 
time-temperaturetransformation (TTT) 

diagrams, 538 
time-cone analysis, 534 
TiO2. 181 
T1, i75-576 
transformation strain, 468 
twinning, mechanical 

geometry of, 306-307 
relevance to martensite, 563 

UO?, 406 
uphill diffusion, 56, 69, 139, 435 
vacancy point defects 

and substitutional self-diffusion, 42 
cause of osmotic dislocation climb force, 256 
charged vacancies in ionic materials, 178 
chemical potential, 43, 59 
creation/destruction at dislocations, 266 
diffusion to dislocation sinks, 270 
effect on relieving strain energy of critical 

equilibrium concentration, 59 
in grain boundaries, 221 
in Kirkendall effect, 45 
interaction with screw dislocation, 268 
interfaces as sources for, 321 
jump path in f.c.c. crystal, 165 
precipitation, 51, 278 
quenched-in, 174, 269, 292 
role in dislocation climb, 256 
role in network-constrained diffusion, 30 
Schottky defects, 177 
surface vacancies, 287 
vacancy diffusion mechanism, 164, 167 
vacancy diffusivity, 59, 171 

nuclei, 475 

vapor transport, 342 
vector field, 7 
Vegard's law, 47, 446 
vibrational entropy, 171 
viscous drag, 244 
weighted mean curvature, 350, 605, 610 
wetting of interface, 478 
Widmanstatten structures, 556 
work 

density, 24 
elastic deformation, 24 
electric polarization, 24 
electrostatic, 24 
interfacial, 24 
magnetization, 24 

Wulff construction, 609-610 
Young's equation, 342, 390-391, 401, 478 
Zeldovich factor, 466 
zero-creep method, 390 
Zn, 92, 212, 588 
zone leveling, 547 
zone melting, 546 
ZrOz, 181, 201-202 


